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A bstrac t 

We investigate the structure of the so-called power asymptote singularities in orthogonal 
spatially homogeneous solutions of the Einstein field equations with perfect fluid source. 
We first give a systematic survey of the different possible power asymptotes, some of which 
are well known, and some new, and characterize them in a coordinate-independent manner. 
The known orthogonal spatially homogeneous exact solutions with perfect fluid source are 
then classified on the basis of which power asymptote they admit. In many cases this leads 
to simpler forms of the known solutions, and suggests methods for deriving new solutions. 

w Introduction 

It is well known [1] that all the orthogonal spatially homogeneous (SH) cos- 
mologies with zero cosmological constant, perfect fluid source, and '"reasonable" 
equation of  state, which are expanding at some instant, originate at a "big-bang," 
i.e., a singularity at which the energy density of  the fluid diverges. Two distinct 
types of  behavior near the singularity have been identified, using power series 
expansions (see [2] for a recent survey), and the qualitative theory of  ordinary 
differential equations (see, for example [3] ). The simplest type of  behavior is 
that  of  the power law singularity or power asymptote [4].  In simple terms, the 
leading time dependence of  the metric tensor of  the fluid near the singularity 
t = 0 is in powers of  t. The different power asymptotes are characterized by vari- 
ous restrictions on the exponents of  these powers of  t. This type of  singularity 
can occur in all Bianchi types, in the usual classification of  orthogonal spatially 
homogeneous cosmologies [5].  In Bianchi types VIII and IX, however, it has 
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been shown that the solution can also display an indefinitely oscillatory behavior 
near the singularity (see for example [6-8]). 

This paper deals with the power asymptotes. Our interest in this type of 
singularity stems from the fact that they may be of interest in connection with 
the early universe [9]. Our first aim is to review the known [4] spatially homo- 
geneous power asymptotes. We atso give several new types. As mentioned earlier, 
power asymptotes have been discovered on the one hand by qualitative analysis 
of the field equations and on the other hand, by simply substituting a power 
series expansion for the field variables (e.g., metric components) into the field 
equations [4]. In our work, we have essentially taken the second approach, but 
have found it convenient to use the orthonormal tetrad form of the field equa- 
tions as given by Ellis and MacCallum [5]. This avoids the introduction of local 
coordinates, which are irrelevant as regards the structure of the singularities. 
We also do not restrict "our considerations to an equation of state of the form 
p = (3  ̀- 1)/~; it is sufficient to assume that P/l~ has a (constant) limit as the 
singularity is approached. To ensure compatibility with the 3`-law equation of 
state, however, we write 

lim (PLY) = 7 -  1 (1) 
t - . 0  + 

In addition, we characterize the different power asymptotes in a coordinate- 
independent manner using the expansion tensor of the fluid and the Ricci and 
Weyl tensors of the space-time. Our results thus augment and clarify reference 
[4]. 

Before continuing, we mention the restrictions that are imposed on the 
constant 3' in equation (1). The structure of the field equations leads naturally 
to the restriction 

2/3 < 3' < 2 (2) 

which corresponds to the inequalities 

/ ~ + 3 p > O  and / ~ - p > 0  

holding as t -+ 0 § The case 3' = 2, which is possibly of interest from a physical 
point of view, can also occur, but requires separate treatment, and is not consid- 
ered in this paper. Of course the requirement of nonnegative pressure as t -+ 0 + 
leads to the stronger restriction 

1 < 3 ' < 2  (3) 

We do not give any details of the calculations, which are elementary and 
somewhat tedious. The method is simply to assume that the diagonal tetrad 
components of the expansion tensor are of the form 

0~ =-~-  [1 + o( t r ) ]  (4) 
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as the singularity t -- 0 is approached, where t is clock time along the fluid flow 
lines, the q~ are constants, and the symbol O(t r) denotes higher-order terms 
which tend to zero as a power of t. The field equations, as given in [5] Appen- 
dix I, can then be integrated to give the asymptotic t dependence of the other 
variables. The field equations also lead to consistency conditions, which deter- 
mine the form of the different power asymptotes. We have been unable to com- 
plete the analysis of the consistency conditions in one special case, namely, the 
subclass Bb(ii), in the terminology of [5]. It is thus conceivable that there are 
additional power asymptotes. 

It should be noted that the above power law analysis enables one to deduce 
properties of the different power asymptotes, but it does not prove existence 
of solutions with this type of singularity. However, in all cases except one, the 
existence of the power asymptote is established by the existence of an appro- 
priate exact perfect fluid solution. In addition, in some cases existence is con- 
firmed by the more rigorous qualitative analysis. 

In all the known exact orthogonal SH cosmologies with perfect fluid matter 
content, the singularities are of the power asymptote type. Our second aim in 
this paper is to present these known solutions (mostly with a )'-law equation of 
state) in a unified manner, and to use them to illustrate and establish the exis- 
tence of the various power asymptote singularities. 

