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Abstract 

The evolution of a class of exact spatially homogeneous cosmological models of Bianchi 
type VI h is discussed. It is known that solutions of type VI h cannot approach isotropy 
asymptotically at large times. Indeed the present class of solutions become asymptotic to an 
anisotropic vacuum plane wave solution. Nevertheless, for these solutions the initial aniso- 
tropy can decay, leading to a stage of finite duration in which the model is close to isotropy. 
Depending on the choice of parameters in the solution, this quasi-isotropic stage can com- 
mence at the initial singularity, in which case the singularity is of the type known as '%o- 
tropic" or "Friedmann-like." The existence of this quasi-isotropic stage implies that these 
models can be compatible in principle with the observed universe. 

w (1): In troduction 

In this paper  we analyze the evolu t ion  and singularities o f  a class o f  spatially 

homogeneous  cosmological  models  with equa t ion  of  state p = (3' - 1)/~. These 

exact  solutions were discovered by Collins [ 1 ] and are o f  type VI  h in the 

Bianchi -Behr  classification [2] .  

Since the microwave background is observed to be highly isotropic,  it is 

usually inferred that  the Universe must  be very close to a F r i e d m a n n - R o b e r t s o n -  

Walker (FRW) model .  Thus in studies o f  spatially homogeneous  cosmological  

models  considera t ion  is usually restr icted to those Bianchi group types which 

admit  FRW solutions [3] ,  and this excludes models  o f  type  VIh.  For  example ,  it 

is known  [4] that  models  o f  Bianchi types which do no t  admit  FRW solutions 
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cannot isotropize completely at arbitrarily large times, and hence cannot asymp- 
totically approach an FRW model. However, as pointed out by Barrow [5], it is 
possible that models of  type VI h could become arbitrarily close to isotropy over 
some f inite time interval. Indeed this is the sense in which Doroshkevich et al. 
[6] use the word "isotropize" in their investigation of models of types VII, VIII, 
and IX. We show that this type of isotropization can occur in the solutions 
under consideration, and hence that these models can be compatible in principle 
with the observed universe. 

Our second aim is to use these solutions to illustrate certain aspects of the 
type of singularity that is referred to as "isotropic" or "Friedmann-like" [7]. 
This type of cosmological singularity, though highly specialized, is of interest in 
connection with realistic models of the universe, e.g., Barrow's quiescent cosmol- 
ogy concept [8] (the universe is a perturbed FRW model near the singularity), 
and Penrose's Weyl tensor hypothesis (the Weyl tensor should tend to zero at an 
initial singularity), which arose from the consideration of gravitational entropy 
[9]. 

The present'models, when restricted to have an isotropic singularity, remain 
close to isotropy for a certain time interval after the initial singularity, but then 
grow increasingly anisotropic. Such models can be compatible with the observed 
isotropy of the Universe, and illustrate the scenario discussed by Barrow [5], 
namely, that the Universe is "young," and is observed to be isotropic because it 
originated in an isotropic state, and instabilities have had insufficient time to 
grow. 

Secondly, as the initial singularity is approached both the Weyl and Ricci 
tensors diverge, but in such a way that the Ricci tensor dominates the Weyl ten- 
sor. This suggests that the Penrose hypothesis should be slightly weakened in the 
sense that the Weyl tensor should be required to tend to zero, not in an absolute 
sense, but relative to the Ricci tensor (indeed Penrose mentioned this as a pos- 
sibility in an earlier paper [10] ). 

Although the idea of an isotropic singularity first arose in 1963 [11], it has 
not been studied in detail, and indeed the concept has not been clearly defined. 
The study of the present class of solutions suggested that the key feature of an 
isotropic singularity is that the physical metric is con formal to a metric which is 

regular at the singularity, i.e., the singularity arises solely due to a singular con- 

formal factor. We illustrate this idea in the present paper, and will discuss the 
idea in general in a subsequent paper. 

