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The recent work of Gr0n [ 1 ] concerning charged analogues of Florides' class of 
solutions is discussed and generalized. The properties of this kind of model are 
investigated. In particular it is shown that the ratio m/r as well as the 
acceleration of gravity are maximum inside the body rather than at the boun- 
dary, Some exact solutions of the Einstein-Maxwell equations illustrating these 
properties are presented. The solutions are matched continuously to the exterior 
Schwarzschild solution and they represent electromagnetic mass models of 
neutral systems. All physical quantities are finite inside the distributions. The 
energy density is positive and decreases monotonically from its maximum value 
at the center to zero at the boundary. 

1. I N T R O D U C T I O N  

In a recent publication [1], Gr0n considered charged generalizations of 
Florides' [2] interior Schwarzschild solution. Specifically, Grcn studied 
static, spherically symmetric distributions of charged matter under the 
assumptions that: (a) the matter is a perfect fluid; (b) the component T; of 
the energy momentum tensor vanishes everywhere, and (c) the distribution 
has a finite extent and is surrounded by empty space. He showed that these 
assumptions lead to an interesting class of solutions of the Einstein 
Maxwell equations representing electromagnetic mass models of neutral 
spherically symmetric systems, in the sense that all physical quantities 
vanish when the charge density vanishes everywhere. 
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However, in the work of Grcn there is an unfortunate algebraic error 
in the computations which leads to incorrect expressions for the mass as 
well as for the charge distribution [1, Eqs. (15) and (16)]. Consequently 
this error makes his solutions to the field equations incorrect [1, Eqs. 
(17) (26)]. In view of this and of the intrinsic interest in such models 
[-3 5] it is our purpose in this note to discuss in more detail Grcn's class of 
solutions. 

In Sec. 2 we write the (corrected) field equations and show some 
general properties of the models. In Sec. 3 we show that the metric given by 
GrCn can only be used as a core solution. We also construct a family of 
exact solutions which represent perfect fluid spheres with vanishing total 
charge but with nonvanishing charge density within the source. Further- 
more we generalize Gr0n's models to include matter With anisotropic 
"pressures." The conclusions and the summary of the results are given in 
Sec. 4. Some details of the calculations are shown in the appendix. 

2. FIELD EQUATIONS 

We choose the line element in the form (with c = 1) 

ds 2 = e v(r) d t  2 - e z(r) dr  2 - r2(dO 2 + sin 2 0 d~ 2) (1) 

Denoting differentiation with respect to r by a dash and letting (t, r, 0, ~b) - 
(0, 1, 2, 3), the Einstein-Maxwell equations read 

\ r  2 r / / + 7  (2) 

SgV]= --87~pr q- E 2= - - e - ;  { % +  v'~ 
1 

\ r  2 r J  + ~  (3) 

7) = - - v" +--~- + (4) 
2 r 

(r2E) ' = 4=ae; /2r  2 (5) 

where p is the energy density of matter, a is the charge density, E is the 
electric field intensity, and Pr and p• are, respectively, the radial and 
tangential "pressure." 

The condition TI = 0 yields 

Pr = E2/8r t  (6) 

v '=  (e;'-- 1)/r  (7) 
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Substituting (7) into (4) and using (2) we find 

p,. + p• = [(e; - 1)/4]( p + Pr) (8) 

We show in the appendix that (8) is the Tolman-Oppenheimer-Volkov 
equation of hydrostatic equilibrium (generalized to the case of charged 
anisotropic matter) after (7) has been substituted into it. For perfect fluid, 
(8) gives 

p =  [ ( 9 -  e;)/(e ~-- 1)] p (9) 

Using (6) and (9), the mass distribution re(r) for perfect fluid becomes 

er ir E2v 2 
re(r) = 4~z j0 T ~  - - d r  (10) 

~ (e;" -- 1 ) 

This is the equation which shows that the perfect fluid solutions with 
TI~ = 0 represent general relativistic electromagnetic mass models. 

Next, from (2), (5), (6), and (9), we obtain 

8rc(2)l/2r2e;#2t7 = { [r2(r -- re ;)' (e; -- 1 )] 1/2 }'  (] 1) 

Our equations (8)-(11) correspond to [ l ,  Eqs. (10), (14)-(16), respec- 
tively]. Nevertheless, there is a discrepancy between them, due to the 
incorrect manipulation of [1, Eq. (8)]. 