The plan of this paper is as follows. In Section 2 we briefly introduce the 
concepts which are needed to describe and characterize the power asymptotes, 
and give a summary of the properties of the various power asymptotes. In Sec- 
tion 3 we present and classify the known exact orthogonal Bianchi cosmologies 
with perfect fluid source, according to which power asymptote they admit. In 
Section 4 we summarize some aspects of our results in a table, and discuss some 
related issues. 

As a summary of results, this paper is relatively self-contained; the reader is 
occasionally referred to [10-12] for additional background. In order to verify 
the calculations of Section 2, however, familiarity with the orthonormal tetrad 
formalism of [5] is required. The exact solutions of Section 3 have all been 
checked using the symbolic computing language CAMAL [ 13, 14]. We use 
geometrized units with c = 1, 8gG = 1, and our sign conventions as regards met- 
ric signature and curvature tensors are as in [10-12]. 

w The Power Asymptotes 

Relative to its eigenframe the rate of expansion tensor Oab has the form 

Oab = diag (0, 01, 02, Oa) 

where the 0~, a = 1,2, 3 are the eigenvalues that are associated with the space- 
like eigenvectors. The length scales lc~ in the spatial eigendirections are defined, 
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up to constant scale factors, by 

where the dot denotes differentiation along the fluid flow lines. 
In the solutions with a power asymptote singularity, the 0~ satisfy 

8c~ - Pa [1 + o(tr)] a = 1, 2, 3 (5) - --~-- 

as the singularity t = 0 is approached, where t is clock time along the flow lines, 
and the p~ are constants which characterize the.power asymptote. The symbol 
O(t r) denotes higher-order terms which tend to zero as a power of  t. Equation 
(5) implies that the length scales satisfy 

lim I ~  = ba 
t_~O + t e a  

where the b~ are nonzero constants which can be scaled to equal 1. 
In order to characterize the different power asymptotes we consider the 

dimensionless ratios p/O 2, e2/02, and R*/O 2, where p, 0, and e are the matter  
density, expansion scalar, and shear scalar of  the fluid [10],  and R* is the curva- 
ture scalar of  the hypersurfaces orthogonal to the fluid flow [11]. Each of  these 
ratios has a finite limit as t -+ 0 +, and so we define 

3e 2 - 3R* 
Brn = lim 3_#p Bs = lim 02 ,  Be = lim 

t . . O  + 0 2 ' t . + O  + t - . O  + 202 

If  Brn r O, the matter  is said to be dynamically significant near the singularity. 
Similarly if Bs 4 :0  or Bc 4: O, the shear or spatial curvature, respectively, are 
dynamically significant near the singularity. 

These constants are not independent, however. On account of  the following 
first integral of  the Einstein field equations with irrotational perfect fluid source 
[11]: 

�89 5 = o  2 + u -  I R *  

these constants satisfy 

~m + ~ + ~r = 1 (6) 

The constant ~s is nonnegative by definition, and Brn is nonnegative since # is 
assumed to be positive. Finally, the analysis of  the field equations in the various 
cases shows that Bc is also nonnegative. It thus follows from equation (6) that 
each constant is bounded above by 1. The constants ~m and Bs can actually attain 
this upper bound, in which case the other two constants are zero. If  Bin = 1, the 
matter  is said to be dynamically dominant, while if Bs = 1, the shear is said to 
be dynamically dominant. The singularities with Be = O, i.e., spatial curvature 
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dynamically negligible, are precisely the singularities which are called "velocity 
dominated" by Eardtey, Liang, and Sachs [15, 16]. One can infer from their 
work that if/3 c = 0 and/3m 4:0 then/3 s = 0. Furthermore, it follows from the 
field equations that/3s = 0 implies/3c = 0. Thus, based on the dynamical signifi- 
cance of the matter, shear, and spatial curvature, there are four possible types of 
singularity. The corresponding restrictions on the exponents pa are given below: 

Case 1: /3m 4= O,/3s =/3c = 0 

2 /7=P l  +P2 +P3 > P l  2 +P2 2 +P32 = 4/(372) (7a) 

Case2: [Jm --/=0,/3~ 4=0,/3~ vaO 

2 / 7 = P l  +P2 +P3 >Pa 2 +P22 + P 3 : > 4 / ( 3 3  ̀ 2 ) (7b) 

Case3: /3m = O, /3s =/= 0, /3~ va O 

2/3">pl  + P2 + P3 = Pl 2 + P22 +Pa 2 > 1 (7c) 

Case 4: /3m = O,/3s ~= O,/3e = 0 

2/7;>Pl  +P2 +P3=Pa  2 +Pz 2 +P32 = 1 (7d) 

A number of subcases arise, corresponding to different explicit expressions 
for the pa. These are given below together with the expressions for the param- 
eters/3 m ,/3s, and ~c. The values of the pa also determine the singularity type, i.e., 
point, cigar, barrel, or pancake, in the usual terminology (see for example [11], 
p. 131). 

