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Abstract  

The electromagnetic field of a general stationary source, occurring in the vicinity of a rotat- 
ing (Kerr) black hole, is obtained by solving the Maxwell and Teukolsky equations. The field 
is expressed both outside and inside the radius at which the source is located. As examples 
the fields of point charges, charged tings, current loops, and magnetic dipoles not necessarily 
located in axisymmetric positions are calculated. The electromagnetic field occurring when a 
Kerr black hole is placed in an originally uniform magnetic field is derived without assuming 
the alignment of the direction of the magnetic field and the axis of symmetry of the black 
hole. 

w Introduction 

The purpose  o f  this  paper  is to  s tudy  s ta t ionary  e lec t romagnet ic  fields on  

Kerr background :  a l though  we fully take in to  account  the  inf luence o f  the  Kerr  

geomet ry  on e lec t romagnet ic  fields, we neglect  the  inf luence o f  these  fields on 
the  geometry .  

1We have recently learned that A. King from the University of Hamburg has independently 
found the vacuum solutions given in Section 2 of the present paper. His work will be pub- 
fished in Mathematics Proceedings o f  the Cambridge Philosophical Society. In another 
paper (to be published in Lettere al Nuovo Cimento) he gives the fields of a stationary 
point charge and a stationary magnetic monopole. 
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In the first paper of this series [1 ],  general stationary electromagnetic fields 
around a Schwarzschild black hole were constructed and the fields of some spe- 
cial sources were explicitly given.2 As indicated in Ref. 1 the assumption of sta- 
tionarity may be a good approximation in realistic situations provided the 
sources are not located too close (in proper distance) to the event horizon so 
that the force pulling a stationary source into the hole does not grow to infinity. 
The fields of stationary currents possibly arising in accretion disks around black 
holes or, asymptotically uniform (interstellar, intergalactic) magnetic fields, in 
the vicinity of a black hole (distorted by curved geometry) may serve as ex- 
amples of astrophysically plausible strictly stationary fields. The magnetic field 
of a current loop in the equatorial plane of a Schwarzschild black hole was ob- 
tained by Petterson [2] ; also fields of other types of stationary current loops in 
the Schwarzschild geometry were constructed in Ref. 1 (using the Newman- 
Penrose formalism). Here, we generalize most of the results given in Ref. 1 to 
the Kerr geometry. 

The solution for the electromagnetic field occurring when a rotating black 
hole is placed in an originally uniform magnetic field aligned along the symmetry 
axis of the hole was recently derived by Wald [3]. We will give such a solution 
without assuming the alignment of the field along the axis of symmetry. 

The only further solution known for a stationary electromagnetic field on 
the Kerr background was found by Cohen et al. [4] ; it describes the field of a 
point charge at rest on the hole's axis of symmetry. Solutions corresponding to 
point charges will also be constructed here without assuming axial symmetry. 
All the special solutions mentioned above follow from our procedure of finding 
the electromagnetic field of a general stationary source occurring in Kerr space- 
time outside the event horizon. 

In Section 2 the Maxwell equations and the Teukolsky equations [5] for 
electromagnetic perturbations are written down and their general stationary 
vacuum solutions are obtained. Special source terms describing point charges, 
current loops, and magnetic dipoles in various positions are constructed in Sec- 
tion 3. The procedure of finding the fields of general stationary sources is de- 
scribed in Section 4; here also the explicit forms of the fields of the special 
sources (considered in Section 3) are presented. In Section 5 the results are re- 
formulated for the case of an extreme Kerr black hole. The solution for the 
field, generated by placing a rotating black hole in an originally uniform mag- 
netic field, is given in Section 6. A few concluding remarks are added in 
Section 7. 

2 Both the motivations and calculations are described in greater detail in [1 ] than in the 
present paper. The manner of solving the field equations is, however, somewhat different 
here (even in performing the limit to the Schwarzschild hole). Furthermore, certain points, 
e.g., the classification of fields into purely "electric" and purely "magnetic," are typical 
only for the nonrotating case. 
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w General Stat ionary Vacuum Fields 

We start with the general form of the Maxwell equations in the Newman- 
Penrose (NP) formalism [1,5] .  Following Teukolsky [5], we choose the null 
tetrad in such a manner that its components in the Boyer-Lindquist coordinate 
system { t, r, 0, ~0} read 