In Section 2 we present the Collins solutions in a new form, which clarifies 
their relation to the FRW solutions. The question of isotropization is dealt with 
in Section 3, and Section 4 contains the discussion of isotropic singularities. Our 
sign conventions for the Riemann and Ricci tensors are those of [12] and we use 
geometrized units so that 8zrG = 1 = c. 
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w The  S o l u t i o n s  

The following solution satisfies the Einstein field equations with perfect 
fluid source, and zero cosmological constant. The line element and fluid 4- 

velocity have the form 

ds 2 = - d t  2 + T4/(3"} ') [A2ql(w1)2 + A2q2(w2) 2 + A2qa(w3) 2] 

u = ~l~t (1) 

The functions T and A satisfy 

A = [a m + 720~c T2 -4I(33') + asT1 -Z/V] 1I(2-39 

d T  
- -  = A  1 - '~ ( 2 )  
d t  

where a m , %,  and a s are constants with a m ~> 0, % / >  0, and the exponents qe 
are given by 

ql = (1/2) 7, qz = (2 - 7 + s ) /4 ,  q3 = (2 -- 7 - s ) /4  

with 

s 2 = (3T + 2) (2 - 7) (3) 

The energy density and pressure of  the fluid are given by 

4 a  m 
P = ( 7 -  1)U, 1 < 7 < 2  (4) 

la - 37Z T Z A  ~ , 

The differential forms w e, a = 1,2,  3 are given by 

w a = d x ,  w 2 = e  r [ s + ( B v - z ) l x  d y ,  w 3 = e  d s - O v - 2 ) l x  d z  (5) 

where 

r 2 = % ( 3 7  + 2) / [36(2  - T)] 

The solution is defined up to a quadrature in terms of  clock time t along the 
fluid flow lines, but  is given explicit ly if one uses T as time coordinate.  As re- 
gards coordinate ranges we assume that x , y ,  z take on all real values. The range 
of  values of  T is determined by the initial singularity. I f  a s ~> 0 the initial singu- 
larity will occur when T = 0, while if a s < 0, the initial singularity will occur 
when A = 0, at some positive value of  T. Thus, we write the range of  T as 

T>G~>o 

where T s = 0 i f %  t> 0 and Ts is defined b y A ( T s )  = 0 i f a  s < O. 

(6) 
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The solution depends on three parameters a m , ac, and a s. The parameter a m 
relates to the energy density of  the fluid, while a s determines the nature of  the 
initial singularity (see Sections 3 and 4). Finally, a c relates to the spatial curva- 
ture of  the hypersurfaces orthogonal to the fluid flow lines, and also determines 
the Bianchi type of  the 3-parameter isometry group of  the solutions. In particu- 
lar, if % 4: 0, the solution is of  Bianchi type VI h ,bu t  if % = 0, it specializes to 
type I. These three parameters are not all essential and one of  them, if nonzero, 
can be fixed by rescaling the coordinates. We will normally use this freedom to 
set 

a m = 1 (7) 

As mentioned in Section 1, these solutions were first given by Collins [1] (exam- 
ple 3a(ii), on p. 156; see also [13],  p. 151, equation (12.31)). We have redefined 
the parameters and functions in the metric, in order to facilitate comparison 
with the FRW solutions, and to clarify their evolution and singularity structure. 
Three special cases of  this solution, which correspond to the three stages in their 
evolution (to be discussed in Section 3), arise as follows. When a s = 0 = % ,  and 
we use the normalization (7) the solution specializes to the FRW solution with 
the flat spatial sections (k = 0): 

d s  2 = - d t  2 + t 4 / ( 3~ ' ) (dx  2 + d y  z + dz 2) 

/~ = 4/(372 t2), P = (3' - 1) p (8) 

When a m = 0 = a c ,  the solution specializes to a Kasner v a c u u m  solution. (see, for 
example, [13],  p. 135). After redefining the time coordinate, and rescaling the 
spatial coordinates in an obvious way, one obtains 

d s  2 = - d t  2 + t 2pl d x  2 + t 2p2 d y  2 + t 2p3 dz  2 (9) 

Pl = (4 - 33')/6, P2 = (2 + 33' + 3s)/12, Pa = (2 + 33' - 3s)/12 

and s is defined by equation (3). When 3' = 4/3, the exponents simplify to 

Pl =Pa = 0, P z  = 1 

and this solution is flat. 
Finally, when a m = 0 = a s, the solution specializes to a v a c u u m  solution of  