It is also of interest to consider the limiting behavior of the Weyl tensor as 
the singularity is approached. The Weyl tensor itself diverges, but the limit of the 
ratio of the Weyl tensor to 02 is finite. We thus define 

/ ~  = lim E ~ / O  2, /~c~ = lim H~dO 2 
t--~O + t - r  + 

where E ~  and H~a, a,/3 = 1,2, 3, are the components of the electric and mag- 
netic parts of the Weyl tensor relative to the fluid 4-velocity [12], in an appro- 
priate orthonormal frame (e.g., the eigenframe of the expansion tensor). Then 
by calculating the complex matrix 

= + i/L  

we can determine the Petrov type in the usual way [ 12]. The Petrov types given 
below thus relate to this limit o f  the Weyl tensor, and not to the Weyl tensor o f  
the spaee-time. 

Case 1 (Lifshitz-Khalatnikov): 

Pl = P2 = P3 = 2/(37) 

~.~ = 1, ~ = O, G = 0 
(8) 
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Singula r i ty  type :  i so t ropic  p o i n t  
Pe t rov  type :  0 

This  type  o f  s ingular i ty  is also refer red  to as " i s o t r o p i c "  or  " F r i e d m a n n l i k e "  

[ 1 7 - 1 9 ] .  

Case 2a (Novikov) :  

P l = (2 - 3 ' ) / (27) ,  

/3 m = 3(6  - 3 ' ) /64,  /3s = (33' - 2)2/64,  

S ingu la r i ty  type :  a x i s y m m e t r i c  p o i n t  
Pe t rov  type :  D 

Case 2b (E l l i s -MacCal tum) :  

Px = 1, P2 = P a  = (2  - 3')/(2"),) 

~m = 3(2  - 3")/4, /3 s = (33' - 2)2/16,  

S ingu la r i ty  type :  a x i s y m m e t r i c  p o i n t  
Pe t rov  type :  I 

Case 2c: 

P :  = P a  = ( 2  + ") , ) / (43 ' )  

/3c = 3(33' - 2 ) (2  - 3 ' ) /64 

/~c = 3 ( 3 7 -  2 ) (2  - 3 ') /16 

P l  = 1, P2 = (2 - 3"+rs)/(23"), Pa = (2 - 3 ' -  rs)/(23") 

~m = 3 ( 1  - r 2 ) ( 2  - 3 ')/4,  13 s = (33' - 2) (1  - [Jm)/4, 

/3c = 3(2 - 3')(1 - [3m)/4 

where  

s 2 = (37  - 2 ) ( 2  - 3`) 

and  r is an a rb i t ra ry  p a r a m e t e r  wh ich  satisfies 

O < r < l  

S ingu la r i ty  type :  

p o i n t  *=* r = < (2  - 3,)/(3y - 2)  

barre l  *=* r 2 = (2 - 7) / (3") , -  2)  

cigar r r = > (2  - 3')/(33' - 2)  

P l  = 3 ( 1 + r ) ,  P2 = } ( l - r ) ,  P a -  3 
5 

= l - r  =,  ,=�89 =, = } r  = 

Pe t rov  type :  I 

Case 2d: 

(9)  

(10)  

(11)  

(12) 
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where r is an arbitrary parameter which satisfies 

2/3 < r  < 1 

Singularity type: point 
Petrov type: I 
The equation of  state parameter is 

V = 10/9 

on account of  (7b) and (12). 

Case 3a." 

p~ = 1, p2 = u + [u(1 - u)] 1/~, 

fm= O, fs = (1 - u)/(1 + 2u), 

where u is an arbitrary parameter which satisfies 

0 < u < l  

Singularity type: 

point *=* 1 < u < 1 

barrel *=*u = �89 

cigar *=* 0 < u < } 

Petrov type: N 
The equation of  state parameter satisfies 

2 - ) , < - -  
1 + 2u  

pa = u -  [ u ( 1 -  u)]V2 
fe = 3U/(1 + 2U) 

on account of  (7c) and (i  3). A point or barrel singularity thus entails negative 
pressure, since then ~, < 1. 

Case 3b. 

