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A b s t r a c t  Chilka lake, the largest coastal lagoon of Asia 
is one of the most dynamic ecosystems along the Indian 
coast. Historically the lagoon has undergone a consider- 
able reduction in surface area due, in part, to input from 
natural processes but mostly due to human activities. The 
purpose of this investigation is to document the heavy 
metals' affinity for specific geochemical phases in the re- 
cently deposited sediments in the lagoon. Thirty-three 
samples were collected and analyzed for different geo- 
chemical phases of Fe, Mn, Cu, Cr, Ni, Pb, and Zn 
utilizing a sequential extraction scheme. In the nonlithoge- 
nous fraction, the exchangeable fraction was not geochem- 
ically significant, having <2% of the total metal con- 
centration for all the elements. However, the carbonate 
fraction contained the following percentages of the total 
concentration: < 1% Fe, 13% Mn, 6~o Cu, 4% Cr, 8% Ni, 
13~o Pb, and 12% Zn, suggesting the detrital origin of the 
sediments. Reducible and organic matter-bound fractions 
were the significant phases in the nonlithogenous fraction, 
containing 9% Fe, 16% Mn, 15% Cu, 16% Cr, 16% Ni, 14% 
Pb, and 14% Zn in the former and 4% Fe, 3% Mn, 17% 
Cu, 3% Cr, 14% Ni, 15% Pb, and 14% Zn in the latter. The 
phenomenon has been attributed to the scavenging affin- 
ity of Fe-Mn oxides and affinity for sorption into organic 
matter of the lagoon sediments. The lithogenous, residual 
fraction generally considered as a guide for natural back- 
ground values was determined to contain 87% Fe, 67% 
Mn, 61% Cu, 77% Cr, 61.3% Ni, 56% Pb, and 60% Zn of 
the total concentrations. 
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Introduction 

The bottom sediment of aquatic systems can be a major 
trap for metals. The processes that contribute to the accu- 
mulation of these elements in the bottom sediments in- 
clude adsorption to surfaces of organic particles, clays, 
and silts; particles settling from the overlying water; and 
bioaccumulation by benthic organisms (Salomons and 
Forstner 1984; Elder 1988, 1994; Horowitz 1991; Farrah 
and Pickering 1993). Thus, in aquatic systems sediments 
may be both carrier and potential sources of pollutants 
(Forstner and Muller 1974). Furthermore, pollutants are 
not necessarily fixed permanently to sediment, but may be 
recycled via biological and chemical agents within both 
the sedimentary column and the water column (Forstner 
1985). Within the sedimentary column, metals are com- 
monly partitioned into mineral structures, hydrates, sul- 
fides, amorphous hydrous oxides, and organic particles 
(Forstner 1990). In addition, each element has specific par- 
titioning tendencies with respect to these forms (Tessier 
and others 1979, 1980). The association of metals with 
sediments is complicated by the likelihood of their enrich- 
ment on particles of smaller grain sizes (Horowitz and 
Elrick 1987; Elder 1988, 1994; Horowitz 1991). 

Heavy metals, in contrst with most pollutants, are not 
biodegradable and undergo a global ecobiological cycle in 
which natural waters are the main pathways (Nurnberg 
1984). Various remobilization mechanisms of bed sedi- 
ments including physical resuspension (Bengtsson and 
others 1990), geochemical remobilization from organic 
matter (Breteler and Saska 1985); dissolution of hydrous 
oxides of iron and manganese (Jenne 1968; Horowitz 
1991); biomethylation (D'Itri 1990; Winfrey and Rudd 
1990), and other biological processes (Elder and Collins 
1991) can cause release of these elements to the water 
column. Additionaly, these categories have different be- 
haviors with respect to remobilization under changing en- 
vironmental conditions (Forstner 1985). Therefore, knowl- 
edge of the total content of heavy metals in a sediment 
does not give a complete picture of the environmental 



200 

situation. Thus, it is vital to perform partitioning studies 
with the sediment to assess accurately the ecotoxic 
potential. 

