
point 2 in Fig. 4b), and the strain range ~X p reaches 1.4%. This is followed by cyclic elas- 
tic deformation (points 2-5). 

Thus, the results show that the proposed method can be used efficiently for solving the 
problems of the SSS of actual structures with an allowance made for technological special 
features of their manufacture in dynamic loading. 
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FEM SOLUTION OF A DYNAMIC ELASTOPLASTIC PROBLEM OF FRACTURE MECHANICS. 

2. SUPERCRITICAL CRACK PROPAGATION 

V. I. Kostylev and V. Z. Margolin UDC 539.3 

A method of algorithm of numerical analysis of supercritical crack growth are 
proposed. They make it possible to determine the release of elastic energy 
and the rate and direction of crack growth with an allowance made for resi- 
dual stresses. Crack growth was simulated by means of finite elements with 
special properties. The results of calculations carried out using this al- 
gorithm were compared with analytical dependences and experimental data on 
crack propagation with constant and variable rate. 

In solving the dynamic problem of fracture mechanics it is necessary to examine a number 
of main aspects, such as the start of crack propagation, crack propagation kinetics, i.e., 
determination of the trajectory and rate of crack growth. 

i. The condition for the start of crack propagation can be analyzed on the basis of 
the force (the value at which the dynamic stress intensity factor reaches fracture toughness 
K c) and energy (when the rate of release of electric energy reaches the critical value G c) 
criteria. It should be mentioned that in contrast to the static analogs, the quantity K c 
and G c are characteristic of the material which greatly depend on the loading rate [i]. To 
develop this criteria for short-term pulse loading, the authors of [i] proposed criteria of 
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Fig. i. Sketch of a butt welded joint (a), a fragment with 
a crack (b), and simulation of its movement (c). 

the minimum time and minimum action which take into account the limited duration of action 
of the load pulse. 

When using the numerical methods, the stress intensity factors (SIF) can be determined 
directly on the basis of stress fields at the crack tip (direct method) or using special 
singular elements which ensure the singularity of the stress distribution at the crack tip 
of the type zero (r-i/2). In the first, to increase the accuracy of the solution~ the den- 
sity of the mesh of regular finite elements at the crack tip is increased, it is preferred 
to determine the SIF by the direct method using singular elements for a stationary crack than 
regular elements because it is sufficient to use a measure with a relatively low sensitY. 
However, in measuring a crack moving along a curvilinear trajectory, there are difficulties 
associated with the arrangement of the mesh and movement of thesingular element. Alterna- 
tive methods of determining the SIF which make it possible to avoid this problem and which 
use only regular elements, are the energy methods based on computing either the crack closure 
integrals and the J-integral proposed by Cherepanov and Rice, or the rate of release of elas- 
tic energy (the compliance method, the method of displacement of a node at the crack tip) [2]. 

The condition of the start of crack propagation based on energy criterion in relation 
to the degree of plastic deformation can be determined by two methods. In localized plastic 
yielding at the crack tip dissipation of the energy of plastic deformation can be added di- 
rectly to the energy required for the formation of a new crack surface. This is equivalent 
to the transition of examining an elastic solid for this the condition of crack propagation 
is determined from the equation G = Yef [3]. For a stationary crack in dynamic loading, the 
value G can be determined conveniently by the compliance method reducing the dynamic problem 
to a static one. For this purpose, it is necessary to find the increment of the potential 
energy AP caused by the variation of crack length by AL at fixed external loads which include 
the inertia forces 

G S  - d P  ~ AP __ P ( t - -  At) - -  P(t)  ( 1 )  
dL AL AL 

The expression for the potential energy can be written in the following form 

P = - - g -  

V 

where {o}, {s}, {u}, {r {Fp}, {Fp} are, respectively, the vectors of the stresses, strains, 
displacements, initial strains, and external and inertia forces. 
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In cases with developed plastic deformation, the stress-strain state (SSS) at the crack 
tip and, consequently, the crack propagation condition are controlled by the J-integral pro- 
posed by Cherepanov and Rice which can be written in the following form for the dynamic prob- 
lem and the stationary crack [4] 

l = S [(W -f- T) nl - -  Tiui, 1] dF, (2) 
r 

where T is an arbitrary contour surrounding the crack tip; W = i o~ideiJ is the strain energy 

density; T = PUiUi/2 is the kinetic energy density; T i = oijn j is the vector of forces acting 

on the contour F; nj are the components of the vector of the normal to the contour directed 

from the inside of the latter. The term of the J-integral, which depends on W, is calculated 
as the sum of increments AJ W is in the equation 

r n n i" 

where {omn } = ({on+ I} + {on})/2 is the mean stress in the stage At n = tn+ I - tn; {Ac n} = 

{r _ {sn} is the strain increment in the stage At n. 

