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The new class of interior Schwarzschild solutions found by Florides is 
generalized to the charged case. A particular solution within this class is found, 
which represents an electromagnetic mass-model of a neutral spherically sym- 
metric system. The pressure is isotropic, decreasing monotonously with increas- 
ing radius and vanishes at the surface of the matter distribution. The solution is 
regular everywhere inside a radius R, and is joined continuously to the exterior 
Schwarzschild solution at this radius. 

1. ]INTRODUCTION 

A new class of interior Schwarzschild solutions was presented by Florides 
[1] and investigated by Kofinti I-2] recently. The solutions are static and 
spherically symmetric. This class of solutions is defined by the condition 
that the component Trr of the energy-momentum tensor vanishes. It was 
shown by Florides that this implies a nonvanishing tangential stress, 
T~ = T~ r 0. Thus, the solution describes space-time in a medium which 
cannot be considered a static perfect fluid. If R > 3m, where R is the radius 
of the matter distribution and m is its Schwarzshild mass, the system may 
be interpreted as an Einstein cluster. 

Charged generalizations of Florides' class of interior Schwarzschild 
solutions were recently given by Mehra 1-3] and Florides [4]. Mehra 
assumed that the components of the stress-energy tensor of the elec- 
tro:magnetic fields E~I and E44, are equal, and that the components of the 
stress-energy tensor of matter, T~ and T44, are 0 and -p(r), respectively. 
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Florides considered two classes of solutions, one representing charged, per- 
fect-fluid spheres, and one representing charged distributions with no radial 
stress. 

In Section 2 of the present paper Florides' class of solutions [ 1 ] will 
be generalized to the charged case under the assumption of isotropic 
pressure. A particular solution is found in Section 3, which represents an 
electromagnetic mass-model of a neutral spherically symmetric system, in 
the sense that the mass vanishes when the charge density is set equal to 
zero everywhere. The results are summarized in Section 4. 

2. CHARGED GENERALIZATION OF FLORIDES' INTERIOR 
SCHWARZSCHILD SOLUTION 

A class of static and spherically symmetric solutions of the 
Einstein-Maxwell equations will be investigated. The line element, as 
expressed in curvature coordinates takes the form 

ds 2 = e~dr 2 + r(dO 2 + sin 2 0 dO 2) - e 7 dt 2 (1) 

where ~ and ~ are functions of r. As shown by Synge [5] the metric of an 
arbitrary static, spherically symmetric solution of Einstein's field equations 
is then given by 

8~fo e - ~  = 1 + - -  Tt, r 2 dr (2) 
r 

Florides' class of solutions is defined by the condition Trr = 0. This 
gives 

e - ~  = 1 - 2m(r ) / r  

[r 2m(r ) / r  dr + 7 ( R )  
7 = OR r - 2m(r) 

m ( r )  = - 4 ~  fo T ' t r  2 dr 

is the mass inside r. 

(4) 

where (5) 

(6) 

The energy-momentum tensor of the charged medium plus the elec- 
trical field has components 

( E2\  E 2 E 2 
T',  = - p + - ~ )  , 7r~ = Pr 8~' TOo = T~ = P o  -~ 8~ (7) 
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where p is the mass density of the matter, E the electrical field strength, Pr 
the radial pressure and p~ the tangential pressure. The condition T'r = 0 
gives 

pr = E2/8~ (8) 

showing that although the radial fluid pressure vanishes for Florides' class 
of solutions in the electrically neutral case, this is not so when the system is 
charged. 

Einstein's field equations, with Trr= 0, gives [5] 

T~ = - l ( e ' -  1) T~4 (9) 

Thus, by means of (7) and (8) 

p~+p~= �88  ~ -  1)(p+ p,) (10) 

In the present case Maxwell's equations reduce to 

E(r)=~22 ;~ a(r) e~/2r2 dr 

where a is the charge density. 
The above equations can be combined to give 

{ [r2(r -- re ~)' -- 8gpr 4 ] 1/2 }t = 4rcae~/2r 2 

(11) 

(12) 

The charged generalization of Florides' class of solutions is obtained by 
solving this differential equation for ct. This demands specification of charge 
and mass distributions and of boundary conditions. Alternatively, one may 
specify a relation between po and Pr and calculate the mass distribution 
from (10). The condition for local flatness at r = 0 ,  c~(o)=0, provides a 
boundary condition for ~. 

In the case of a vanishing charge density, ~ = 0 ,  integration of (12) 
gives 

( r -  re-~)' = 8~pr 2 (13) 

and Florides' class of solutions, with vanishing radial pressure, is recovered. 
The radial pressure is always nonvanishing when Er The most 

natural physical condition for this case is obtained by assuming an 
isotropic pressure, Pr = P~ = P. Then (10) gives 

p =  [ ( 9 -  e~)/(e ~ -  1)] p (14) 
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Equation (6) may now be written 

C~ E2r 2 
m(r) = 4  Jo ~ _ e ~ d r  (15) 

This equation shows that the mass vanishes when the charge density is zero 
everywhere. In this sense the solutions of the charged generalization of 
Florides' class with isotropic pressure represents general relativistic elec- 
tromagnetic mass-models [6]. 