Several studies have been performed on the distribution 
of heavy metals in coastal lagoon sediments (Harbridge 
and others 1976; Mallik and Suchindan 1984; Paez-Osuna 
and others 1986; Nadeau and Hall 1988; Nair and others 
1990; Nair and Balchand 1993; Fernandes and others 1991, 
1994, Haung and others 1994, Zonta and others 1994). 
However, most of these studies have reported only the 
bulk sediment concentration with only a few chemical 
fractionation studies. The current paper reports for the 
first time the results of a study undertaken on chemical 
fractionation of heavy metals in the recently deposited 
sediments collected from Chilka lagoon and also evaluates 

the magnitude of the different types of metals in the 
sediment. 

Study area 

Chilka Lake, the largest coastal lagoon of Asia, with an 
average water surface area of 1054 km 2, is located along 
the east coast of India (lat. 19~176 and long. 
85~176 It is one of the first two wetlands placed 
by India under the Ramsar Convention (IUCN 1987) on 
Wetland of International Importance. Oriented parallel to 
the coast between the Eastern Ghats (mountain ranges 
flanking the east coast of India) and the Bay of Bengal. 

Fig. 1 Map of Chilka lake and 
sample locations 
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The lagoon connects the Bay of Bengal through a long, 
narrow channel and is separated by a 60-km-long narrow 
spit. The Daya and Bhargavi, distributaries of Mahanadi 
River, enter the lagoon from the north, and many small 
streams occur along its western margin. Rocky hills 
composed of hard metamorphosed Precambrian rocks 
(garnet-sillimanite gneisses, quartzites, and charnockites) 
project as promontories in the lagoon. The lagoon is shal- 
low, with an average depth of 1.5 m. The tidal range is 
about 80 cm in the sea inlet area and a few centimeters 
(not more than 10 cm) in the innermost reaches. A salinity 
gradient is observed from north to south, increasing ex- 
ponentially from the innermost reaches of the sea inlet. 
Water circulation is mainly wind driven. Panda (1993) 
classified the lagoon based on the geomorhological classi- 
fication of Kjerfve and Magill (1989) as a choked lagoon. 

Methodology 

Sampling 

Surface sediments were collected during June 1988 using 
a Peterson Grab sampler at 33 locations in the lagoon 
(Fig. 1) and placed in acid-rinsed plastic containers. Pre- 
cautions were taken to prevent contamination during 
sample collection and handling. 

Choice of method and chemical fractionation experiments 

Several chemical extraction schemes have been proposed 
(Chester and Hughes 1967; Gibbs 1977; Tessier and others 
1979; Shuman 1982, 1985; Archer and Hodgson 1987; 
Campbell and Tessier 1987) that utilizes a series of ex- 
tractants in order of increasing strength, so that each 
speciation category is sequentially released from the sedi- 
ment. However, most of the sequential extraction methods 
exhibit uncertainities (Rendell and others 1980; Tipping 
and others 1985; Rapin and others 1986; Kheboian and 
Bauer 1987; Bermond and Sommer 1989; Sholkovitz 
1989). The major problems are related to the pretreatment 
of the samples (drying and storage), the reagents used in 
the sequential extraction, and readsorption of elements 
onto solid phase after each chemical attack. It has also 
been noted that the efficiency of an indivisual sequential 
extraction method depends upon sample composition 
(granulometry and mineralogy), chemical reagents used, 
and the intensity (temperature, pH, liquid-to-solid ratio) in 
each attack. Therefore, it is very difficult to chose and 
compare the results between different selective extraction 
methods. With regard to complexity of natural elements 
associated with solid phases, sequential extraction pres- 
ently may be the best approach in describing the geochem- 
ical association of elements, as this procedure develops a 
direct estimate of mobility and bioavailabitity of elements 
in the natural enviromnent. Based on this, the method of 
Tessier and others (1979) was used in this study, since 
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it is relevant to the chemical properties of Chilka lagoon 
sediments (high pH, low organic carbon and carbonate) 
(Panda 1993). 