Some general features of the solutions with T] = 0 may be seen from 
the above equations, namely: 

a. The regulatity conditions as well as the condition of local flatness 
demand pr(0)=p•  and 2 (0 )=0  at r = 0 .  Consequently, (6) and (8) 
show that 

p ~ = p a = E = O  at r = 0  (12) 

b. At the boundary (say ro) of the distribution, p(ro) = 0. Therefore, 
(9) implies that for perfect fluid 

p = 0 at the boundary r = ro (13) 

c. For perfect fluid the positiveness of p in the models under con- 
sideration requires that e - M / r  o =- (total mass/radius) < 4/9. In fact, since 
p > 0 and e ~ > 1 it follows from (9) that e ~" < 9. Moreover from (2) and (10) 

e-~'= 1 2re(r) 
r 

Consequently, m(r) /r  < 4/9 throughout the distribution. However, from (8) 
we see that for anisotropic matter e can be larger than 4/9. It is worthwhile 
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to recall that there are situations where even for arbitrarily large values of 
anisotropy, M/ro  remains always less than 4/9 [(~7]. 

d. An interesting feature of the models is that the ratio [m(r ) / r ]  is 
maximum inside the distribution rather than at the boundary. To see this 
let us consider the derivative [ m ( r ) / r ] ' =  2'e-;/2.  The regularity conditions 
imply that 2 must vanish at least like r 2 a s  r ~ 0. Then, from (2) and (12), 
it follows that 

e ~ = l - [ 8 ~ p ( O ) / 3 ] r 2 + O ( r  3) as r--*0 (14) 

On the other hand, substracting (3) from (2), we obtain 

8~(p + Pr) = {e ~Tr)(v' + ~') (15) 

According to (13) for perfect fluid (as well as for the anisotropic solutions 
we show in Sec. 3), p = Pr = 0 at the boundary. Consequently 

2'(to) = - v ' ( r o )  = - (2M/r2o) [ 1 - (2M/ro)  ] - '  (16) 

Now, (14) and (16) indicate that (m/r) '  changes sign inside the body. 
Showing that m/r  is maximum (since m > 0) somewhere inside the body 
and not at the boundary. 

e. Another interesting feature refers to the acceleration of gravity. In 
fact, the acceleration of gravity g can be defined as 

g = -- �89 ' =  - - ( m G / r  2) (17) 

where MG is the Tolman-Whittaker active gravitational mass of the system 
(see, e.g., Ref. 8). Now, using (7), (14), (16), and (17), it is easy to verify 
that g'(0) = -[8=p(0)/3 ] e vr176 and g'(ro) = 2M/r3o implying that g changes 
sign inside the body. This shows that the acceleration of gravity (or more 
exactly I gl) attains its maximum value (for all M/ro)  inside the source 
rather than at the boundary. 

3. SOLUTIONS TO THE FIELD EQUATIONS 

3.1. Grcn's Metric 

We now proceed to show that choosing appropriately the charge dis- 
tribution one can obtain a metric similar to that given by GrCn. However, 
we will see that such a metric represents a perfect fluid distribution without 
boundary. We assume the charge distribution as follows 

= ~--r2 [rZ(e a -  1)'/2] ' (18) 
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;" then, where Po is a constant. Using this equation in Eq. (11), we find e , 
from (7), we obtain e v. The result is 

e - ; =  1 - ( r 2 / R 2 ) ,  r < R  = - (3/87rpo) ~/2 (19) 

e -v = const, x [1 - (rZ/R2)] 1/~ (20) 

These metric functions have the same form as those given by [ 1, Eqs. (18) 
and (19)]. However, the correct expression for the density and pressure 
(for T 1 = 0) are given by 

s ~ p  = E 2 = (S~2p~/3)  r2e ~ = 3(e  ; ~ -  1 ) /SR ~ (21)  

r : p o l l  - (9rZ/8RZ)]e~; r <  (8)~/2R (22) 

We see that neither the pressure nor the electric field vanish for any value 
of r < (8/9) 1/2 R. Consequently the distribution given by Eqs. (19)-(22) can- 
not be matched continuously to the Schwarzschild exterior metric. 
Therefore, (19)-(12) is a core solution and should be joined to an envelope 
over which the pressure drops to zero. There is also another possibility 
consisting in joining the distribution to the Schwarzschild exterior metric 
across a singular hypersurface of order one [9] having surface concen- 
tration of charge. 