1 
l v = [(r 2 + a2)/&, 1, O, a/zX l,  n u = ~-~ [r ~ + a 2 , - A, O, al 

1 
mU = ~ (r + ia cos 0) [ia sin 0,0,  1,//sin 0], (2.1) 

where A = r 2 - 2Mr  + a 2 , ~_, = r 2 + a z cos 2 0, M is the mass of the hole, and the 
constant a (~<M) (the angular momentum per unit mass of the hole) is (without 
any loss of generality) assumed to be nonnegative. With this choice of the tetrad, 
the spin coefficients and the NP differential operators are given in Ref. 5. We 
substitute them into the general NP form of the Maxwell equations. Instead of 
the usual NP electromagnetic field components, 

~bo = Fur lUm v, cbl = �89 v + mUmV),  602 = FuvNUn v (2.2) 

(Fuv denoting the conventional electromagnetic field tensor, m u the complex 
conjugate of mU), we shall use the quantities 

~o = ~o,  ~1 - (r - ia cos O) = ( r -  ia cos 0) 2 
(r+- r_)= q51' ~2 = (r+- r_) 2 q52 (2.3) 

where r+ = M + (M 2 - a2) 1/2 are the coordinate radii of the outer and inner 
horizon, respectively. Putting all time derivatives equal to zero, we arrive at the 
Maxwell equations in the form 

X/2-(r+-r_) 2 a +-~a a ~ l - ( r - i a c o s . O )  ~--~+cotO ss ~o 

+ ia sin 0 ~o = X / 2  (r - ia cos 0) 2 27r J/ (2.4) 

( b  + i ~ ) ~ a + ( r _ i a c o s O ) ( _ ~  r a ) A ~  ~ 
(r+- sin o ix 

- ZX~o = x / 2  (r - ia cos O) Z 27rJ m (2.5) 

i a ~1 - ( r -  ia cos 0) ~rr + -- ~2 + ~2 
sin 0 A 

( r -  ia cos 0) 2 
= -x /~ -  ~2-~-)3-  27rJ~-(2.6)  
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(3  a ~ 0 ) ( 3 - ~  i ~ _ . 2  1_~ ~r ~ '  + (r-  ia cos 0) + cot 0 + 
A sin 0 aC] A 

ia sin 0 ~ 2  = - x / ~  ~ (r  - ia cos 0) 27rJ n (2.7) 
A A (r+ - r_) 2 

Here, the source terms are given by J1 = lu(Ju + i ~1~), Jm = mu(i ~ + i ~ u), etc., 
with] ~ being the four current, and ~ ~ the "magnetic" four current (formed 
from "magnetic charges" similarly as l# is from electric charges); $ ~' will be 
used for constructing magnetic dipoles. In equations (2.4)-(2.7), different r 
are combined in each equation, however, Teukolsky [5] found decoupled equa- 
tions of the second order for q%, q% ; moreover, he showed these equations to 
be completely separable in terms of "spin weighted spheroidal harmonics." In 
stationary cases the angular parts are given by the NP spin-weighted spherical 
harmonics sYzm (see [6] for details on sYtm), so that we first expand the q~s in 
terms of sYlm s with the appropriate spin weights, 

~o = ~_, ~ (r) 1Ylm (0,9) (2.8) 
t,m 

~P2 = ~ 2Rlm (r) _lYlm (0, ~0) (2.9) 
l ,  m 

(N1,rn is an abbreviation for s ~/=-/) .  From the Teukolsky equation for q52 
we obtain (using the orthonormality of _lY/m s) the following equation for the 
radial part ZRtm: 

(r2 - 2Mr+a2) d2(2Rtm)dr ~ + L[a2m2-r 2 2Mr2iam(r- a 2 - I(I+ 1)] 2Rim 

Here the source term is given by 

f 2 ~  fTr (r-  iacosO)2 
=.~ o -, o (r+- r_) = 

= - 47r 2Ylm (2.10) 

Z J2 _lYlm sinOdOdr (2.11) 

where J2 (r, 0, ~) is the combination of the NP components of the four current 
and their derivatives: 

-A [ , q~ - ( ;  a ~ 1 O) J2 = 2V~ ~ ( r -  ia cos 0) 2 A ~ ~ r -  ia cos (r - ia cos 0) 2 J~ 

(a~ sini0~v0 +r_iasinO ) i a c o s  ~(r-iacosO)A Jn] +2 (2.12) 

[We do not write the analogous equation for ~o (and Jo) because it will not be 
needed; ~o, and also ~1 (for ~1 no separable equation exists) will be found 
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from the original system of Maxwell equations (2.4)-(2.7).] Equation (2.10) is 
of the Fuchsian type and can thus be solved by means of hypergeometric func- 
tions. Assuming the source term to be equal to zero, we obtain the standard 
form of the hypergeemetfic equation for function 2ytm (x) which is given by 
the substitution 