Pl = 6/5, P2 = 0, Pl = 3/5 

fm = 0, fs = 1/3, fie = 2/3 

Singularity type: barrel 
Petrov type: III 
The equation of  state parameter satisfies 

7 < 10/9 

on account of  (7c) and (14). 
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(13) 

(14) 
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Case 4a (Taub): 
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Pl = 1, P 2 = P a  = 0  
(15) 

t3,~ =o ,  t~s = l ,  t3c = o  

Singularity type: pancake 
Petrov type: 0 

Case 4b (Kasner): 

pl =(l +u)l(l +u+u2), p2 =-ul(l +u+u2), 

P3 =u(1  +u)/(1 + u  + u  2) (16) 

/3m = 0, l~s = 1, /3 c = 0 

where u is an arbitrary parameter which satisfies 

0 < u ~ < l  

Singularity type: cigar 
Petrov type: D( *=* u = 1), or I 

We conclude this section with some comments on the origins of  the power 
asymptotes. The Kasner asymptote 4b, and its special case the Taub asymptote 
4a, are the best known of the power asymptotes. They were first considered as a 
single case by Lifshitz and Khalatnikov [20]. Their names are taken from the 
well-known Kasner vacuum solution and apparently from the Taub vacuum type 
IX solution. The LK asymptote (case 1) was also discussed in some detail in this 
paper (hence the name). Case 3a was also briefly mentioned here, as an example 
of  a non-Kasner vacuum power asymptote (see also [2], pp. 622 and 655). Case 
2a was discovered by Novikov (see [3] ), while case 2b was apparently first dis- 
cussed in [4]. The name refers to an exact solution of Ellis and MacCallum [5] 
(see Section 3). The remaining cases are apparently new. The survey [4] covers 
cases 1, 2a, 2b, 4a, and 4b. We find ourselves in disagreement with [4] on one 
point. We find that at a Taub asymptote,  the spatial curvature is not dynamically 
significant (/3 e = 0), while the opposite is stated in [4]. On the other hand we 
distinguish between the Kasner and Taub asymptotes using the Weyl tensor, 
which was not considered in [4]. 

w Exact Solutions with Power Asymptote Singularities 

For each power asymptote of  Section 2, we give an exact solution in which 
the quantities 3g/02, ~2/02, and -3R*/(202) are constants [21]. These solutions 
do not provide realistic models of  the evolution of the universe over a large time 
scale, since the restriction a2/02 = const does not permit them to isotropize. 
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However, they do serve as prototypes for the different power asymptotes in the 
sense that they give a simple description of  the time evolution near the singular- 
ity, and thus may be of  interest in studies of  the early universe. We will refer 
to these solutions as exact  p o w e r  law solutions. We also give examples of  exact 
solutions with power asymptote singularities which are not exact power law 
solutions. Indeed the classification of  power asymptotes of  Section 2 enables 
one to give a systematic survey of  the known orthogonal SH cosmologies with 
perfect fluid matter content. 

In each of  the examples in this section, the coordinates are comoving, so that 
in each case the fluid 4-velocity is proportional to the vector field O/Ot. 

Case 1 (Lifshitz-Khalatnikov): The exact power law solution in this case is 
the well-known FRW solution with flat spatial geometry, and equation of  state 

P = (3' - 1)U: 

ds 2 = - d r  2 + t4/(aV)(dx 2 + dy 2 + clz 2) 

, = 4/(372t2 ) (17) 

This solution is of  Bianchi type I and type VII0. An example which is not an 
exact FRW solution is provided by a solution of  Kantowski-Sachs type, with 
equation of  state p = �89 V, and the related model of  Bianchi type III (i.e., type 
VIh, with h = - 1), first given by Kantowski [22]. These solutions can be written 
jointly in the form 

ds 2 = - A  d t  2 + t[A -1 dx  2 + A ~ b - 2 ( d y  2 + f 2  dz2)] 

U = 3 / (4 t  2A2), P = g/3  

where 

A = 1 - 4 e b 2 t / 9  

and 

sin y 

f ( Y )  = [ sinh y 

if e = +1 (Kantowski-Sachs) 

if e = - 1 (Bianchi type III) 

In this form, their relationship to the prototype (17) is obvious, since 7 -- 4/3, 
and A -+ 1 as t -~ 0, so that in this limit, t approximates clock time along the 
fluid flow lines. 

The only other SH exact solutions with this type of  singularity, of  which we 
are aware, are discussed in detail in [18]. These solutions, first given by Collins 
[23],  are of  Bianchi type VIh, and specialize to the above Bianchi type IlI solu- 
tion when 3' = 4/3. 
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Case 2a (Novikov): The exact power law solution is a solution of  Bianchi 
type II, given by Collins and Stewart [24] : 

ds 2 = - d r  2 + t 2pl [dx + (k /27)z  dy] 2 + t 2p2 dy 2 + t 2pa dz 2 
( 1 8 )  

/.t = (6 - 7) / (4@t2) ,  P = (3' - 1)/a 

where the p~ are given by (9), and 

k = = (2 - 3')(33, - 2) 

A solution of Collins et aL [25] (p. 807) is the only other solution with this 
type of  singularity of  which we are aware. The limiting equation of  state near 
the singularity is p ~ - 1/~, and at late times it is p -~ - } ~, and hence the solu- 
tion is of  limited interest. 