2. Simulation of crack propagation and determination of the crack trajectory is the 
second aspect which must be examined in numerical solution of the dynamic problem of fractur~ 
mechanics. When using FEM, the crack propagation can be simulated either by consecutive re- 
lease nodes distributed along the crack trajectory [i, 2, 4] or by consecutive definition of 
the elasticity modulus close to zero in elements at the crack tip along its trajectory: E T 
E* << E (E is the elasticity modulus of the parent material) [5]. The second simulation 
method for cracks with a curvilinear trajectory is more rational because it makes it possibl~ 
to take into account efficiently different boundary conditions in the elements of the crack 
cavity (partial contact of the crack edges, determined by interaction between the residual 
and service stress fields) in relation to the sign of strain s'yy in these elements (the 
sign ' relates to the local system of coordinates, the X' axis passes along the tangent to 
the crack trajectory). In this simulation, if a crack is situated in a noninformed stress 
field and opens in certain areas along its length, which corresponds to the condition E'yy > 
0, we assume the E T = E* and, consequently, the crack does not resist applied loads in these 
sections (Fig. I). In areas in which the crack edges come into contact, i.e., E'yy 5 0, for 
elements of the crack cavity E T = E and two variants are possible: (g'XY # 0, o'Xy r 0) of 

slipping of its edges, and slipping of the edges (e'Xy # 0, o'Xy = 0). In the first variant, 

from the viewpoint of transfer of the force flow the solid operates as a monolith whereas 
only normal stresses are transferred in the second case. To apply the second variant at ar- 
bitrary orientation of crack elements (the crack trajectory is curvilinear), it is necessary 
to carry out a number of transformations. 

In the local coordinate system X',Y' we show right the finite-element of the equation 
equilibrium (19) taken from [6], for the ~-th element of the crack 

1 At ) [M;I + + [C;] {$}; = 

A t  ' , f p  ~o , , 

(3) 

where the stiffness matrix [K~'] and the vector of forces {fs176 , determined by initial 
strains, is calculated in the local coordinate system using the well-known equation [6] but 
with an allowance made for the condition of slipping of the crack edges, i.e., the element 
D33' of the matrix of the relationship between the stresses and strains [D~'] is equal to 
zero. Since the vectors of the nodal operates {u} and forces {f} in the local and global 
coordinate systems are linked by the relations of the following form 
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[S~I = 

{h,}' : -  ts,] {u,}, 
{bY = [s,] {h}, 

= (X' ,  x ) ,  

- cos cc sin ct 

- -  sin c~ cos a 
cos c~ sin cc 

- -  sin (z cos 

= S  r [S~1-1 [ z l ,  

COS ~ Si l l  O-- 11 
-- sin cz cos a _ |  

and also because of the variance of the mass matrix [M Z] and the damping matrix [Cs in re- 
lation to the coordinate system, we shall write the equation (3) in the global coordinate 
system X, Y: 

[Mz] --h-/- + [ S J  [K~] [Sz] a t  -5 - -  + [ c ~ l  {u~}~ = 

+ 

Introducing the notations [Kk]ef = [sk]T[Kk'][Ss , {fkS~ = [sk]T{fkE~ , we obtain 

[Mz] @ t /Jef--ff- @ [CI] {u/}n = ( 4 )  

( 1 A t )  " p o 
= [ M l ] - % - / - -  [ K t l e f - g -  {ut}n_l+{ft } ~ -  {[~ }n--lef" 

I t  c a n  e a s i l y  b e  s e e n  t h a t  t h e  f o r m  o f  Eq .  ( 4 )  i s  i d e n t i c a l  w i t h  Eq .  ( 1 9 )  i n  [ 6 ] ,  w i t h  

[ K k ] ,  { f s  e ~  r e p l a c e d  b y  [ K k ] e f ,  { f ~ e ~  f .  T h u s ,  i n  s o l v i n g  t h e  p r o b l e m  t a k i n g  i n t o  a c c o u n t  
slipping, it is necessary to form the resolving system finite element equations using the 
algorithm described in [6], assuming that in the crack elements we used the effective stiff- 
hess matrix [Kk]ef and the vector of forces {fs176 f, determined by the initial strains. 
Subsequently, solving the system of Eqs. (4) and determining the values of the rate vectors 

