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Anisotropic Spheres with Uniform Energy 
Density in General Relativity 
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An ansatz is developed to obtain interior solutions of the Einstein field equa- 
tions for anisotropic spheres. This procedure necessitates a choice for the 
energy-density and the radial pressure. A class of solutions for a uniform energy- 
density source is presented. These anisotropic spheres match smoothly to the 
Schwarzschild exterior and are well-behaved in the interior of the sphere. 

1. INTRODUCTION 

The study of static anisotropic spheres is important for relativistic 
astrophysics [1], and several solutions have been found using various 
ans/itze [1-5]. We use a new ansatz to find a class of static anisotropic 
spheres in the idealized case of incompressibility (i.e., we assume that the 
energy-density is constant). This could be a good approximation for small 
stars in which the pressures are not too large. Note that even though the 
energy-density is uniform our solution does not contain the Schwarzschild 
interior solution as a special case. The analytic solutions presented are 
physically reasonable, well-behaved in the interior of the star, and match 
smoothly to the Schwarzschild exterior solution at the boundary of the 
star. The pressure is always positive and finite at the center of the sphere. 
The radial pressure is monotonically decreasing outward and vanishes at 
the boundary of the sphere. The surface redshift and mass-radius ratio may 
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exceed the isotropic (perfect fluid) limit. For notational convenience we put 
8rcG = 1 and c = 1 where G is Newton's gravitational constant and c is the 
speed of light in vacuum. 

2. F IELD E Q U A T I O N S  

The appropriate field equations and related conservation equations are 
given by Bowers and Liang [ 1 ], among others. Here we briefly derive the 
field equations geometrically by supposing that the energy-momentum 
tensor is invariant (i.e., the matter content is restricted by the space-time 
symmetries). 

The metric for static spherically symmetric space-times is 

ds 2 --= - - e  v(r) d t  2 + e ~r) dr 2 + r2(dO 2 + r 2 sin 2 0 d~b 2) (1) 

For the special case of the external Schwarzschild solution the metric (1) 
becomes 

ds2 = - ( 1 -  2~Mr ) dt2 + ( 1 -  2-~Mr ) -  l dr2 + r2(dO2 + r2 sin2 O d~ 2) 

The energy-momentum tensor is of the form 

T U = #uiblJ _~ ph U + ~0" (2) 

where u ~=e-~/26~,, # is the energy-density, p is the isotropic (kinetic) 
pressure, h ~ = g~+ uiu j is the projection tensor and n U is the anisotropic 
pressure (stress) tensor. The invariance of u; and T '~ with respect to the 
Killing vectors of (1) imply that the dynamical quantities constructed from 
them are also invariant. This implies that the dynamical quantities assume 
the form [6]  

/t =p ( r )  (3) 

p = p(r) (4) 

7r ij = x//3 S(r)(cic j - �89 ij) (5) 

where c i=  e-~/26i r is a unit radial vector and IS(r)l is the magnitude of the 
stress tensor. 
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With the aid of equations (1)-(5) the Einstein field equations become 

r 2 

1 1 ( 1 + ~ )  a s  
r 2 7 = P + , / 5  

S 
1 [ 2 v " + ( v ' - 2 ' ) ( v ' + ! ) ]  =p x/~ 

4e ,z 

where p + 2S /x /g -Pr  is the radial pressure and p -  S/x/3--p•  is the 
tangential pressure. The momentum conservation equation can be written 
in the form 

(l~ + pr) v' + 2p'r + 4 xfS S = o  (6) 
r 

We define the mass function to be 

re(r) =- x2la(x) dx (7) 

A form of the mass function similar to (7) has been used by Stephani [7] 
to study the critical mass of an isotropic star. Utilizing the conservation 
equation (6) and the mass function (7) we can replace the field equations 
by the equivalent system 

1 2m 
e ~ -  1 r (8) 

r(r -- 2m) v' = pr r3 + 2m (9) 

2r(r- -2m)(p 'r+2x/sS ']=--(prr3  + 2m)(p + pr) (10) 
\ r /  

The procedure to obtain an anisotropic solution is now simplified. Specify 
a form for # and obtain the mass function (7): equation (8) then gives 2. 
On assuming a form for Pr we obtain v from (9). The magnitude of the 
stress S, and hence p• then follows from Eq. (10). 

3. A CLASS OF SOLUTIONS 

We suppose that the energy-density is 

6M 
P =  R 3 (11) 

842/21/9-3 
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where R is the stellar radius and M=m(R) gives the stellar mass. By (11) 
and (7), Eq. (8) gives 

1 2r2M 
1 e ~. - R 3 

which matches the Schwarzschild exterior at r = R. On using (7) we find 
that Eq. (9) reduces to 

2 r 2 M ~  ' ( -2r2M']-l/2 (12) v=frpr 1 -  R3 / dr+lnA 1 R3 j 

where A is a constant of integration. 
To continue we need to specify a form for Pr. (Alternatively, we could 

specify the "degree of anisotropy," x/~ S =  p ~ - p •  Appropriate choices 
for p ~ - p •  have been made by Bowers and Liang [1],  Cosenza et al. [2],  
and Herrera and Ponce de Leon [3],  leading to classes of static 
anisotropic spheres with interesting properties.) The form of Eq. (12) 
suggests the possible choice 