The chemical fractions and reagents used in the sequen- 
tial experiments are summarized below, as details are 
given in Tessier and others (1979): 

a) Exchangeable fraction (F1) 1 M MgC12, pH 7.0 
b) Carbonate fraction (F2) 1 M NaOAc adjusted 

to pH 5.0 with HOAc 
c) Reducible fraction (F3) 0.04 M NH2 OH'  HC1 

in 25~o (v/v) HOAc 
d) Organic fraction (F4) 30~o HzOz at pH 2.0 

adjusted with conc. 
HNO 3 followed by 
addition of 3.2M 
NH4OAc in 20~ (v/v) 
HNO3 

e) Residual fraction (F5) Mixture of HF, HNO3 
and HC104 acid 

For total concentration, sediments were digested in 
Teflon bombs with a mixture of aqua regia and HF. 
Solutions were analyzed using an atomic absorption spec- 
trophotometer (GBC-902 model), according to manufac- 
ture's conditions, including background correction. Stan- 
dard reference samples (USGS rock standards MAG-1, 
SCO-1 and SGR-1) were analyzed along with the sedi- 
ment samples. 

The concentrations of Fe, Mn, Cu, Cr, Ni, Pb, and Zn 
in each of the leachates were determined by atomic ab- 
sorption spectrophotometry. Triplicates of each leachate 
were analyzed. The results are within a 5~ limit. Blank 
values were negligible for all elements under considera- 
tion, which indicated the rather high purity of the reagents 
used. For matrix effects, four equal aliquots of the sample 
(Ni) were taken, and varying amounts of standards were 
added to three of the aliquots, up to the same final volume 
and analyzed. Results were ploted on an absorbance vs 
concentration curve that extends the concentration axis to 
the left of zero as well. The resultant curve was used as the 
calibration curve for the other elements. 

Results and discussion 

Heavy metal affinity for geochemical phases 

The range, mean, standard deviation, and coefficient of 
variation in total and in different chemical fractions of the 
metals Fe, Mn, Cu, Cr, Ni, Pb, and Zn for Chilka lagoon 
sediments are given in Table 1. 

Exchangeable fraction 

Heavy metals in exchangeable positions are authigenic as 
well as contributed from natural source. Metals in this 
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Table l Metal contents (in ppm, Fe in ~o) in geochemical phases of sediments" 

Geochemical phases Fe Mn Cu Cr Ni Pb Zn 

Exchangeable bdl a <1.0-5.0 b 0.06 1.37 bdl-0.62 bdl-l.92 0.28 1 . 4 8  0.03-0.17 
(2.0) 0.43 0.16 0.56 0.67 0.08 
[1.0] 0.28 0.13 0.41 0.28 0.04 
{50} 66 82 73 41 50 

Carbonate 0.01 0.08 17-67 0.6-7.6 0.1-3.6 2.9-16.5 3.5-8.3 2.25-7.97 
0.03 38 3.1 1.3 7.8 5.3 4.93 
0.02 14 1.95 0.73 2.8 1.28 1.39 

66 37 63 57 35 22 28 
Reducible 0.11-0.77 13-119 1 .13-17 .26  0.49-13.17 5.35-39.4 3 .38-12 .21  2.46-11.91 

0.38 52 7.88 6.14 17.7 6.02 6.10 
0.17 23 5.04 3.50 6.9 2.29 2.73 

44 45 63 57 39 38 44 
Organics 0.07-0.28 2-23 1 . 7 5 - 1 5 . 7 8  0.2-2.89 6 .84 -29 .43  3 . 8 6 - 9 . 3 3  2.85-9.47 