{us , and the displacement {Auk} and strain {Ask} increments, we can calculate the stress 
vector {os taking slipping into account. For this purpose, the equations lining the vectors 
of the strain increments {5~s and stress increments {ok} in the local and global coordinate 
systems will have the form 

{Ael}' = [Az] {As,}, [A~] = 

{~} '  = [ 4 1  {~}, 

[ -  cos ~ ~z sin 2 a 2 s in  r cos ~z 0 -~ 
| 

m 
[ sin 2 a cos ~ a - -  2 s in a cos a 0 
I I - s i n  ~ cos  sin  cos  cos2 --sin-"  0 
_ 0 0 1 

[At] -~ = 

] -  cos 2 a  sin ~"c~ - -  2sinc~ c o s a  0 1 

] sin 2 a cos-" a 2 sin a cos ~ 0 

i sin cr os a - -  sin cz cos cz cos-" a - -  s in  ~ c~ 0 

_ 0 0 1 

Consequently, the equation linking the vectors of the stresses and the strain increments in 
the global coordinate system, with an allowance made for fulfilling the slipping conditions, 
can be written in the form 

946 



{a,} = [A~I - t  {a,}' = [Az] - i  [D~] ({k%}' - -  {~ }') = 

= [ & l - '  IDOl [A,] ({As,} - -  {~?}), 

where the matrix of relationship between the stresses and strains [Ds ensures the transfer 
of normal stresses and absence of shear stresses (element of the matrix D33' = 0). Conse- 
quently, simulating the crack by this method, the boundary conditions on its edges are con- 
stantly fulfilled. 

2ol. The direction of crack propagation is usually selected from a criterion of its 
deviation: maximum hoop stresses, the minimum density of strain energy, the maximum rate 
of energy released [i, 7, 8]. The Yoffe criterion of the maximum hoop stresses oSe is used 
most extensively because it results in a satisfactory agreement between the calculated and 
experimental data in analysis of supercritical crack growth [7]. The crack propagation and 
determination of its trajectory using the FEM can be simulated by different methods. Highest 
accuracy in numerical calculations is obtained using the approach in which the crack propa- 
gation direction is determined in each stage of crack propagation and the mesh of finite ele- 
ments is correspondingly rearranged. It should be mentioned that rearrangement of the mesh 
greatly complicates the solution of the problem. The optimum approach as regards accuracy 
and use of application is the one proposed in [5] which is based on discretizing the region 
in which the direction of possible crack propagation is varied in each step in three direc- 
tions (kz, k 2, k s in Fig. i) and the magnitude of deviation of the crack from the initial 
direction can periodically change from step to step together with the dimension of the ele- 
ments. If necessary, the mesh of the crack elements is automatically rearranged in such a 
manner that the new pair of elements is oriented along the calculated trajectory. Using a 
relatively low-density mesh, this method makes it possible to describe a relatively complex 
crack trajectory. 

3. Determination of the crack growth rate (CGR) in dynamic loading is a relatively 
complicated problem. Analytical expressions for CGR were obtained by a number of authors 
[i, 4, 8] for idealized formulations for infinite and semi-infinite solids. These authors 
used the energy balance in different forms. For structures with finite dimensions, the ap- 
plicability of these expressions is limited by the time of arrival of reflected waves to 
the crack tip. For structures with a complex geometry, a mixed numerical-experiment has 
been used extensively in recent years [9]. In this method, CGR is determined by solving 
the nonlinear equation 

K, (t, = Km (v), 

where v is the crack propagation rate; KID(V) is the curve of dynamic fracture toughness de- 
termined by experiments. Application of this method is limited by the fact that in the 
presence of a mixed crack, determination of CGR becomes ambiguous. In addition, as mentioned 
previously, to determine the SIF, it is necessary to use a low-density mesh at the crack tip 
or introduce special infinite elements. 