Bianchi type VIh. After an obvious coordinate transformation, the line element 
can be written in the form 

d s  2 = - d r  2 + t Z d x  z + t 2 P 2 e  2p2x  d y  2 + t2Pa e 2p3 d z  2 (10) 

where 

p~ = s[s  + (3~, - 2 ) 1 / [ 2 ( 8  - s~)] 

p ~  = s [ s  - ( 3 r -  2 ) 1 / [ 2 ( 8  - s~)l  
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and s is defined by equation (3). If 7 = 4/3 we obtain P2 = 1 and P3 = 0, and the 
line element describes flat space-time. If  7 4= 4/3 this vacuum solution is a mem- 
ber of  the class of  plane wave spatially homogeneous solutions described by 
Siklos [14] (see p. 400). It is obtained by setting k = 0 in the type VI h solution 
and performing a coordinate transformation x' = (x + y ) / x /2 ,  y ' =  ( -x  + y ) /x /2 .  
It follows from [ 14] that this vacuum solution is of  Petrov type 1 N, and that 
the repeated principal null direction 1 l, which is given by 

l= a/at-  t -~a/ax 

is covariantly constant. In addition the metric admits a six-parameter group of  
isometries acting transitively on space-time. This solution was apparently first 
given by Lifshitz and Khalatnikov [1 I] (p. 232; see also the recent review [15],  
p. 655 and 662), and also appears in Collins [1] (example 3a(iii); see also [13],  
p. 136). 

w Evolution o f  the Solutions 

In this section we restrict our considerations to the case a s > 0 and a c > O. 
Then the time coordinate T assumes the values 0 < T < +co. The most important 
features of  the evolution are determined by the dimensionless scalar 0/0, with 

o 2 = (1/2) oUdl 

where o6 is the rate of  shear tensor, and 0 is the rate of  expansion of  the fluid 
(see, for example, [16] ). This scalar is called the distortion of the fluid by Bar- 
row [5] ; it measures the significance of  the shear relative to the expansion. For 
the solution of Section 2, 0 > 0 and since o is defined to be the positive square 
root of  02 , the distortion is nonnegative. 

For an irrotational fluid, there are space-like hypersurfaces orthogonal to the 
fluid 4-velocity. In this case the field equations relate the distortion to the Ricci 
scalar R* of  these hypersurfaces, and to the energy density of  the fluid accord- 
ing to 

302/02 = 1 - 3/2/02 + 3R*/202 (11) 

(see, for example, [16] ). Since R* ~< 0 for the solution of Section 2 (see equa- 
tion (A9)) and/J > 0, equation (11) implies that 

302 
0~< - ~ -  < 1 

for all values of  T. It follows from the expression (A7) for the distortion, and 

I See [ 13 ], Chap. 4, for this terminology. 
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the limits (A19) and (A20) that 

3o 2 3o z 1 
lira = 1, lira 02 - (33'- 2) 2 (12) 

T-*O + - ~ -  T ~ + ~  16 

The first of these limits depends on a s > 0. Thus the distortion is a maximum at 
the initial singularity T = O, and then decreases initially as the model evolves. 
Since a s > 0 and % > 0, it follows from (A7) that at a finite value of T, given by 

T . '  + 2/(3~,) = 3(2 - 7) %/[272(37 - 2) %] (13) 

the distortion reaches zero, and subsequently increases. 
Since o/0 is zero at T = T.,  and it is continuous, it follows that there is some 

interval of T in which the distortion is "small." More precisely, given any bound 
0 < e <<  1, the values of T such that 

o 

0 

form an interval (Ta, T2) with Ta < T,  < T2. Thus the evolution of these cos- 
mological models falls into three stages: 

I. the stage 0 < T < T1, in which the distortion is significant, but 
decreasing, 

II. the stage T~ < T < T2, in which the distortion is small, 
III. the stage 1"2 < T < +~,  in which the distortion is significant and 

increasing. 