0.17 11 8.48 1.20 15.20 6.07 5.88 
0.06 6 4.89 0.71 4.74 1.55 6.61 

39 53 57 58 31 25 26 
Residual 1.47 5.87 78-405 6.5-61.3 3.3 58.1 35.3 116.5 14.9 32.4 13.2 36.5 

3.6 210 30.47 28 64 23 25 
1.0 85 17.26 13.98 16.2 4.9 6.6 

27 40 56 50 25 21 26 
Total 1.66-5.87 114-595 10-101 4-74 52-143 28-59 21-63 

4.2 314 50 37 106 41 42 
1.2 125 29 19 29 9 12 

28 39 57 49 27 28 28 

a bdl--below detectable limits 
b Value are range, ( ) mean, [ ] standard deviation, { } ~o coefficient of variation 

phase are readily available and relatively mobile for bio- 
logical uptake, a process faciliated by the lowered pH of 
the digestive systems of many bottom-dwelling organisms 
(Copeland and Ayers 1972). Concentrations determined 
for exchangeable Fe, Cu, Cr, Ni, and Zn are lower than 
their respective detection limits; low concentrations of Pb 
(<  1.0-1.5 ppm) and Mn (5 ppm) are also noted. The low 
concentration of the exchangeable fraction suggests poor  
elemental availability to the bottom-dwelling organisms 
in this environment and can be attributed to the high pH 
(8.0-9.0) (Panda, 1993) of the sediments as an alkaline 
condition induces a decrease of available trace elements. 
Sediment pH has a direct relationship to the availability 
of metals, as it effects their solubility (high pH decrease 
solubility of most  metals) and capacity to form chelates in 
the sediment (Forstner and Wit tmann 1981). Experimen- 
tal studies by many  researchers reported by Forstner and 
Wit tmann (1981) noted that heavy metals sorbed onto 
solid particles carried by river water and other freshwater 
systems are desorbed to various extents when these solu- 
tions are mixed with naturally occurring high pH water. 
Thus, it may be stated that the exchangeable fraction is the 
least geochemically significant fraction in Chilka lagoon 
sediments. 

Carbonate-bound .fraction 

Heavy metals in the carbonate fraction of sediments may 
be either detrital or authigenic because many metals have 

carbonate species that are stable at natural pH and Eh 
conditions (Stumm and Morgan 1970). The carbonate 
fraction accounts for a relatively small amount  of the total 
elemental concentrations in this environment. The con- 
centration determined for Fe in this fraction is lower than 
the detection limit; the levels of Ni, Cu, and Cr, although 
detectable, remain low ( < 8~o) and comparable to the total 
concentration (Table 1). For  Mn, Pb, and Zn, however, the 
observed concentrations represent an appreciable pro- 
portion to the total metal: 9.1-19.7~ Mn, 10.0-14.3~o Zn, 
and 10.3-15.0~o Pb. The absolute concentrations follow 
the order Pb > Mn > Zn > Ni > Cu > Cr > Fe for each 
sediment: The calcium carbonate concentration content of 
the sediments of Chilka lagoon varies between 1.5 and 
8.0~o with the average being 4.2~o (Panda 1993), character- 
izing a very low CaCO3 content. The results of Paropkari  
and others (1980) show that even in sediments having 75-  
90~o CaCO 3, the carbonate phase is not a significant con- 
tributing factor to the trace metal content of the sedi- 
ments. Thus, the low carbonate content of the lagoon 
sediment precludes the possibility of this phase making 
any significant contribution to the amount  associated with 
the carbonate phase of sediments. However, the relatively 
higher percentage of carbonate fraction for Pb, Mn, and 
Zn are most likely the result of similarity in their ionic 
radii to that of calcium, which allows them to substitute 
Ca in the carbonate phase (Pederson and Price 1982; 
Zhang and others 1988). Therefore, this fraction reflects 
the distribution of detrital calcite and dolomite as well as 
biogenic decomposition in the lagoon. 