In this work, it is proposed to determine the CGR on the basis of an energy criterion 
for a moving crack [8]: 

A=0+f+D, (s) 

where D is the sum of all irreversible energy components (free surface energy, energy used 
for plastic deformation, etc.). The expression for operation of external forces A, the 
energy of reversible (elastic) deformation U, and the kinetic energy T can be written in the 
form 

where {O}, {~} ,  {U}, 

A = S {pS/" {u} dS + ~f {pV)T {u} dV: 
S V 

1 
u = T ,I dr; 

V 

(6) 

I 
r = T i" p {, if  {/,) dV, 

V 

{u} are the vectors of the stresses, strains, displacements, and rates 
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obtained as a result of the FEM solutions; {go}, {pS}, {pV} are the vectors of the initial 
strains, and surface and volume forces. 

The equation (5) can be written in the following modified form 

d ( A _ U _ T _ D ) =  d _ ~ _ ( A _ U _ T _ D ) a L  a-'--f -s = 

= JL ( A - - U - - T - - D ) v  = O, 

where L is the crack length. Since for the moving crack v # 0 the energy criterion can be 
written in the form 

d ( A - - U - - T - - D ) = O .  dL 

Taking into account that the rate of release of the elastic energy in the dynamic case 
is G d = d/dL(A - U - T), and the intensity of the surface failure energy is 2y = dD/dL, the 
energy criterion of the moving crack assumes the form 

G ~ = 2y. ( 7 )  

I t  s h o u l d  be m e n t i o n e d  t h a t  a t  t h e  s t a r t  o f  c r a c k  p r o p a g a t i o n  t h e  s t r u c t u r e  c a n  be s u b -  
j e c t e d  to high plastic deformation in which energy dissipation has a strong effect on the 
crack kinetics. During crack propagation, the plastic deformation is localized mainly at 
the tip of the moving crack. Formulation of the energy balance in the form of Eq. (7) makes 
it possible to analyze crack propagation in the elastic formulation because energy dissipa- 
tion at the tip of the moving crack is included in 2y. Thus, it is essential to solve the 
elastoplastic problem up to the start of crack propagation and it is convenient to use the 
solution of elastic problem in analyzing its propagation. This method of simulating the ki- 
netics can be applied by increasing the yield limit of the material after the start of crack 
propagation. 

3.1. The rate of release of the elastic energy during formation of the new surface of 
a crack with length AL in the transition to limit at AL ~ 0 can be represented as the work 
of "bonding forces" at the crack edges during the time AT = AL/v (the time during which the 
crack tip travels the distance AL at the speed v) whose value for a discrete model depends 
on the time dependence of these forces. When using finite-element models, the crack propaga- 
tion act (jump) can be described as follows. The bonding forces of the crack edges, propor- 
tion to the stiffness of the elements of the cavity of the crack, are characterized by the 
elasticity modulus of the crack ET, and during the period At decrease to almost zero (E T = 
E* = 0) in accordance with the following law 

E,(])= E 1- -  At~/A~ - 6 E * , j = l , k ;  A t e =  A~. ( 8 )  
i=l  l = l  

This method of simulating the crack propagation process describes most adequately the 
process of continuous crack propagation in a solid. In fact, a reduction of the value of E T 
during time AT from the viewpoint of analysis of the rate of release of the elastic energy G 
can be interpreted as the process of consecutive movement of the crack tip by the value A~ i = 
vAti, thus reducing the effective step of crack propagation. 

In this case, the rate of release of elastic energy during time AT during crack propaga- 

k 

tion by the value AL = E Ali is determined by the relationship 
i=I 

/IJ ' 
i = l  

The expression for this where gi d is the rate of release of elastic energy during time Atio 
rate in finite increments has the form 
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d 1 Q tis Ati 
gi , . ,  - Z 

li 

1 
{Fp}Td {u} -- AU -- AT = -A"L" X 

F T • ({ p}m { A u } - - A U - - A T ) ;  

(lO) 

AU = U(t i + At i) - U(ti); AT = T(t i + At i) - T(t i) are the increments of the strain energy 

and kinetic energy determined from Eq. (6); {Fp} m = ({Fp(t i + Ati)} + {Fp(ti)})/2 is the vec- 

tor of forces in the mean point of the interval At i determined by the volume surface and con- 
centrated forces; {Au} is the vector of increments of displacements of nodes of the entire 
solid during time At i. 

Another interpretation of the method of simulating crack propagation is also possible: 
use of the dependence (8) leads to a smooth reduction of the bonding forces to zero during 
time At and, consequently, to the absence of noncharacteristic high-frequency oscillations. 
This corresponds to crack propagation in a continuous medium. 