3.2. Perfect Fluid Sources with Boundary 

Equations (10) and (21) suggest that a family of solutions may be 
generated by assuming the electric field as follows 

E 2 = k2(e ; -  1)[1 - (r/ro)~] ' (23) 

where k 2, a, and b are positive constants and ro defines the boundary of the 
body. This assumption assures the fulfillment of the conditions at the center 
and at the boundary. Now, given a and b, we can easily integrate (10) to 
obtain m(r)  and e J'. Then from (2) and (6) we get the pressure and density. 
Finally, the metric function e v is obtained by straightforward integration of 
(7). We have studied the solutions for various values of a and b and found 
that generally e v is given in terms of elliptic functions. We show here the 
particular solution which arises from (23) by putting a = 2, b : 1. In this 
case e v becomes expressible entirely in terms of elementary functions. 

Substituting (23) with a =  2, b = 1, in (10) we find 

~r 3 r ' ]  
m(r)  = 4k 2 [_~-- ~-~ro2 j (24) 
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F r o m  the boundary  condi t ion m(ro) = M we get 

8 k 2 r 2  o = 15e =- 1 5 ( M / r o )  (25) 

Using (24) and (25) and integrating (7) we obtain the final form of the 
metric functions as follows 

e ; = 1 - -  5~3/) e q-  38/)  4 (26) 

(1 - -  5/3/) 2 "~ 3/3/)4) 1/4 exp [ t an - l (6 f lv  2 -  5fl) - tan-1/~]  (27) 

where 

v = - - ,  fl = 12 ' /3 = - -  < 0.48 
YO r o  

The pressure and density are given by 

15e2v 2 ( 1 - v z ) ( 5 - 3 v  2) 
8 ~ p r  = E 2 = - -  

8r~ (1- -5ev  2 + 3 e v  4) 

15/3 (1 -- v2)(8 -- 4 5 e v  2 + 27/3v 4) 
8~p = 

8r~ (1--5/3v 2 + 3ev 4) 

(28) 

(29) 

In this solution the metric functions make sense for e < 0.48. However,  as 
we see from (29), the positiveness of  p puts a more  stringent limit on e, viz. 
e <  (32/75)~0.426.  This limit is, of course, due to the equat ion of state, 

P r  = P • , we have assumed. 

3.3. Generalization to Anisotropic Sources 

We now extend the above solution to obtain more  compact  dis- 
tributions, with this aim we assume the following relation between the 
stresses 

p •  = n p r ,  n = const. 

which, for n = 1, includes the perfect fluid case. 
Substituting (30) in (8) we find 

(4n + 5 - e ;') 
P = ( e ;  - -  1 ) P r  

(30) 

(31) 
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and the mass function is 

m(r) = 2(n + 1) Jo dr = 2(n + ] )k  2 (32) 

Consequently, the metric functions are given by (26) and (27). However, in 
the present case 

e = 4 ( n +  1) kRr2o/15 (33) 

15e2v 2 (1 - v2)(5 - 3v 2) 
8~pr=E 2 -  (34) 

(1 5ev2+3ev 4) 4(n + l )r ~ - 

15e (1 - v 2 ) [ 4 n + 4 - e ( 4 n +  5 ) ( 5 - 3 v 2 ) v  2] 
8~p = 4(n + 1)ro 2 (1 - -  5eV 2 + 3et) 4) (35) 

Now the positiveness of E 2 and p demand n > -1  and 

(4n + 4) 
e < 0.48 - -  (36) 

(4n + 5) 

Note that for n = 0  the tangential pressure p_ vanishes everywhere. 
Moreover, for n > 1 (n < 1) one can obtained more (less) compact dis- 
tributions than that of perfect fluid. 