Reducible fraction 

Heavy metals are bound to reducible phases associated 
with hydrous Fe-Mn oxides either by coprecipitation or 
by sorption onto preexisting coatings. These processes are 
very sensitive to change in redox potential, and minor 
station-to-station variations may greatly effect the relative 
amounts within this fraction. It is the most important 
among the labile fractions (FI-F4) and ranges from 6- 
13.6% for Fe, 11-20.1% for Mn, 10.8-20.1% for Cr, 10.1 
19.2% for Cu, 10.3-19.4% for Ni, 10-20% for Zn, and 
10.3-19.7% for Pb. The absolute concentrations in this 
fraction follow the order Ni > Mn > Cr > Cu > Pb > 
Zn > Fe for each sediment in the environment. Relatively 
higher concentrations of Fe and Mn in this phase are 
attributed to the flocculations of colloids of Fe and 
Mn transported to the lagoon via rivers and ephemeral 
streams. On the basis of laboratory experiments corrobo- 
rated by field measurements, Singh and Subramanian 
(1984) explained that colloids of Fe-Mn oxides act as effi- 
cient scavengers for many of the heavy metals (Fe, Mn, Cu, 
Ni, Zn, etc.). Furthermore, it may be explained that the 
relatively higher concentrations of other elements such as 
Cu, Cr, Ni, Pb, Zn, etc., associated with this fraction are 
caused by the adsorption of these elements by the colloids 

Fig. 2 Partition of heavy metals in different fractions in each of the 
sediment types present in Chilka lake 
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of Fe and Mn (Jenne 1968). It is also reasonable to suppose 
that the relationship existing between Fe and Mn hydrox- 
ides and other elements should be good, but in reality this 
is not so in case of Mn (r 2 = 0.23). Thus, it is believed 
that a single Fe phase could reveal important information 
about the heavy metal content in the sediment that would 
not appear in the combined Fe-Mn phase. However, no 
data are available for chemical forms of trace elements in 
single Fe fractions to substantiate this premise. 

Organic matter-bound fraction 

The organic matter-bound fractions are normally < 7% of 
the total concentration for Fe (1.2-6.7%), Mn (2.5-5.6%), 
and Cr (2-6%), but in the remaining metals are present in 
relatively significant proportions of the total metal con- 
centration: 11.5-18.8% Cu, 10.4-20.9% Ni, 12.1-17.2% 
Pb, and 12.1-18.1% Zn. The absolute concentrations in 
the organically bound fraction follow the order Cu > 
P b > N i > Z n > F e > M n > C r  for each of the sedi- 
ments. Heavy metals become associated with organic mat- 
ter through biological uptake and adsorption with sub- 
sequent incorporation into resistant organic degradation 
products, such as humic substances. In Chilka lagoon sed- 
iments organics are probably the major source of metal in 
this fraction because all metals that have high concentra- 
tions in this fraction also correlate with organic content. 
The lower percentage of Fe in this phase probably results 
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from competition between Fe-organic complex and hy- 
drous Fe oxide forms. 

Residual fraction 

Trace metal concentrations in the residual or inert fraction 
are higher than those observed in any of the preceding 
extractions, representing more than 50?/00 of the total metal 
concentration: 81.2-89.5% Fe, 62.1-75% Mn, 50-63.2% 
Pb, 72.1-84.2% Cr, 53.4-70.9?/0 Ni, 50.2 66.3% Zn and 
54.4-68.8% Cu. The absolute concentration follows the 
order Fe > Cr > Mn > Ni > Cu > Zn > Pb for each sed- 
iment. It can be seen from Fig. 2 that the grain size of the 
sediment has no appreciable influence on the distribution 
of elements associated with different geochemical phases. 
This is in contrast to the general belief that higher quan- 