The minimum duration of region II is determined by the bound e. It can be 
shown (see the Appendix) that for e < <  1, say, e < 0.1, the values of Tfor  
which o/0 < e satisfy 

I T -  T , I  <~ e T ,  (14) 

as an order of magnitude estimate. 
The matter distribution is not the only source of anisotropy in the model. 

One has also to consider the anisotropy in the spatial curvature. This is described 
by the trace-free Ricci tensor Si~ of the hypersurfaces orthrogonal to the fluid 
flow lines (see, for example, [16], p. 34). We define the magnitude S* >~ 0 of 
this tensor by 

(S*) 2 = (1/2) ~*~*i i  

and as a measure of the anisotropy of the spatial curvature we use the dimen- 
sionless scalar 

S*/O 2 
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It follows from (A8), (A19), and (A20) that 

615 

1 
lim S*/O 2 = 0, lira S*/O 2 - (33' + 2)(33 ' -  2)(2 - 3') (15) 

T- ,0*  v--,~ 32 V'~- 

and from (A8), (A17), and (7) that 

= L6~J 

where 

a = (1/2) [(37 + 2)/(33' - 2)] asT~, -2I'/ (16) 

is a dimensionless parameter [see (A15)] .  Thus the anisotropy in the spatial 
curvature will not be less than the prescribed bound e < <  1 in region II, unless 
a is restricted. However, if we choose a < <  1, then the interval on which o/0 and 
S*/O 2 are less than e is no longer required to be of  relative length e [see equa- 
tion (14)] .  Indeed one can draw the following stronger conclusion from (A7), 
(A8), and (A16): for any interval Ta ~< T~< 7'2 with 0 < Ta < T ,  < T2, we can 
choose the parameter a sufficiently small that 

o S *  

for all T1 ~< T ~< T2, where e < <  1 is a given positive bound. In other words, by 
choosing a appropriately the "quasi-isotropic" stage II can be made of arbitrary 
duration. 

The relation between T and clock time t should be mentioned at this point. 
If  we scale a m = 1, and choose a < <  1, it follows from equations (13) and (15) 
that the function A as defined by (2) satisfies [A - 11 < <  1, and hence that T 
approximates clock time t during stage II. 

The energy density/~ also helps to distinguish the three stages. It follows 
from (11) a n d R *  ~<0 that 

3/.t 
0 ~ < ~  ~<1 

This dimensionless scalar gives a measure of  the dynamical significance of the 
energy density. It follows from (A5), (A2), and (2) that 

lim 3/~ 3~t 
r -~o § ~ = 0, r--,+~olim ~ = 0 (17) 
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and from (A5) and (A17) that 

3~1 1 

~ -  T=T,  = ] +oz 

Thus the matter density is dynamically insignificant near the singularity even 
though lira lsr-+ 0 + = +~,  but if a < <  1, it is dominant at T = T, ,  and 3is/0 2 is 
close to its maximum value of  1 throughout stage II. 

On account of  equations (17), the asymptotic states of  the solution as 
T-+ 0 + and T-+ +~o are both "quasivacuum," and the distortion a/0 is significant 
in both. These asymptotic states are quite different, however, on account of  the 
behavior of  the spatial curvature as given by equation (15), i.e., spatial curvature 
is negligible as T-+ 0 + [note that equations (11), (12), and (17) imply that 
limT_+o+R*/O 2 -- 0, as well], but is significant as T-+ +~. In fact the asymp- 
totic state T ~ 0 + is described by the Kasner vacuum solution (9), while the 
asymptotic state T-~ +~ is described by the plane wave vacuum solution (10). 

We have shown that when a < <  1, stage II of  the model is close to isotropy 
both as regards the matter flow and the spatial curvature, and hence is appro- 
priately called a "quasi-isotropic" stage. We thus expect that during stage II, the 
model in some sense approximates the (isotropic) FRW model with k = 0. The 
well-known characterizations of  the FRW models enable us to make this idea 
more precise, as follows. 