Physically acceptable solutions must have vanishing pressure at the 
surface of the matter distribution. From (8) it then follows that there is no 
electrical field outside the source. Thus, even if there is a nonvanishing 
charge density within the source, its net charge must be zero. These 
solutions of the Einstein-Maxwell equations therefore represent elec- 
tromagnetic mass models of neutral spherically symmetric systems. 

In the present case (12) takes the form 

{ [r2(9 - e~)(r - re ~)'] 1/2 }, = 87r 21/2ae~/2r2 (16) 

3. A PARTICULAR SOLUTION 

In order to give a simple example of a solution of the charged 
generalization of Florides' class, I will assume a charge distribution given 
by 

cre ~/2 = (po/lr)m(4r 2) 1[r2(9 - e~)1/2] ' (17) 

where P0 is a constant. Integration of (16) then leads to 

e ~ = [ l _ ( 8 ~ / 3 )  por2] 1, r<~Ri~=(3/81rpo)l/2 (18) 

Equation (3) now gives 

e 7= { [ 1 - ( 8 r r / 3 ) p o R 2 ] / [ 1 - ( 8 r c / 3 ) p o r Z ] } l / 2 e  y(R) (19) 

Substituting (17) into (11) gives the electrical field strength 

E = [Trp0(9 - e~)31/2 (20) 

The fluid pressure is now found from (8) 

p = (1/8)(9 - e ~) Po (21) 
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Inserting (18) gives 

p = {(1 - 37zpor2)/[_l - (87z/3) po r2] } Po (22) 

Thus the constant P0 is the pressure at the center. 
The surface radius R of the matter  distribution is given by p ( R ) =  O. 

Thus 

R = (3Vo) - ' / z  (23) 

Since R < RH the condition r < RH is not violated inside the source. From 
(22) it follows that the pressure is a monotonously  decreasing function of r. 

Since the electrical field vanishes at r = R, the total charge of the 
source is zero. This is possible due to the particular charge distribution 
(17), which implies that the charge density changes sign at 
R 1 = (0.28/~zpo) 1/2 = 0.92" R. 

The mass density is 

p = (~/3) p~r2/[1 -- (87z/3) po r2] (24) 

The density increases from zero at the center to p ( R ) =  Po at the boundary 
of the matter  distribution. From (4) and (18) the mass inside r is 

m = (47~/3) po r3 (25) 

Outside the matter  distribution there is Schwarzschild space-time. 
Thus 7 ( R ) = l n ( 1 - 2 M / R ) ,  where M = m ( R ) = ( 4 r t / 3 ) p o  R3. The line 
element of the internal solution may now be written 

dr 2 ( 1 - 2 M / R )  3/2 
ds2 - 1 - 2 M r Z / R  3 + r2(d02 + sin2 0 d~b 2) (1 - 2Mr2 /R3)  1/2 dt2 (26) 

Thus the internal solution is continuously joined to the external 
Schwarzschild solution at r = R. 

4. D I S C U S S I O N  

The components of the energy-momentum tensor for the solution con- 
side, red in Section 3 are 

T', = -P0 ,  T~ = T ~  = (27z/3) p2or2(1 - 2 M r 2 / R  3) 1 (27) 

These components have the same mathematical  form as the ones 
corresponding to the constant density solution of Florides' uncharged class 
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[-1]. Thus there is no surprise that the solution (26) describes an identical 
space-time to that of this solution. 

However, the matter distributions are radically different for these two 
gravitationally equivalent solutions. Florides' solution describes space-time 
in a medium that is electrically neutral everywhere and that is kept in static 
equilibrium by tangential stresses although there is no radial pressure. The 
solution above, on the other hand, describes space-time in a medium with 
an isotropic pressure and a nonvanishing charge density. In fact, there is no 
medium if the charge-density vanishes everywhere. 

Florides [4] has recently given a solution of the Einstein-Maxwell 
equations [his equation (3.9)] describing a space-time equivalent to the 
one described by the line element (26). Florides solution is, however, inter- 
preted as describing a system with a net charge, and with the 
Reissner-Nordstr6m space-time external to the source. This interpretation 
was made possible by giving up the condition that the pressure vanishes at 
the surface of the fluid distribution. It has been shown here that if this con- 
dition is maintained for a class of static, spherically symmetric solutions of 
the Einstein-Maxwell equations, defined by the condition Trr=0, one 
obtains a class of electromagnetic mass-models of neutral systems. 
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