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ABSTRACT 

It is proposed to combine the scalar-tensor theory of 
gravitation with the hypothesis of 'spontaneously broken 
scale invariance', which has been developed in quantum 
field theory and seems to give a better understanding of 
the origin of the masses of elementary particles. The 
general theoretical background of this approach is re- 
viewed. In our model theory we predict that the Newton- 
ian gravitational potential acquires an anomalous part 
with a force-range typically of the order of 105 cm. 
The experimental consequences are also discussed. 

In this paper an attempt is made to bring the physics of 
gravitation somehow to a contact with the physics of elementary 
particles in such a way that we can make certain predictions which 
are tested by experiment, hopefully in the near future. We try to 
exploit the consequences of the hypothesis of 'spontaneously brok- 
en scale invariance' [I-3]�82 

By a spontaneous symmetry breaking we mean the following: sup- 
pose a Lagrangian has a symmetry, or is invariant under a certain 
transformation. Normally the solution of the Schrodinger equation 
obtained from this Lagrangian has a degeneracy which is a manifest- 
ation of the symmetry. There are, however, some exceptional cases 
in which this is simply not true; it appears as if the symmetry is 
broken in spite of the fact that the original Lagrangian still has 

t Presented at the Seventh International Conference on Gravita- 
tion and Relativity, June 1974, Tel-Aviv, Israel. 
�82 For spontaneously broken scale invariance, see [3] for example. 
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the symmetry. Detailed analysis shows that the symmetry breaking 
has been smuggled into the theory through the ground state, or the 
vacuum. The vacuum is infinitely degenerate. 

There are in fact many examples of this situation of spontaneous 
symmetry breaking. Perhaps the best known are the theory of ferro- 
magnetism and the theory of superconductivity. All the phenomena 
called phase transitions belong to the same category. There is one 
thing which is common to all of these phenomena: a long-range ex- 
citation or a massless boson should occur. Such a massless boson 
is now called a Nambu-Goldstone boson [4]. 

It was proposed that scale invariance might also be broken spon- 
taneously [5]. Scale invariance (dilatation symmetry) is obvious- 
ly broken in the real world due to the fact that there are element- 
ary particles with finite masses. One may, however, ask the ques- 
tion how and by what mechanism this important space-time symmetry 
is broken. 

There are two ways to break this symmetry. One is the explicit 
breaking; one introduces the mass term in the Lagrangian. Another 
intriguing way is the spontaneous breaking. To illustrate how 
the latter idea works, let us consider the simplified example of 
a Dirac particle-- the nucleon. We first assume that the nucleon 
is massless. We also introduce the Nambu-Goldstone boson field r 
In this particular case of dilatation symmetry, we may call it the 
'dilaton' field, which is a neutral massless scalar field. The 
Lagrangian is given by 

(i] 

where we have included the interaction. The coupling constant g 
is dimensionless. (We use the unit system in which c = ~ = I). 
No dimensional constant appears in the Lagrangian (i) so that scale 
invariance follows immediately. The energy-momentum tensor, suit- 
ably defined, is traceless. 

We now assume that the ~ field has a non-vanishing vacuum ~x- 
pectation value. This is a key recipe in all of the calculations 
of spontaneous symmetry breaking%. The new field a(x) is then de- 
fined by 

r  = v + c ( x ) .  (2) 

t One of the possible ways to bring about this non-vanishing vacu- 
um expectation value is to introduce a quartic interaction of the 

field as well as its negative squared mass. Scale invariance is 
thus broken explicitly. It is important, however, to notice that 
an almost infinitesimally small amount of the explicit breaking 
(characterized, for exaraple, by the mass ~l@-19mN, as suggested 
later) can easily trigger a spontaneous breaking which results in 
the much larger masses of the ordinary particles. 
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Notice that the vacuum expectation value v has the dimension of 
mass. We substitute (2) into (i) and find that there appears a 
term which has the same form as the nucleon mass term. In this 
way the nucleon mass, 
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m~ = g v ,  (S) 

has been generated spontaneously. Equations (2,3) are the basic 
relations in the theory of spontaneously broken scale invariance. 

Now the question is if the dilaton exists in reality. The di- 
laton may not be exactly massless because the whole scheme might 
be an approximation to some extent. Yet it must be much lighter 
than any other 'ordinary' particles in order that the approxima- 
tion is justified. So far no such light scalar meson has ever been 
discovered. This, however, may simply suggest that the coupling 
of the dilaton, if any, is very weak; perhaps much weaker than that 
of the ordinary weak interaction. An attractive possibility is that 
the interaction of the dilaton is as weak as the gravitational in- 
teraction. The question is now shifted to whether one can formu- 
late the consistent theory of gravitation to accommodate this scal- 
ar field. Here the scalar-tensor theory of gravitation gives a 
clue. 