Case 2b (Ellis-MacCallum): The exact power law solution is a solution of  
Bianchi type Vlo (with.n~ ~ = 0, in the terminology of  [5] ), with equation of  
state p = (3' - 1)/~. The dust case (7 = 1) was first given by Ellis and MacCalhim 
[5] (p. 125), and the general case (1 < 3' < 2) by Collins [23] [example 2(a)]. 
The solution is given as the special case r = 0 of  the exact power law solution in 
case 2c, to follow. We are not aware of  any other solutions with this type of 
singularity. 

Case 2c: The exact power law solution is a solution of  Bianchi type VI h 
(with na a = 0) given by Collins [23] [example 3a(i)] : 

ds = = - d t  2 + t2Va(wX) = + t202(w2) 2 + t2Pa(wa) 2 

u = ( 2  - 3 ' ) ( 1  - r = ) / ( 3 " 2 7 ) ,  p = (3" - l ) , ,  
(19) 

where 

w 1 = dx ,  w 2 = e[r(2-n,)+s] x/(2y) dy ,  w 3 = e [r(2-y)-sl x/(23,) dz 

the p~, a = 1,2,  3 are given by (11), 

s 2 = (37 - 2)(2 - 3') 

and r is an arbitrary parameter which satisfies 

0 < r < l  

We are not aware of  any other solutions with this type of  singularity. Note that 
the limiting case r = 0 in this solution is the exact power law solution in case 2b. 

Case 2d: The exact power law solution is 

ds 2 = - d t  2 + t2(wl) 2 + t2/S(w 2 + q t 4 / S w l )  2 + t6/S(W3)2 

l (20) 27 
/a = ~ ( 1  - r2) / t  2, p=-~ l~  
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where 

w 1 = d x ,  w 2 = e "/-~rx/s d y ,  w 3 = e - 2 " / ~ r x / s  dz  

q2 =9r2/4_ 1 

and r is an arbitrary parameter which satisfies 

2/3 < r <  1 

This solution is of Bianchi type VIh=_l/9 (and is in the class Bbii, in the termi- 
nology of [5] ), and to the best of the writer's knowledge, is new. It is not ob- 
vious by inspection that the singularity in this solution is in case 2d, since the 
natural orthonormal frame is not an expansion eigenframe. However, it is easily 
verified by direct calculation of the eigenvalues of the expansion tensor, that the 
Pc~ for this solution do have the case 2d values as given by (12). 

Case 3a: There are three exact power law solutions in this case, namely, the 
v a c u u m  plane wave solutions, as given by Siklos [26], which are of Bianchi types 
IV, VIh, and VIIh. We take as our prototype the simplest of these solutions, 
namely, the special case of the type VI h solution which satisfies na c~ = 0, in the 
terminology of [5]. This solution can be written in the form 

ds 2 = - d t  2 + t 2pl d x  2 + t2P2e 2p2x d y  2 + t2P3e 2p3x dz 2 (21) 

where the Pa are given by (13). It has been given in different forms by various 
authors, and is also obtained as the limiting case r = 1, in (19). 

A perfect fluid solution with this type of singularity, which generalizes (21), 
has recently been found by the author [27]. 

Case 3b :  The exact power law solution is the v a c u u m  solution given by (20), 
with r = 1. This solution is of Petrov type III, and was first given by Robinson 
and Trautman [28]. It has also been studied by Collinson and French [29] 
and by Siklos [26]. Our form of the solution differs from that given by these 
authors, since we use the coordinates of Ellis-MacCallum [5] (class B, with 
n~ ~ = 0), which are adapted to the group orbits, while the other authors use null 
coordinates. We are not aware of any exact perfect fluid solutions with this type 
of singularity. 

Case 4 a  (Taub): The exact power law solution is the f i a t  metric 

ds 2 = - d t  2 + t 2 d x  2 + d y  2 + d z  2 (22) 

corresponding to the p~ as given by (15). One expects this exact power law solu- 
tion to be flat, since for this power asymptote, both the Ricci and the Weyl ten- 
sor are dynamically negligible near the singularity. 

A number of known exact perfect fluid solutions have a singularity of this 
type. Some occur as special cases of the general solution given in case 4b. A par- 
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ticularly simple example, which is distinct from these, was given by Evans [30] : 

ds 2 ; - d t  2 + [log(1 + t)] 2 d x  ~ +(1 + t )2 (dy  2 + e 2y dz  2) 

g = 2 / [ ( 1 + 0 2  l o g ( l + t ) ] ,  p = 0  

On noting that log (1 + t) ~ t as t -+ 0, the relationship with the prototype (22), 
as t ~ 0, becomes clear. 