It should be mentioned that the method of simulating crack propagation, based on Eq. (8), 
has a number of special features. For example, in the case in which k = 1 (the most economi- 
cal variant from the viewpoint of calculation time), the bonding forces decrease to E* during 
period Az = Ato In this case, the position of the crack tip varies in jumps by the value AL 
and the crack growth v is linked unambiguously with the integration step At. The latter cir- 
cumstance imposes a strong restriction on the selection of the integration system of finite- 
element equations of motion and it is therefore necessary to use unconditionally stable but 
less accurate integration systems (for example, variant II [6]). A more accurate system 
(variant I [6]) can be used because the restrictions on the integration step At < AL/2c R (de 
termined by the stability of the system) and the crack growth rate v < c R (c R is the rate of 
propagation of surface Rayleigh waves) mutually exclude each other (Az > At). 

3.2. Equation (7) is nonlinear because, in the general case, the left and right parts 
are functions of the crack rate v. Opening of the nonlinearity of Eq. (7), i.e., determina- 
tion of the crack growth rate at which the energy balance is satisfied, should be carried 
out an iteration procedure based on the approximate analytical dependence [I0] 

6 ~ (~ '-' 6 (~ (1 - -  v/c~). 

We shall write Eq. (ii) for two similar crack growth rates: 

( l l )  

G ~ ( ~ ) / ( 1  - -  v / c ~ )  = G d ( v : + O / ( 1  - -  v:+dcR).  

Taking into account the fact that this equation also holds for the true CGR at which Eq. (7) 
is valid, the recurrent equation for the rate v can be written in the following form 

vi+l = CR (1 - -  p) + pv 1, p = 2?/6 d (Vj). (12)  

I t  s h o u l d  be m e n t i o n e d  t h a t  Eq. (11)  h o l d s  f o r  an i n f i n i t e  s o l i d  c h a r a c t e r i z e d  by t h e  
a b s e n c e  o f  r e f l e c t e d  waves .  For  r e a l  s t r u c t u r e s  w i t h  l i m i t e d  d i m e n s i o n s ,  t h e  form o f  t h e  
dependence  (11)  can d i f f e r .  Using t h i s  dependence  in  t h e  form Gd(v) = G(0) (1 - V/cR)M and 
a p p l y i n g  i d e n t i c a l  a s s u m p t i o n s ,  we o b t a i n  a r e c u r r e n t  e q u a t i o n  s i m i l a r  t o  Eq. (12)  where  p 
i s  r e p l a c e d  by pM V a r y i n g  t h e  e x p o n e n t  M, we can c o n t r o l  t h e  c o n v e r g e n c e  o f  t h e  i t e r a t i o n  
p r o c e s s .  

The iteration process is completed when [G d x (vj+1)/2 ~ - 1 1 5 ~, i.e., the crack growth 

rate v T = vj+1 at which the energy balance (7) is satisfied with the required accuracy is 

determined. The first approximation of the rate vl n in Eq. (12) in the n-th stage in respect 
of time is determined as follows: at the crack growth rate in the n - l-th stage vTn-z = 0 

the expression for vl n is determined from Mott's equation [8] 

v7 -- 0.38 ]/-E//gAL/L, 

and in the remaining case in the form 

n--2 
,~-1 (I + Ate~Ate_l ) - -v~  Ate~Ate_l, Ur~ ~-- Or 

i.e., by linear extrapolation of the crack growth rates from two preceding stages (At n is 
the period between the n- and n - l-th stages). 
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Fig. 2. Dependences of the normalized rate of release of 
elastic energy on the crack growth rate constructed by cal- 
culations using Eq. (7) - curve 7, and FEM - curves 1-6; 
1-4, 6) for variant II of integration at the value k of i, 
4, ii, 18, ii, respectively; 5) for variant I. (1-5 - one 
pair of finite elements was used in the jump, 6- three pairs 
of finite elements). 

It should be mentioned that the rate of release of elastic energy G d in Eqo (12) is de- 
termined from Eq. (9), i.e., the process of determination of the CGR is iteration in respect 
of the rate and includes several steps At i in each iteration. Thus, the procedure for deter- 
mining the CGR can be described as follows: from Eq. (12) we calculate the next approxima- 
tion of the crack growth rate vj and determine the value k from the condition fulfilling the 
quality 

k 

~, At~ ~ AL/vj. 