The FRW solutions of  the Einstein field equations with perfect fluid source 
and equation of  state p = p(ls), can be characterized in terms of  the kinematic 
quantities of  the fluid congruence by 

~ = w = ~ = 0 ,  0 5 0  

or in terms of  the curvature of  space-time by 

Cabed = O, Rab ~ 0 

(see, for example, [16] ). Here Caocd is the Weyl conformal curvature tensor, and 
w and ~ are the magnitudes of  the vorticity tensor and acceleration vector, re- 
spectively. It thus seems reasonable to regard as an approximation of  an FRW 
solution any perfect fluid solution such that o, w, and t/are small 2 compared to 
0, while Cabed is small compared to Rat~, in some appropriate sense. We thus 
consider the dimensionless ratios 

o/O, w/O, ~/0 (18) 

for the kinematic quantities, and the dimensionless ratios 

Ells, Hlls (19) 

2 Except near events at which 0 = 0, which would occur in a model which passes from a 
state of expansion to a state of contraction. 
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for the Weyl and Ricci tensors, where 

617 

E 2 = (1/2)EabE aa, H 2 = (1/2)Ha~H a~ 

and Eab, Ha~ are the electric and magnetic parts of the Weyl tensor relative to 
the fluid 4-velocity u. We use the energy density/~ of the fluid to represent the 
Ricci tensor. One could equivalently use the scalar (RabRaa) 1/2. Thus our cri- 
terion for a perfect fluid solution to approximate an FR W model is that the 
ratios (18) and (19) should be less than some specified bound e < <  1. 

Since w = 0 = z/for the solutions of Section 2, and we have already consid- 
ered o/0, there remain only E/~ and H/I~. It follows from (A 12), (A 13), and 
(A5) that if a < <  1, E/~ and H/~ will be less than an arbitrarily specified bound 
e. Thus by choosing a sufficiently small, the model can be made to approximate 
an FRW model arbitrarily closely, in stage II. Since the ratio 3/1/02 can be made 
arbitrarily close to 1 throughout stage II by choosing a sufficiently small, the 
FRW model in question is the k = 0 model, since in such a model the density has 
the critical value given by # = 02/3. One aspect of this approximation that 
should be noted is that in stage II the metric components Qf the solution are 
not close to the FR W metric components (8) for all values o f  the spatial coordi- 
nates, owing to the appearance o f  the exponentials in the differential forms (5). 

The fact that the model can be made close to the exact k = 0 FRW model 
over any interval IT1, T2 ] suggests that these solutions should be closely related 
to linear perturbations of the FRW solutions. In fact when a < <  1 and T ~- T,,  
it follows from (A7), (A12), (AI3), (A5), and (A16) that o/0, E/t~, and H/U are 
approximated by 

~/0 ~-~(7+ - 7 - )  

HIu ~-~/~ (7+) ll~ (7+ - 7 - )  

where we have suppressed overall multiplicative constants, and have written 

7 = T/T,  

and 

7 + = 7  2 - 4 l (3T)  , 7~ = 7 1  - 2 l ' /  

These time dependencies are precisely those that arise in the linear perturbations 
of the k = 0 FRW solutions ([17],  [18] ). A puzzling feature, however, is the 
fact that H/U.* depends not on a but on oe a/~ , whereas in linear perturbation 
theory, it depends on the first power of the perturbation parameter, as do o/0 
and E/IJ [ 17, 18]. This appears to be due to the fact that when a < <  1 the 
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metric (1) cannot be written in the form 

_ F R W  + ahij gij ~ gii 

i.e., gij cannot be linearized in terms of a. This is due to the fact that x / a  ap- 
pears in the 1-forms w ~, on account of  (5) and (6). Thus although the solution 
is close to an FRW solution in a coordinate-independent sense during stage II of  
the evolution, there is no solution of the linearized Einstein field equations to 
which it corresponds. 