tities of heavy metals accumulate on finer grain sizes and 
can be attributed to the large aggregation of particles 
(Panda 1993), as in conditions where the sediments con- 
tain a significant fraction of flocculent-aggregate particles 
that can have abnormally high adsorptive capacities, some 
deviation from conventional grain size/concentrations re- 
lationship may be expected. Further, Panda (1993) showed 
that mineralogy and heavy metal concentrations in the 
lagoon are primarily controlled by source materials 
(adjoining hinterland, barrier islands, etc.). This feature 
reflects the predominance of physical weathering, high 
erosion rates along the drainage basin, and high sedimen- 
tation rates in the lagoon. The metals present in the resid- 
ual fraction can be used as a guide to the degree of con- 
taminant of the system: the greater percentage of metal 
present in the category, the lower the pollution, because 
this inert phase corresponds to detrital or lattice bound 
metals that can not be remobilized (at least under normal 

Fig. 3 a The trends of Fe and 
Mn content in geochemical 
phases of the sediments (NDA 
represents nondetectable 
amount and F1, F2, F3, F4, 
and F5 represent exchangeable, 
carbonate, reducible, organic 
and residual fractions, respec- 
tively), b The trends of Cu and 
Cr content in geochemical 
phases of the sediments (F1, 
F2, F3, F4, and F5 represent 
exchangeable, carbonate, 
reducible, organic, and residual 
fractions, respectively), c The 
trends of Ni and Pb content in 
geochemical phases of the 
sediments (F1, F2, F3, F4, and 
F5 represent exchangeable, 
carbonate, reducible, organic, 
and residual fractions, respec- 
tively), d The trends of Zn 
content in geochemical phases 
of the sediments (F1, F2, F3, F4, 
and F5 represent exchangeable, 
carbonate, reducible, organic, 
and residual fractions 
respectively) 
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polluting circumstance); the lower percentage in this cate- 
gory indicates higher pollution. The results show the rela- 
tive unpolluted nature of the Chilka lagoon environment 
at the time of sampling. Thus, it can be concluded that the 
concentration of heavy metals in Chilka lagoon sediments 
are controlled by mineralogy of the land-derived frag- 
ments and the effect of man-made enrichment upon abso- 
lute concentration is minimal. 

Heavy metal trends in geochemical phases of sediments 

Trends occurring in the heavy metal content in geochemi- 
cal phases of the sediments are shown in Fig. 3. The per- 
centage composition of different geochemical fractions of 
heavy metals is given in Fig. 4. 

Based on the mean content of heavy metals in Table 1, 
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the following metals appear to concentrate in the geo- 
chemical phases of the sediments in the following order: 

Fe: Residual > Reducible > Organic > Carbonate > 
Exchangeable 

Mn: Residual > Reducible > Carbonate > Organic > 
Exchangeable 

Cu: Residual > Organic > Reducible > Carbonate > 
Exchangeable 

Cr: Residual > Reducible > Carbonate > Organic > 
Exchangeable 

Ni: Residual > Reducible > Organic > Carbonate > 
Exchangeable 

Pb: Residual > Organic > Reducible > Carbonate > 
Exchangeable 

Zn: Residual > Organic > Reducible > Carbonate > 
Exchangeable 

Fig. 3b Fractions Cu Cr 
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High quantities of certain metals are present in some 
parts of the lagoon. A statistical method (Rose and others 
1979) was used to indicate the sample numbers having 
anomalous or significant high heavy metal values. Table 2 
lists the sample numbers of the heavy metals that have 
anomalously high values in the geochemical phases. Al- 
most 60% (20 of 33) sites exibited an anomalous value for 
at least one metal in one geochemical phase. It is evident 
that no sample frequently repeated for many of the heavy 
metals. Hence, it is not possible to unequivocally deter- 
mine if this is the result of contamination from anthropo- 
genic sources, since there is no point source for these 
metals. This may be due to localized natural elevated con- 
centrations of metals, without any anthropogenic input in 
these sites. 