This is followed by solving the dynamic problems [6] taking into account the deduction of the 
elasticity modulus of the element of the crack tip using Eq. (8), and determine the param- 
eters of SSS of the structure and the rate of release of elastic energy Gd(vj) from Eq. (9), 

where the expression for gi d is represented in the form (i0). We verify the condition of 
completion of the iteration process. If this condition is not satisfied, the process is con- 
tinued, otherwise the crack tip is moved by the value AL and the procedure for determining 
the CGR is repeated. 

4. The algorithm of solving the dynamic of fracture mechanics can be represented as 
follows. 

I. In the current stage At n the solution of the dynamic elastoplastic problem up to 
the start of crack propagation or of the elastic problem after the start of crack propaga- 
tion. The algorithm described in [6] is used to take into account the fields of residual 
strains E ~ These fields make it possible to simulate the residual stresses and take into 
account their effect on the crack trajectory, the crack rate, the value of the SIF, and pos- 
sible contact of crack edges. It should be mentioned that in this approach the redistribu- 
tion of the stress fields during crack propagation is automatically taken into account. 

II. Improvement of the accuracy of the boundary conditions in the elements of the crack 
cavity by specifying the corresponding elasticity modulus E T (paragraph 2) in these elements. 

III. Calculation of the J-integral for a stationary crack using Eq. (2). Verification 
of the condition of the start of crack propagation using the criterion J-integral. if this 
condition is fulfilled, we transfer to paragraph V, otherwise to paragraph I. 

IV. Determination of the rate of the release of elastic energy G d using Eq. (9); veri- 
fication of the energy criterion (7). If this criterion is not fulfilled, it is necessary 
to correct the crack growth rate in a specific direction (paragraph 3.2)~ 

V. Calculation of hoop stresses o0e at the crack tip for three directions kl, k2, k3 
(Fig. i) and determination of the direction of crack propagation (paragraph 2.1) in which its 
tip moves by the value AL (paragraph 3.1). 
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Fig. 3. Variation of the crack growth rate in relation to the relative crack 
length. 

Fig. 4. Calculated (lines) and experimental [ii] (points) dependences of the 
dynamic stress intensity factor (i), crack length (2), and the crack propaga- 
tion rate (3) on time. (Kiq = 2.32 MPa'ml/=). 

VI. Transition to paragraph I. 

Numerical Calculations 

To verify the efficiency and determine the boundary of applicability of the proposed 
methods, calculations were carried out for several simulation problems of crack propagation 
which have approximate analytical solutions. Figure 2 shows the dependences of the normal- 
ized rate of release of elastic energy on the crack growth rate for the problem of movement 
of an infinite crack at a constant rate in a homogeneous field of tensile stresses [4]. Since 
in the examined problem the SSS in a moving coordinate system, connected with the crack tip, 
is stationary, the adequate numerical FEM solution can be obtained for a solid of limited 
dimension. The plate and crack length should be selected in such a manner as to ensure that 
the reflective stress waves have no effect during the examined time period. It is also neces- 
sary to take into account the fact that the stationary regime is reached during three of four 
crack jumps after start of its propagation. 

It is evident that the accuracy of the results is influenced by various factors, such as 
the integration method, the size of the integration step At, the number of finite elements in 
a jump, the number of time subintervals k into which the interval A~ is divided. Figure 2 
shows that, using variant II of integration [6] at k = I, 4, ii, 18, the difference of the 
calculated data from those obtained using the approximate analytical dependence (ii) was equal 
to, respectively, 0.19; 0.14; 0.08; 0.01 G(0) (v = CR). 

Thus, at k < i0, the error of the calculated system is large. In the problem of deter- 
mining the CGR this results in an unjustified increase of the crack growth rate, especially 
in the range of high values of this rate (v ~ CR). It should be mentioned that the integra- 
tion step At corresponding to k = ii and v = c R is equal to the duration of passage of an ex- 
pansion wave through the smallest finite element at the crack tip. The attempts to describe 
adequately the dependence Gd(v) using more accurate simulation of crack opening by increasing 
the number of finite elements in a jump did not improve this dependence greatly (curve 6 in 
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Fig. 5. Dependence of KID on crack growth rate v: (points 
are experimental data from [Ii], the curves indicate approxi- 
mation of the experimental data used in the calculations). 

Fig. 2). When using the integration variant I [6], the dependence G(v)d differs from the 
analytical dependence (ii) byless than 1% (curve 5). At the same time, it should be mentioned 
that as a result of a restriction placed on the integration step determined by the stability 
of the given variant, it is not efficient to use this step at v < c R because the number of 
steps At i rapidly increases (at v = c R k = 18, at v = CR/2 k = 36, etc.). 