( 2r M' ( 1 pr=C 1-- R3 ]k - -~7 / ,  n>~l (13) 

for the radial pressure, where C is the central pressure. This choice is 
mathematically convenient because the integration in (12) can then be 
completed. The form (13) is physically reasonable in the sense that P r >/0 
for 0 ~< r <~ R and is a strictly decreasing function from a (finite) maximum 
value of C at the centre of the sphere. Also we must have 2M/R < 1 (the 
same as the Schwarzschild limit) so that p~ vanishes only at the boundary 
of the sphere and not at any point within the sphere. For isotropic spheres 
the critical value of 2M/R is 8/9 (see, e.g., [7]).  The integration in (12) can 
now be performed using (13). To match v smoothly to the Schwarzschild 
exterior we must have e v~m = 1 - 2M/R. This gives 

2rZM'] -v2 CR2 (1 r2"] "+1] 
e~=(1 - -~ - - - )3 /2 (1  ~-~ ] e x p [  2 ( n + l ) - R 2 /  J 

Note that the metric function e v(r) and e ~(r) are well-behaved in the range 
O<.r<~R. 

The dynamical quantity S= (pr-p•  now follows from (10). On 
using (13) we obtain the tangential pressure 
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{ l _2rZM']{ l _ r2"~ ~ 
p• = C \ R3 j \  ~ j  

2nC ( _ 2r2M'~ 2 / r 2 \ ,  1 6M 2] 
R2 1 R3 j ( 1 - ~ )  + - - ~ - J  (14) 

The tangential pressure (14) has the value C(=pr)  at the center of the 
sphere and the finite (since 2M/R < 1 ) value 3MZR 4(1 - 2 M / R ) -  1 on the 
surface of the sphere. Thus the critical value of 2M/R corresponds to 
infinite surface tangential pressure. Note that in the Bowers and Liang 
solution [ 1] a critical value of 2M/R occurs for infinite central pressure. 
(Our model does not allow infinite central pressure.) From (13) and 
(14) we observe that pr=p• at r = 0 .  In the Schwarzschild interior 
solution p~= p• for all values of r in the interior of the sphere. Hence 
our uniform energy-density solution does not contain the Schwarzschild 
solution as a special case, unlike the solution of Bowers and Liang [-1 ]. 

We find values of n for which the tangential pressure p• is positive 
throughout the sphere. In the open interval (0, R) the quantities (1 - r Z / R  2) 
and (1-2rZM/R 3) are positive. Hence the only negative term in (14) is 
-2nCR-Z(1-2r2M/R3)2(1-rZ/RZ)"-a.  We observe that p• will be 
positive if 

6M 2 2nC{1 2r2M)2(  r : )  " - t  
R6 R2 ~ - R3 ) l--R2 J >0 (15) 

Since 0 < 1 - 2r2M/R 3 < 1 and 0 < 1 - r2/R 2 < 1 in the interval (0, R) we 
. have 

6M 2 2nC( _ 2 r 2 M ) 2 ( r 2 )  "-1 6M 2 2nC 
R6 R2 1 R 3 /t 1 - ~ 5 / /  > R ~ R 2 

Thus the condition (15) will be satisfied if we make the restriction 

3M z 
l~<n<  

C R  4 

The tangential pressure p• is positive for this range of values of n. A plot 
of p• is presented in Fig. 1 for n = 1. 

The surface redshift is given by 

z =  1-- - 1  
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Fig. 1. 

c 

o R 
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The  tangent ia l  pressure  for n = 1 and  M/R small  (i.e., small  surface redshift).  

The critical redshift zc = 2, which is the limiting value for perfect fluid 
spheres, is attained when 2 M / R =  8/9 (see [7]). For the range of values 
8/9 < 2 M / R  < 1 the redshift can be greater than zc. For values of 2 M / R  
very close to 1 (i.e., for very large surface p• the surface redshift becomes 
infinitely large. 

4. DISCUSSION 

We have found a class of solutions to the Einstein field equations that 
correspond to anisotropic spheres. Note that it is possible to obtain further 
classes of analytic solutions for different reasonable choices of the radial 
pressure (13). For example, the simple linear form 

gives the solution 

( _ xexp(rCD2/R)  dt 2+ 1 D2] dr 2 + r2(dO 2 + r 2 sin 2 0 &b 2) 
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where for convenience we have let 

R 3 
0 2 =  

2M 

and the constant of integration A becomes 

~ j  k - - ~ - ) C D 2 ( R D ) / ( 2 R ) (  1 e x p ( _  C D  2 ) 

The circular form for the radial pressure 

Pr = C sin 1 - 

also leads to closed form integration involving the elliptic functions si 
and ei [8].  

Finally we point out that our method may be extended to the case of 
nonuniform energy-density [93. This case is more complicated than the 
uniform energy-density spheres studied in this paper. For  a variable matter 

�9 distribution in the interior of the sphere we need, in addition, to study the 
behavior of the quantities dpr/d # and dp• In fact, the conditions 
dp,/d# ~< 1 and dp• ~< 1 have to be satisfied to produce a realistic stellar 
model. 
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