In summary, the model starts at the initial singularity as a Kasner vacuum 
model, with the exponents Pc~ determined by the equation of state parameter 7. 
As the model evolves, the energy density of  the fluid becomes significant dy- 
namically, and the distortion o/0 decays to zero. If  c~ < <  1 this gives rise to a 
quasi-isotropic stage in which the model is close to the k = 0 FRW model. At late 
times, the anisotropic sphtial curvature becomes significant, and the model 
evolves asymptotically as T-+ +oo to a plane wave vacuum state which is domi- 
nated by the distortion and the anisotropy in the spatial curvature. There are 
two arbitrary parameters in the model, T .  and c~. The value of T .  determines 
where stage II actually occurs in the overall evolution of the model, while the 
value of  a determines the duration of stage II, once the bound e < <  1 has been 
specified. 

w The  I so t rop ic  S ingular i ty  

In this section we consider the case a s = 0. This affects the initial singularity, 
but not the late stages of  the model as described in Section 3. The distortion a/O 

is now a monotone increasing function of T, with 

lim ~/0 = 0 (20) 
T - . 0  + 

as follows from (A7) and (AS). The limit as T-+ +oo is unchanged [see equaiion 
(12)].  In addition it follows from (A 12), and (A13), (AS), and (A20) that 

lira E/I~ = 0, lim H/l~ = 0 (21) 
T ~ 0  + T ~ 0  + 

Thus on the basis of  the discussion of Section 3 we can state that the model be- 
comes increasingly close to the FRW model (8) as the initial singularity is ap- 
proached (into the past). The asymptotic form of the line element as T-+ 0 + has 
the same time dependence, though not the same spatial dependence, as the FRW 
model (8): 

ds 2 ~ _ d t  2 + t41(37)[dx 2 + e2r[s+ (37-2)1 x dy2 + e2rIs-  (37-2)1 x dz  2 ] (22) 

as follows from (1) and (2) with a m = 1 and a s = 0. Thus we recognize the singu- 
larity as being isotropic or Friedmann-like [7]. 
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The structure of  the singularity becomes particularly clear when one intro- 
duces a conformal  t ime coordinate r, related to T by 

d T  = g2l(3T-2) dr 

After rescaling the spatial coordinates and the parameters r and a c in an obvious 
way, one finds that 

ds 2 = 7-4/(3~'-2)[_A2(y-1) dT-2 + A 2 q l ( w a )  2 + A2q2(w2)  2 + A2qa(w3)  2] 

(23) 

and 

with 

~'2 = 7" 2/'(33' -2)  (27) 

and ff defined by the square bracket in equation (23). The singularity is entirely 
due to the fact that the conformal factor g2 is zero when r = 0. The conformally 

related metric ~ is analytic in r at r = 0, and is moreover an even function of  r 
[cf. equation (24)] .  Thus the metric components  gi] have power series expan- 
sions in even powers of  r. When % = 0 and c% is normalized to equal 1, the 
solution (23)-(25)  reduces to the FRW k = 0 solution relative to a conformal 

time coordinate,  namely,  

ds z = ral(av -2)(_dr2 + dx 2 + dy 2 + dx 2) 

12 
/~ = (33' - 2) 2 r 6v/Or -2) ' P = (3' - 1)/J 

Thus the conformal factor g2 as given by (27), which determines the isotropic 
singularity, is simply the expansion factor for this FRW solution, relative to the 
conformal time coordinate.  

where 

A 2 - 7 = am + oeer2 (24) 

and the density and pressure are 

12a m 
/~= (33 ' -  2) 2 "]'6"y/(3"y-2) A"{ ' p = ( 3 ' -  1)/d (25)  

The w c~ and the qa are given by equations (3) and (5) as before, and 

r 2 = (33' + 2) % / [ 4 ( 2  - 3')(33' - 2) 2 ] (26) 

The essential point  is that the physical  metric g is con formal  to a metric ~ which 

is regular at the singularity r = 0: 

g = f z 2 g  
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Within this framework the singularity is represented by a hypersurface r = 0 
which is a regular spacelike hypersurface relative to the conformally related 
metric g. The fact that the metric ~ is an even function of r implies that the ex- 
trinsic curvature [12],  or second fundamental form [19] of this hypersurface is 
zero. On the other hand, the intrinsic geometry of the hypersurface r = 0 is not 
fully constrained. Indeed the metric induced on r = 0 by ~ is given by 

ds(3)2 = dx 2 + e2r[s+ (37-2)1 x dy2 + e2r[s-(37-2)l x dz 2 

as follows from (23) and (24), with a m scaled to equal 1. This 3-metric depends 
on the arbitrary parameter a c through equation (26), and is of  constant curva- 
ture if and only if a c = 0, i.e., if and only if the solution is an exact FRW solu- 
tion. The intrinsic geometry of the hypersurface r = 0, and the singular con- 
formal factor fZ completely determine the evolution of the solution. Since ~ is 
determined by the equation of state parameter 7, we regard the 3-metric induced 

on r = 0 by gas being initial data for  the solution. 