Figure 3 shows the dependence of the CGR on the relative crack length for the start of 
propagation in the field of a constant tensile stress. It can be seen that the crack growth 
rate reaches an asymptote equal to cE when its tip travels the distance equal to approximately 
four initial crack lengths. The presence of the asymptote c R (for a normal separation crack), 
predicted theoretically in [7] is caused by the fact that the crack cannot propagate at rates 
higher than c R since the effective surface energy cannot be negative. 

Figure 4 shows the calculated FEM and experimental [ii] data obtained in loading a DCB 
specimen (321 • 127 • i0 mm; initial crack length 66 mm) with a wedge with an opening angle 
of 20 ~ The material have the following characteristics: Young's modulus E = 3380 MPa, Pois- 
son's coefficient D = 0.!3 [ii]_ The crack was initiated in blunt slits at different Vaiues 
of Kiq (1.08-2.32 MPa'ml/2). The iteration process of determining the CGR was carried out 

using the proposed procedure. The dependence of the effective surface energy on crack growth 
rate y = y(v) in the expression (7) is determined on the basis of experimental data on the 
dynamic fracture toughness: KID = KID(V) [ii] (Fig. 5). 

Figure 4 shows that the experimental and calculated result do not differ by more than 
10% in respect of rate v and 5% in respect of crack length L. The maximum difference is re- 
corded in the initial stage of crack propagation in which the experimental data are not com- 
pletely accurate because of procedure problems. The difference between the dynamic SIF, ob- 
tained using FEM, and the corresponding experimental values (Caustic method) does not exceed 
15% and decreases to 2% during crack propagation up to its arrest. After crack arrest the 
SIF oscillates with a decrease in amplitude around the certain value. The frequency of these 
oscillations is close to the frequency of inherent oscillations of the rod whose length is 
equal to the dimension of the specimen less the length of the arrested crack. 

Thus, the described method of calculating the parameters of the dynamic fracture me- 
chanics (SIF, G, v) with suitably integration step At makes it possib!e to apply the given 
procedure with high reliability and accuracy, with an allowance made for wave phenomena and 
redistribution of stress fields during crack propagation. 

CONCLUSIONS 

i. A method was developed of calculating the kinetics of supercritical crack growth 
which can be used to determine the rate of crack propagation and crack trajectory taking 
into account the fields of residual stresses and also possible contact of the crack edges. 

2. The numerical experiments to find the ranges of applicability of the described meth- 
ods of integration of the equations of motion. These equations can be used for calculations 
with minimum computing time and a relatively small error. 

3. Comparison of the calculated results obtained by the proposed method, with experi- 
mental data on the crack kinetics in a DCB (double cantilever)specimen made of Araldite'V 
epoxy resin indicates that they are in complete satisfactory agreement. 
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FORMAL ANALYSIS OF SUBCRITICAL CRACK GROWTH UNDER MONOTONIC LOADING 

S. I. Emel'yanov UDC 539.4 

The article analyzes the equation of energy balance in integral form which 
made it possible to formulate a number of considerations concerning the con- 
ditions of applicability of criterial characteristics used in fracture me- 
chanics, and to suggest a new criterion which, in the present author's opin- 
ion, characterizes more rigorously the conditions of failure of brittle mate- 
rials. 

We state the problem of analyzing the process of crack growth under monotonic loading, 
examining the phenomenon solely from the positions of mechanics, and touching upon the aspect 
of materials science to a minimal extent only. We assume that there is a crack 2s long in 
a plate with unbounded dimensions, made of isotropic material, having linear elasticity up 
to some stress level above which plastic deformations arise. 

To obtain relations characterizing the process of crack growth upon monotonic increase 
of the load, we use the equation of energy balance which takes into account the energy liber- 
ated upon an increase of crack length (or, conversely, expended on additional deformation in 
dependence on the loading conditions), and the energy expenditures connected with the in- 
crease of crack length. For that we adopt the following conditions: 

i. The intensity of the liberated energy with increasing crack length is determined by 
the stress intensity factor (SIF): 

aw = 6 ~  K~/E. ( 1 )  Ol 

Kiev. Translated from Problemy Prochnosti, No. 7, pp. 19-23, July, 1990. Original 
article submitted September 26, 1988. 
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