4. S U M M A R Y  A N D  C O N C L U D I N G  R E M A R K S  

The aim of this work was to study the class of spherically symmetric 
and static solutions of the Einstein-Maxwell equations defined by the con- 
dition T I = 0. We have shown that, within this class, it is possible to con- 
struct models of gaseous spheres with isotropic and anisotropic "pressures" 
whose Schwarzschild mass seen at infinity is completely of electromagnetic 
origin. The explicit examples we have given satisfy the usual regularity 
requirements and are continuously joined to the external Schwarzschild 
solution at r=ro (v=  1). The density p is positive and decreases 
monotonically from its maximum value at the center p = (15e/8~zr2o) to zero 
at the boundary. The maximum mass in the sphere depends on the degree 
of anisotropy and for n -~ ~ ,  M m a  • ~ 0.48 r o. Consequently, the maximum 
value for the redshift at the boundary is Z(ro)= 4. The central redshift to 
infinity Z ( 0 ) =  e ~o)/2_ 1 is very high even for small values of M/ro. For 
example, from (27) we find: for M=0 .01  ro, Z(0)=0.45;  for M = 0 . 1  ro, 
Z ( 0 ) =  78.32; for M = 0 . 3  ro, Z ( 0 ) ~ 4  x 10  9. As far we are aware, these 
values for the central redshift are (for the above-mentioned values of M/ro) 
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much greater than those obtained from other models of general relativistic 
spheres with finite pressure and density (see, e.g., Refs. 10-1t). 

From (26) we find 

m(r)-M ~o \ ~ ~4) (37) 

which shows that [m(r)/r] = (75M/72ro) at ? =  (5/6)1/2r o. Notice that for 
perfect fluid [m(?)/?] ~ 4 / 9  as ( M / r o ) ~  32/75 and that for anisotropic 
fluid [m(?)/?] ~ 1/2 as (M/ro)~0 .48 .  According to Bondi [12] the 
maximum value of the ratio (m/r) for perfect fluid with nonincreasing out- 
ward density is 4/9. For  anisotropic matter, however, (m/r) can (for larger 
anisotropies) be as near as one wants to 1/2 as has been shown [13]. As 
we see in our models, these maximum values are attained inside the body 
and not at the boundary. 

From (17), (26)-(27) it can be verified that for every (M/ro) there is a 
value of r (say f) at which the acceleration of gravity g is greater (in 
modulus) that at the boundary. For example, for (M/ro)= 0.01 we found 
P = 0.85 ro and g(P) = 1.09 g(ro). This is an interesting feature since in other 
nonsingular solutions (e.g., the Schwarzschild interior solution and Adler's 
solution [14])  I gl is always monotonically increasing outward. 

To complete our discussion we observe that the total charge of the 
body is zero due to the fact that the charge density a changes sign inside 
the source. We omit the explicit form because it is rather complicated. In 
the explicit examples we constructed here, a diverges at r--*r o like 
a,,~ 1 / ( r o - r )  1/2. We recall, however, that this singularity is not important 
from a physical point of view since the charge in every three-dimensional 
volume element remains finite. Moreover, examples with finite everywhere 
charge density may be obtained from (23) by choosing b/> 2. The proper- 
ties of such models are essentially the same as discussed above; however, e v 
is given in terms of elliptic functions. 

Finally, we point out some interesting aspects of the static equilibrium 
in our models. 

Let r~ be the position where the charge density changes sign, i.e., 
a(r~) = 0. Then at r < r~ the electrical force on the matter is directed out- 
ward and at r > r~ it is directed inward. On the other hand, the fact that 
the radial "pressure" Pr vanishes at the center and at the boundary implies 
that there is a value of r (say rp), inside the body, at which Pr is maximum 
(since Pr > 0). Moreover, the slope dp~/dr is positive for r < rp and negative 
for r > rp. This means that the force associated with the pressure gradient is 
directed inward in the region r < rp and outward in r > rp. 
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It is easy to show that if the body is in equilibrium then necessarily 
ro > rp. In fact, because (@r/dr) = 0 at r -- rp, from (6) and (A-5) we obtain 

q/a = 21rr3e ~42 at r = rp (38) 

This equation shows that q and o- must have the same sign at r = rp. This is 
so only in the region r < ro; consequently, rp < r~. In the explicit examples 
we discussed here, rp and r~ depend on the values of ~ and n, e.g., for e = 0.1 
and n = 1 we found r~ ~ 0.83ro, rp ~ 0.7r o; for e = 0.3 and n = 1, r~ g 0.85r o, 
rp~-O.75ro; for e=0 .47  and n = 1 2 ,  r~-O.9ro, rp~-O.89ro. In all cases 
ro > rp as expected. 