To summarize, this solution suggests the following description of an iso- 
tropic singularity. The singularity is represented by a regular spacelike hypersur- 
face relative to a regular conformally related metric g. The extrinsic curvature of  
this hypersurface is zero, while the intrinsic curvature determines the future 
evolution of the model, and can be specified in an arbitrary manner. The limits 
(20) and (21) concerning the shear and the Weyl tensor imply that near the iso- 
tropic singularity, the solution is close to an exact FRW solution. Nevertheless, 
the Weyl tensor itself diverges at the singularity: 

lira E = + %  lira H =  + o o  
T ~ 0  + T ~ 0  + 

unless a e = 0, i.e., unless the solution is exact FRW. [The case 7 = 4/3 is special 
in that only E diverges, since H-= 0.] This motivates the weakening of Penrose's 
Weyl tensor hypothesis, which was mentioned in Section 1. These matters will 
be discussed in more detail in a subsequent paper. 

The length of  time during which this model is close to the exact FRW solu- 
tion depends on the parameter a e. We can define a characteristic time for the 
model, analogous to T , ,  by considering the distortion a/O. This quantity is 
strictly increasing from 0 at T = 0, and so for a given bound e > 0, we introduce 
a time T~ such that 

O < T < T e ~ o/O < e (28) 

Consideration of (A7), with % = 0, suggests the definition a 

Z 2 - 4I(3"7) = 3 N/vf  ( 2  - ")1) 6or m 

(3'1' - 2) 7=% 

3a/O will  in fac t  be  less t h a n  e on a s o m e w h a t  larger  in te rva l  t h a n  (0, Te). 
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which implies 

where 

and 

a e'r/+ 

0 1 + [4 ~ e / ( 3 y -  2)1 r/§ 

r~ = T / T  e 

f/+ = 72 -4I(37) 

It follows that condition (28) is satisfied. Similarly E/l* and H/I~ will be small for 
0 < T <  Te, i.e., less than some numerical multiple of e. Thus, by choosing the 
parameter % appropriately, we can insure that the model  remains close to the 
FR W model  up to some specified time Te. 

Appendix  

In this appendix we give the expressions for the kinematic quantities, the 
spatial curvature, and the Weyl tensor of the solutions of Section 2. These quan- 
tities were calculated, and the solutions themselves were verified, using a library 
of programs [20] written in the symbolic computation language CAMaL [21]. 
We use the natural orthonormal frame associated with the line element (1), with 

the basis 1-forms given by 

ff;o = dt, f f~ --- T2IOMAq~w ~, a = 1, 2, 3 (A1) 

where the q~ and w ~ are given by equations (3) and (5). 
In addition to the function A, defined by equation (2), we need the follow- 

ing expressions: 

472 1 
B = ~ + 3 ( 2 -  3`~ % T+ + -2 a s T- 

2")'2(37- 2) 
C = %7"+ + asT- 

3 - 3 ` )  

1 (33'+ 2] 
D = -~ \ ~ - ~ , 1  3"2~cT+A2 -~/ (A2) 

where for convenience we write 

T+ = T z - 4l(37), T_ = T 1 - 2Iv (A3) 

The various quantities are given below as dimensionless ratios formed with 
the expansion scalar 0, since this yields simpler expressions. The expansion scalar 
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0 is given by 

0 = 2B/(3,TA) (A4) 

For example, for the energy density p, it follows from (4) and (A4) that 

3# 
O- ~ = a m A 2 - 3,/B2 (A5) 

The nonzero components of the shear tensor relative to the frame (A1) are given 
by 

o11/0 = (1/12)(2 - 33,) C/B 

022/0 = -(1/24)(2 - 37 + 3s) C/B 

o33/0 = - (1/24)(2-  33,- 3s)C/B (a6) 

It follows that the shear scalar is simply 

a2/02 = C2/(12B 2) (A7) 