Fig. 3c, d 

Table 2 Sample numbers with anomalous high metal values in the 
geochemical phases 

Geochemical 
phases Fe  M n  C u  C r  N i  P b  Z n  

Exchangeable - -  7, 32 11 8 28 5, 12 6, 8 
Carbonate 6, 24 1 18, 33 - -  22 5, t 5  6 
Reducible 20 19, 20 - -  12, 24 22 5 5 
Organics - 1, 20 - -  24 22 15 4 
Residual - -  i ,  19 6 22 - -  - -  

Comparision of geochemical extraction phases with 
single extraction 

A total extraction quantity for each heavy metal was de- 
termined by summing the quantites of the heavy metals 
within each geochemical phase for each sample location. 
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Fig. 4 Average concentration of heavy metals in different geochemi- 
cal fractions of sediments (Ex, exchangeable; Car, carbonate; Red, 
reducible; Org, organic; and Res, residual fraction) 

Table 3 Percentage composition of lithogenous and nonlithoge- 
nous fractions of heavy metals in Chilka lagoon sediments 

Heavy metals Lighogenous fraction Nonlithogenous fraction 

F e  
This is identified as combined extraction, and the aqua Mn 
regia + H F  digetion method as a single extraction meth- Cu 
od. The heavy metal concentrations for all metals for both Cr 
extraction procedures compare favorably and are quite Ni 

Pb similar (Fig. 5). Figures for individual metals for compari- Zn 

86.5 13.5 
67.2 32.8 
61.0 39.0 
76.8 23.2 
61.3 38.7 
58.4 41.6 
59.6 40.4 
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Fig. 5 Comparision of the trends of total Mn content in the com- 
bined and single extraction procedure 

sion are provided in Panda (1993) and are available on 
request, but for the sake of brevity are not included here. 

Pollution status 

The low concentration of the nonlithogenous fraction 
(Table 3) suggests the poor element availability to the biota 
in this environment. When attempting to determine the 
extent of pollution of heavy metals in the sediments in 
this environment, it is of primary importance to establish 
the natural level of these substances, i.e., precivilization 

Table 4 Geoaccumulation indices in Chilka lagoon 

lgeo class Igeo Elements 

>5 6 
4-5 5 
3 4 4 
2-3 3 
1 2 2 
0-1 1 
<0 0 

Ni, Pb 
Fe, Mn, Cu, Cr, Zn 
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level. Fossil argillaceous sediments (average shale) is a 
worldwide standard in general use and satisfies the basic 
requirement of being uncontaminated and based, for most 
elements, on a large number of sediment samples. In this 
study also average shale is used as a reference to trace 
metal enrichment in Chilka lagoon sediments. A quantita- 
tive measure of the extent of pollution in Chilka lagoon 
was calculated from the heavy metal concentration in the 
sediment using the method of Muller (1979), which is 
known as an index of geoaccumulation (Igeo). This is de- 
fined as Igeo = log2 C./1.5B., where C. is the measured 
concentration of heavy metal n in the sediments or size 
fraction and B. represents the geochemical background 
concentration of metal in n, either found in the literature 
or measured directly in texturally equivalent uncontami- 
nated sediments or size fraction. The factor of 1.5 is intro- 
duced to account for variations of background values, 
which can be attributed to mineralogical variations in the 
sediments. The index of geoaccumulation consists of seven 
grades (0-6)  whereby the highest grade (6) reflects 100-fold 
enrichment above background values. The index values 
for Chilka lagoon are given in Table 4. The index values 
remain in class 0 (background concentration) for Fe, Mn, 
Cu, Cr, and Zn, suggesting that there is no pollution with 
respect to these metals. Ni  and Pb metals have a geoaccu- 
mulation rating of  1 (double the background values). 

In general our results show that natural processes con- 
trol the levels of heavy metals in the sediment. The results 
of this study can be compared with similar data from other 
geographical locations, employing identical extraction 
procedures (Table 5). The table is helpful in deciding the 
status of the tropical coastal lagoon with respect to the 
chemical fractionation of these elements. 
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