Case 4b:  The exact power law solution is the well-known Kasner vacuum 

solution 

ds 2 = - d r  2 + t 2pl d x  2 + t 2p2 d y  2 + t 2ps dz  2 (23) 

where the pa are given by (16), with 0 < u ~< 1, and hence satisfy (7d). The 
singularity in most of the known spatially homogeneous exact solutions with 
equation of state p = (7 - 1)g is of  this type. We now give a unified formulation 
of these solutions which clearly displays their relation to the prototype (23). 

The line element has the general form 

ds 2 = - A  2(~-1) d t  2 + t 2 P l A 2 q l ( w l )  2 + t2p2A2q2(w2)  2 + t2P3A2q3(w3) ~- (24) 

g = g o a m / ( t T A ~ ) ,  P = ( 7 -  1)g, 1 ~ < 7 < 2  

where 

A 2 - ~  = a s + ac t(a~'+2)/a + am t2 - ~  (25) 

Here as, % ,  am and go are constants, such that A > 0 and go ~> 0 and the pa  
and qa,  a = 1,2,  3, are sets of  constants, both of  which satisfy the Kasner con- 
straints (7d). By restricting the p~, qa and go and ac, and by specifying the 
1-forms w a, a = 1, 2, 3, in a suitable manner, we obtain the three known families 
of  spatially homogeneous solutions with p = (3' - 1)g, which are of Bianchi types 
I, II, and VI h (with n~ ~ = 0). These are given below. 

Bianchi  I: 

W ~ = d x ,  w ~ = d y ,  w s = d z  

qa = 2/3 - pa ,  a = 1, 2, 3 (26) 

go = 4/3, a c = 0 

The Pa satisfy the Kasner constraint (7d), and can for example be represented 
by (16), with 0 ~< u ~< 1. For given 7, this solution depends on three parameters 
as, a m ,  and u. Only two are essential however, since one o f  as and am can be 
specified by rescaling the coordinates. 

If  a m = 0, we can rescale as = 1, and obtain the vacuum Kasner solution (23). 
If a s = 0, we can rescale am = 1, and obtain the FRW solution (17), with a differ- 
ent time coordinate. I f a r n a  s @ O, we obtain a new form for the general Bianchi 
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I solution, with equation of  state p = (7 - 1)/~, first given by Jacobs [31]. If  
a s > O, then A > 0 for all t 1> 0 and the singularity occurs when t = 0. If  a s < O, 

the singularity will occur for some positive value ts such that A ( t s )  = 0. The cases 
a s > O, and a s < 0 are in fact equivalent, however, since A and t appear symmet- 
rically in the solution when we scale a m = 1 : note that p~ + qc~ = 2/3, and that 
(25) implies 

A 7 - 1  d t  = t v -1  d A  

since % = 0. Thus without loss of  generality, we assume a s > 0 and hence can 
set a s = 1. Then A -+ 1 as t -+ 0 +, so that in this limit, t approximates clock time 
along the fluid flow lines, which displays the relation of  (24) to the prototype 
(23) i f0  < u ~< 1, or (22) i fu  = 0. Thus i f O  < u <- 1 t he  s ingulari ty  is a K a s n e r  

a s y m p t o t e ,  a n d  i f  u = O, t he  s ingular i ty  is a Taub  a s y m p t o t e .  

B i a n c h i  IL" 

w x = d x  + �89 k ( a m ) l / 2 z  d y ,  w 2 = d y ,  w 3 = dz  

Uo = ( 6  - 7 ) / 4 ,  % = 0 

with 

x:  = ( 3 7 -  2) (2  - v)  

The exponents Pc~ and qa are given by 

Pl = (2 - 7)/4, P2 = (2 + 3' - q ) / 8 ,  

qa =Pa ,  q 2 = P 3 ,  q 3 = P 2  

with 

P3 = (2 + 3' + q ) / 8  

q2 = (2 + 7 ) ( 1 0 -  37) 

(27) 

/~o = 4/3, ac > 0 but arbitrary 

This solution is a simplified form of  the Bianchi II solution first given by 
Collins [23] [(example la); see also Kramer et al. [12] ,  p. 149, (12.23)-(12.24)].  

For given 7 this solution depends on one essential parameter, since one of  
as,  am can be specified by rescaling the coordinates. If  a s ~ 0, one can without 
loss of  generality assume a s > 0 and hence scale a s = 1. Then, as in the Bianchi I 
case, the line element (24) approximates the prototype (23) as t -~ 0 +, and the  

s ingular i ty  is a par t icu lar  K a s n e r  a s y m p t o t e  [note that the Pc~ as given by (27) 
satisfy the Kasner constraint (7d)].  