The trace-free spatial Ricci tensor S*~ is a multiple of Oab, and hence it suffices 
to give the magnitude S* of S'b: 

S* 33`-2  D 
0 -~- = 2 V~5 B 2 (AS) 

The spatial Ricci scalar is given by 

R*/O 2 = - 2 D / B  2 (A9) 

The electric part of the Weyl tensor is expressed in terms of three additional 
functions: 

1 2) 
am ac T+ + asNT_ ] 

M= s7(4- 37) C2 (A10) 
16(33`- 2) 

where 

72(37 + 2) (4 - 33')(37 + 2) 
N = otm + %T+ - asT_ 

2 -  3, 4(33`- 2) 

and C is given by (A2). The nonzero components of Ea~ are given by 

& l / o  2 = (33`- 2 ) L / B  2 

E22/02 = [-(1/2)(33, - 2 - 3s) L + M l / B  2 

E33/02 = [-(1/2)(33,  - 2 + 3s) L - M ] / B  2 (Al l )  
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and the magnitude of  Eab is 

E2/O 4 = (12L 2 + 3sLM + M2) /B  4 (A12) 

The magnetic part of  the Weyl tensor has only one nonzero component,  H53, 
and we obtain 

H2/O 4 = (1/64) 75 (4 - 3 3 , )  2 DC2/B 4 (A13) 

When a s > 0 and a m > O, as in Section 3, it is convenient to rescale o~ m = 1 ,  

and introduce a dimensionless time variable rl by 

rl = T / T ,  (a14)  

where T ,  is the value of  Ta t  which cr = 0 [see equation (13)].  We define a 
dimensionless parameter a by 

1 ( 3 7 +  2~ - 72(37 + 2) T2-4/(37)ol- c (a15)  
= 2/v - 5/, as 3(2 - r)  

the equality of  these expressions following from the definition (13) of  T. .  These 
changes simplify the expressions for A,  B, C, D, L,  and N as follows, where we 
again use the notation (A3) for powers of  r/: 

A 2 -*  = 1 + a [3(2 - 3') r/+ + 2(33, - 2) r/_]/(37 + 2) 

B = 1 + a [4r/+ + (33' - 2) r/_] 1(37 + 2) 

C=  -2 (37  - 2) a(r/+ - r/_)/(37 + 2) 

D = arl+A 2 -*/3  

L = (1/18)(37 - 2) a(3Vr~./2 + Nr~_)/(3V + 2) 

N =  1 + (1/2) a [6r/+ - (4 - 37) ~7-1 (A16) 

Note that when T = T, ,  i.e., rl = 1, we have 

A 2 - * =  l + a = B ,  C = 0 ,  D = a ( l + a ) / 3  (A17) 

L = ( 3 7 - 2 )  a ( l + a ) / 3 6 ,  M = 0 ,  N = l + ( 3 3 , + 2 )  a/2 (A18) 

The following limits are used in Section 3, and are valid if a s > 0, ~m > 0: 

lira C / B = - ( 3 7 - 2 ) / 2 ,  lira D/BZ=s5 /16  (A19) 
T - - .  + ~  T - - ,  +oo 

lira L/B  2 = 0, lira M/B 2 = - s 3 , ( 4 -  37) (37-  2)/64 
T -+ + ~  T ~  + ~  

lira C/B= 2, lira LIB 2 = -(4  - 37)(37+ 2) /[36(37 - 2)] 
T ~ - O  + T ~ 0  + 

lira D/B 2 = 0, lira M/B 5 = s3'(4 - 3 3 ) / [ 4 ( 3 7 -  2)] (A20) 
T ~ 0 + T ~ 0 + 
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Finally in order to justify (14), we use (A16) to write a/0 in the form 

V ~ a  2I(3~)I 4 ( 3 7 + 2 )  
0 - ]  1 - r / a +  I 1 + - -  + 3~,- 2 ~(33, -  2) 

Thus if ~ > 0 is unrestricted, o/0 will be small if and only if r / ~  1. We write 
= 1 + AT with IA~71 < <  1. Then a/0 can be approximated by 

from which (14) follows. 
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