Thus in order to maintain the static equilibrium of our models, the 
gravitational attractive force, the electrical force, and the force due to the 
pressure gradient arrange themselves in a different form in each of the 
regions r < rp, rp < r < r~, and r > r~. In the central region r < r e the 
pressure acts in conjunction with the gravitation to counteract the electrical 
repulsion and maintain the equilibrium (we refer here to the perfect fluid 
case). In the region rp < r< r~ the gravitational attraction is balanced by 
the negative pressure gradient and by the Coulomb repulsion. In the outer 
region, where the electrical force is directed inward ( r> r~ ) ,  it is the 
(negative) pressure gradient that keeps the equilibrium with attractive 
gravitational and electrical forces. At rp and r~ the gravitational attraction 
is balanced only by the Coulomb repulsion and by the pressure gradient, 
respectively. 

The above discussion is easily generalized to the case of anisotropic 
matter  if we take into account that is this case there is an additional force 
that acts on the matter  pushing outward or inward depending on whether 
P~_ > Pr or p• < p~, respectively (see A.6). 

APPENDIX: THE E Q U A T I O N  OF HYDROSTATIC EQUILIBRIUM 

In this appendix we derive the equation of hydrostatic equilibrium for 
an anisotropic spherically symmetric charged fluid. Moreover, we show 
that in the case where / 'I = 0 this equation reduces to (8). 

Using the field equations (2)-(4) or, from the conservation equations 
- find T~;~, - O, we 

dT~ v' + 2  
dr - 2  ( T ~  r ( T ~ - T I )  (AI)  
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where v' is given by (3) as 

v~ = re(r) -- 4~zr3Tl (A2) 
2 r(r - 2m) 

Specializing the choice of the energy-momentum tensor to the case of 
charged anisotropic matter we obtain 

E 2)  v' d 
~r Pr = (P + Pr) 

2 E 2 
+ - - ( p •  (A3) 

r 2~r 

and 

v' - 2m(r) + 8~r3pr - r3E 2 
(a4) 

r(r - 2m) 

From (5) the charge q(r) inside a sphere of "radius" r is defined as follows 

__47"~ fr q(r) (A5) 
E(r)  r 2 3o ae;/2r2 dr=- r2 

In terms of q(r) and a, (A-3) becomes 

v' dpr + ~_~ e;42 + 2 
(P + P r ) 2 =  ---~-r r (P • -- Pr) (A6) 

In the Newtonian limit this equation gives 

mp dp ~ qa ! 
r 2 -- dr t - - ~ +  ( P •  (A7) 

Equation (A-3) (or, equivalently, A-6) is the generalization of the 
Tolman-Oppenheimer Volkov equation of hydrostatic equilibrium to the 
case of charged matter with anisotropic pressures. 

It is noted that in (A-6) and (A-7) there is an additional "force," viz., 
2 ( p •  This force is directed outward when P •  and inward 
when p• < Pr" It is precisely the existence of this repulsive force (in the case 
P• > Pr) that allows the construction of more compact distributions when 
using anisotropic fluid than when using isotropic fluid. 

In the case under study, putting Ez=S~zpr (Tl=0) into (A-4), we 
obtain 

v' 2m(r) e ~ -  1 (A8) 
r(r - 2m) r 
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S u b s t i t u t i n g  this expres s ion  in to  (A-3)  we f ind 

P•  q- Pr = [ ( e ; ' - -  1) /4 ] (p  q- Pr) (A9) 

These  last  two e q u a t i o n s  are j u s t  (7) a n d  (8). C o n s e q u e n t l y  we have  s h o w n  
tha t  (7) a n d  (8) are e q u i v a l e n t  to the (genera l ized)  e q u a t i o n  of  hyd ros t a t i c  

e q u i l i b r i u m  of T o l m a n  O p p e n h e i m e r - V o l k o v .  
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