For completeness, we note that when a s = 0, the solution is the exact power 
law solution (18), with Novikov asymptote, but with a different time coordinate. 

B ianch i  V I  h : 

w a = d x ,  w 2 = e r [k+(37 .2 )]x  d y ,  w 3 = e r [ k - ( 3 v - 2 ) ] x  dz  
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k 2 = ( 3 7 + 2 ) ( 2 - 7 )  

r 2 = %(33` + 2)/[36(2 - 3')1 

The exponents p~ and qa are given by 

P 1 = ( 4 - 3 3 ' ) / 6 ,  P 2 = ( 2 + 3 3 ' - 3 k ) / 1 2 ,  P 3 = ( 2 + 3 3 ' + 3 k ) / 1 2  (28) 

q,  = "//2, q2 = (2 - 3' + k ) / 4 ,  q3 = (2 - 3' - k ) / 4  (29) 

and the relation (26) is again satisfied. 
The solution contains three parameters as, %, and am, one of  which can be 

fixed by rescaling. If a m > 0 we obtain the type VI h p = (3' - 1) p solution of  
Collins [23] [example 3(a) (ii)] in a much simpler form {see also Kramer et al. 
[12],  p. 151, equation (12.31)}. There are three subclasses of  solutions corre- 
sponding to a s > 0, a s = 0 and a s < 0. If a s > 0, we can rescale a s = 1. The 
singularity occurs at t = 0; and as in the Bianchi I case, the line element (24) 
approximates the prototype (23) as t -+ 0 § if 3' r 4/3, and the singularity is a 
particular Kasner asymptote. If3` = 4/3, it follows from (28) that Pl = P2 = 0, 
P3 = 1, and the singularity is a Taub asymptote. If as < 0, the singularity occurs 
at a positive value ts, such that A ( t s )  = 0. By introducing the function A as the 
time coordinate and regarding t as a function of  A, one finds that the singularity 
is again a Kasner asymptote, since the q~, as given by (29), again satisfy the Kas- 
ner constraint (7d). If  3  ̀= 4/3 in this case, the Kasner asymptote is degenerate 
with (p~) = (2/3, 2 / 3 , -  1/3), corresponding to u = 1 in (16). Finally if a s = 0, 
the singularity is a Lifshitz-Khalatnikov asymptote. This is manifestly obvious 
from the form of the solution given in [18].  In particular, if 3  ̀= 4/3, the solu- 
tion is equivalent to the Kantowski solution of  Bianchi type III, given as an 
example in case 1 in this section. 

For completeness, we note the following vacuum limits for this solution. If  
a m = O, a s --P O, we obtain the type-VI a vacuum solution of  Ellis and MacCallum 
[5] {see p. 134; Kramer et al. [12],  p. 136, equation (11.54)}, and if in addition 
33' = 2, we obtain the Joseph type V vacuum solution {Kramer et al. [12],  
p. 136, equation (11.57)}, in a different form. If%n = 0 = a s, we obtain the 
vacuum solution (21) in a different form. 

w Discuss ion  

Table I indicates which of  the spatially homogeneous group types are com- 
patible with the various power asymptotes. The group classification is that 
of  Bianchi and Behr (see for example [5] or [11] ), and we have included the 
Kantowski-Sachs (KS) class [32],  in which there is no group of  isometries which 
acts simply transitively on the three-dimensional group orbits. A Y indicates that 
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Table I. Power Asymptotes for the Different Spatially Homogeneous Group Types 

Power 
asymp- 

tote 

Class A Class B 

I II VI o VIIo VIII IX V IV VIh VIIh KS 

1 (LK) 

2a (N) 
2b (EM) 
2c 
2d 

3a 
3b 

Y(p) Y(q) Y 

Y(p) Y 
Y(p) 

Y Y Y(q) 

Y Y(e) Y(q) 
Y 

4a (T) Y(p,e,q) Y(q) Y Y Y(q) 
4b(K) Y(p,e,q) Y(q) Y(q) Y 

Y Y Y(e, q) Y Y(e, q) 

Y Y Y 

Y(p) 
Y(P) 

Y(p) Y(p,e,q) Y(p) 
Y(P) 

Y(e,q) Y(e,q) 
Y(q) Y Y(e,q) Y Y(e,q) 

the power asymptote in question is possible, while a blank indicates not. A (p) 
indicates that an exact power law solution exists, and is known explicitly (see 
Section 3). An (e) indicates that an exact spatially homogeneous anisotropic 
perfect fluid solution, 1 with l imt~ o p/la 4: 1, is known and is given in Section 3. 
A (q) indicates that existence of  the power asymptote in question can be in- 
ferred from published work on the qualitative analysis of  the field equations. 