In the version of Brans and Bloke [6] the gravitational part of 
t:he Lagrangian is given by 

g = ~ g ~ 2 s .  

T:he field ~(x) is assumed to be constant to a very good approxima- 
tion. The constant is obviously related to the Einstein or the 
Newtonian gravitational constant G, 

i 
~(x)  = ~ + ~ ( x ) ,  (4) 

where we have ignored some unimportant numerical coefficient. In 
the present unit system we have 

GmN 2 ~ 10 -38 �9 (5) 

Equation (4) is to be compared with equation (2). It seems 
rather surprising that this remarkable similarity between the two 
equations has never been fully appreciated. Schwinger noticed this 
point [7], but never tried to exploit the consequences. 

Perhaps the simplest assumption is to identify the dilaton field 
with the scalar gravitational field. We immediatelyobtainfrom (2,4) 

_I iol9mN ' v ~ G ~ ~ ( 6 )  
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where use has been made of (5). 
the result 
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Combining this with (3) yields 

-19 
9 ~ io , (7) 

which is indeed extremely small. 

The theory is not entirely the same as Brans and Dicke's theory. 
In particular we obtain the equation 

[]r = 0. (s) 

In Brans and Dicke's theory the right hand side is the trace of 
the energy-momentum tensor which now vanishes in the scale invari- 
ant theory. Although the D'Alembertian in (8) is a covariant one, 
equation (8] reduces to a free equation for $ in the limit of weak 
fields. Only in this limit we can make definite predictions sub- 
ject to the experimental tests. For this reason this simplest 
theory has virtually no testable consequences. 

As the next simplest theory we consider a two-scalar model in 
which another scalar field ~ is introduced. The basic Lagrangian 
is given by 

= r 

1 1 L = ~ f-2~#2R - ~ }2R + LM, 

I i i L', 

where f is a dimensionless constant which corresponds to Brans and 
Dicke's ~; 9 is a 'spinless nucleon'. The term L' describes the 
interaction among %, 9 and %, with the dimensionless coupling con- 
stants. The Langrangian does not contain any dimensional constant 
so that scale invariance still holds. As a generalization of equa- 
tion (2) we assume 

$(x )  = V 1 + a l ( X ) ,  @(x)  = V 9 + a 2 ( x ) ,  

with two vacuum expectation values v I and v 2. We can apply the 
standard technique to analyze the consequences. The result is sum- 
marized as follows: 

(i) General covariance and the weak principle of equivalence 
are maintained. The nucleon mass is generated spontane- 

ously; 

(ii) The static potential is calculated to be 

mkm2 ae-r/h ) ,  
7(r) = - G~ (i �9 (9) 

r 
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where G~ ~ s -2, just as expected. The coefficient a depends 
on some details of the model~ but is expected to be of the 
order of unity. The anomalous part comes from the scalar 
field. Roughly speaking, one of the two scalar fields ac- 
quires a non-vanishing mass ~; the range I is given by I = ~-!. 
The usual long-range part comes from the tensor field which 
remains massless. The same type of potential was also con- 
sidered byPechlaner and Sexl [8], on a different ground. The 
potential (9) is the same as that of 0'Hanlon [9], Acharya 
and Hogan [I0]; 

(iii) The mass ~ of the scalar field is also generated spontane- 
ously. An order of magnitude estimate results in 

2 GmN L- 10-38 2 
~ ~ m N , 

k ~ i019 -i i019 m N ~ x!O -!~cm = i05 cm = ! km. 

Although this estimate is extremely crude, it seems reason- 
able to expect that the force-range is of a macroscopic dis- 
tance; 

(iv) A careful study of the accuracy of the Cavendish experi- 
ment [11] and some of the geological and astronomical 

measurements gives two allowed regions of the value of the 
force-range? X: 

A ~< ! cm~ 

several m ~ I << 1 km; 

(v) In the famous tests of general relativity, the relevant 
distances are much larger than the expected value of A. 

The scalar part does not affect these tests unlike in Brans 
and Dicke's theory. 

As a final remark we emphasize that the proposed theory provides 
us with a better understanding of the origin of the masses of ele- 
mentary particles from the point of view of Hach's principle: the 
scalar field which embodies this principle through equation (4) is 

f See references [I] for details. The theoretical basis of refer- 
ences [2] which is presented here is somewhat different from that 
of references [I] although they share the same phenomenological 
predictions. The most important difference is that the vacuum ex- 
pectation value U is very large in references [2] (as in equation 
(6) in the present paper), while it was assumed to be of a hadronic 
size in reference [I]. There is now no reason why the present 
theory cannot be applied to the leptons as well. Also the Yukawa 
form for the anomalous term in the static potential is exact in 
references [2] while it is only approximate in references [I]. 
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responsible at the same time for creating the particle masses in 
accordance with equations (2,3). 
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