We make the following comments concerning the table: 
(i) The LK asymptote can occur in all SH group types, but a perfect fluid 

solution of  Bianchi type I or V with an LK asymptote must be an exact FRW 
model. 

(ii) The 2d and 3b asymptotes occur only in Bianchi type-VI h solutions with 
h = - 1/9, which are also contained in the subclass Bb(ii) in the Ellis-MacCallum 
[5] classification. For a 3a asymptote in a solution of  Bianchi type VI h or VIIh, 
the group parameter h is related to the parameter u in (2.9) according to 

h =-u / (1  - u) 

For a 2c asymptote, the Bianchi type is necessarily VIh, and h is related to the 
parameter r in (2.7) according to 

h = - [(2 - 7)/(37 - 2)1 r 2 

(iii) This table extends the results of  Borzeszkowski and Miiller [4],  who 
considered Bianchi types I, VII0, VIII, IX, V, and VlIh, and found the asymp- 
totes 1, 2a, 2b, 4a, and 4b. Our results agree with [4],  with the exception that 
we find that the plane wave asymptote 3a is possible in Bianchi type VII h solu- 

1 Which is not an exact power law solution. 
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tions, while this is not mentioned in [4]. However, we have not established the 
existence of nonvacuum solutions of this type. 

(iv) The relationship with the work on the qualitative analysis of the field 
equations, with p = (3  ̀- 1)p, is as follows. Collins [23] analyzed a subclass of 
the SH models containing solutions of Bianchi type I, II, VIo, V, and VIh, and 
found that the asymptotes 1,3a, 4a, and 4b, do occur, although the Kasner 
asymptote 4b is typical. Secondly the analysis of the Kantowski-Sachs solutions 
by Collins [32] showed that the power asymptotes 1,4a, 4b occur (and only 
these) in this class of solutions. Finally, the analysis by Bogoyavlenskii and Novi- 
kov [3] established the existence of the asymptotes 1,2a, and 4a (and only these) 
in the class of Bianchi type IX solutions. These remarks are probably incomplete, 
due to the fact that we have not had access to certain works in Russian, e.g., 
[33] (see [4]). 

We conclude with some comments concerning the degree of anisotropy of 
the power asymptotes. Anisotropy of the singularity manifests itself via the 
shear tensor of the fluid flow, the Weyl tensor, and the spatial curvature of the 
hypersurfaces orthogonal to the fluid flow. The anisotropy due to the shear is 
described by the parameter/3 s of Section 2, and the anisotropy due to the Weyl 
tensor is described by the Petrov type of the limit of the Weyl tensor, as described 
in Section 2. The anisotropy due to the spatial curvature is described by the 
trace-free part of the Ricci tensor of the hypersurfaces: 

1 R*5 

where the components refer to a suitable orthonormal frame. It follows from the 
detailed calculations, however, that 

lim S*~/O 2 = 0 r lira R*/O 2 = 0 
T---> 0 + T - > 0  + 

Thus the anisotropy due to the spatial curvature can be described by the param- 
eter t3c, defined in Section 2. 

It follows from the results of Section 2, that the only power asymptote that 
is isotropic as regards shear (~s = 0) is the LK asymptote. Note, however, that 
~s can be made arbitrarily close to zero in case 2d. This is also possible in cases 
2a, 2b, 2c, and 3a if one permits negative pressures (3/2 < 3' < 1). For the K and 
T asymptotes, however, the anisotropy in the shear is maximal (~s = 1). The LK, 
T, and K asymptotes (cases 1 and 4) are isotropic as regards spatial curvature 
(13 c = 0), and the LK and T asymptotes (cases 1 and 4a) are isotropic as regards 
the Weyl tensor. Thus the L K  asymptote is the only power asymptote which 
is isotropic in all respects. This justifies the name "isotropic singularity," men- 
tioned in Section 2. 

We have noted that both the LK and T asymptotes are isotropic as regards 
the Weyl tensor. These asymptotes differ, however, in that in the former the 
Ricci tensor is dynamically dominant (/3m = 1) while in the latter it is dynami- 
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cally negligible (/3m = 0). Thus at an LK asymptote the Ricci tensor dominates 

the Weyl tensor, while the detailed calculations show that at a T asymptote,  
these tensors have the same order of  magnitude. This is exemplified by the be- 

havior of  the ratio 

CabedC abed/ R ab Rab 

which tends to zero at an LK asymptote,  but has a finite nonzero limit at a T 

asymptote.  Indeed it follows from the detailed analysis that the LK  asymptote 
is the only power asymptote at which the Weft  tensor is dominated by the Ricei 
tensor (although the above ratio cannot always be used to illustrate this fact). 
Thus the LK asymptote  is the only power asymptote which can be regarded 
as satisfying the Penrose hypothesis [34] of  "zero Weyl tensor" at the initial 
singularity. 
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