2Rlm(X)= (1-1)-iZm 2Ytm(X) 

where 
r -  r_ am 

x - , Z m - (2.13) 
I % -  r_ /'+- r_ 

are dimensionless. Two linearly independent solutions of the hypergeometric 
equation, 

x ( x -  1) 2yt'm - 2 i Z  m 2y~r n - l ( l+  1)2y tm =0 (2.14) 

can conveniently be chosen as 

2 . ( I )  (1 1) 2iZm 
.vim = - x ( x -  1)F(I+ 2, 1 - 1 ,2-  2 i Z m ; x ) ,  (2.15) 

2...Vlm(II) = (_x )_ lF( l  ' l + 1 - 2 i Z  m , 2 l  + 2; x -1) (2.16) 

In the following, we need the derivatives of these solutions. Standard formulas 
for the differentiation of the hypergeometric function (see, e.g., Ref. 7) lead to 
the following results: 

d i2,(I)1 -(1 2 i Z m )  F ( I +  1 , - l ,  1 2 i Z m ; x  ) - ~ X  t Y l m  ] = - - 

d2 [2.(I)1 (1 ~) 2iZm 
dx 2 t ylrnl = 2iZm(2iZm - 1)  - [x(x - 1)]  -a 

�9 F ( l , - l -  1 , - 2 i Z m ; x  ) fo rZ  m ~ 0  

= / ( /+  1)F(/+ 2, 1 - l, 2 ;x)  fo rZ  m = 0  

d r2 . , ( i i )  1 
dx t . r lm I = l ( - x ) - l - a F ( l  + 1 l+ 1 - 2 i Z  m 2 / + 2 ; x  -1) 

d2 r2,,(II)l 
dx 2 t.Vtrn I = l ( l +  l ) ( - x ) - l - 2 F ( l +  2, I+ l -  2 i Z m , 2 l +  2 ; x  -1) (2.17) 

In order to determine Ol~lm outside a source, we turn to the Maxwell equa- 
tions (2.4)-(2.7) with all source terms equal to zero. First operate with 

sin 0 
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on Eq. (2.4), then with 

+-s 

on Eq. (2.6). Comparing the results obtained, inserting the expansions (2.8) and 
(2.9), and employing the properties of sYlm, we can express ~ in terms of 
2Rlm . 

~ 2(r*-r-)2 (d+7) (d+7) =Rlm 
= i (1u 1) (2.18) 

Putting [similarly to (2.13)] 

relation (2.18) simplifies to 

2 d 2 
Oylm = l( l  ar 1) dX 2 [ ~ l m ]  (2.20) 

so that o ,(I),([[) and 0oO),OI) can easily be obtained from = ,(I),O[) by using ..Vlm l~.lm ,.Vim 
(2.17). 

In this way we found ~2 and ~o- The calculation of ~1 is slightly more 
complicated. Owing to axial symmetry we may write 

= - e imp~ ~lm(X, O) (2.21) 
m = - o o  

Insert this expansion and the expansion (2.8) for ~o into (2.4) (with Jl = O). Re- 
garding (2.19) and the orthogonality of e imp~ we can use (2.4) to express q~lm 
as the integral (over x) of the terms containing ~ (x) plus an arbitrary function 
of 0. Taking into account (2.20) and integrating by parts we finally arrive at 

g/,,= _X~_ z~ [l(l+1)1-1 1-  [l(1+1)11/2 
(r+- r_) t,m 

[(,-iacosO)~x(%m)-("+-"-) (%m)] oY.. (0,~o) 

-iasinO--~(2Ylm) lYlm(0,~.) + k fro( O) eim~ - 
m = - o o  

(2.22) 



STATIONARY ELECTROMAGNETIC FIELDS AROUND BLACK HOLES 9 6 5  

with fro(O) arbitrary, To determine frnS we insert (2.22) and (2.8) [regarding 
(2.19)] into (2.5) (in which Jm = 0). Using the properties of  sYlm, expressing 
Oylm in terms of 2ylm by (2.20), and calculating the terms 

- -  - -  2 

dx (x- 1)dx 2 (Y~m 

by differentiating (2.14), we find out that (2.5) implies 

[~-0 m-] s ~ 0  fro(0) = 0. 

Similarly, substituting (2.22) into (2.6) (in which J ~  = 0), we arrive at the 
condition 

so that 

fm(O) = C6mo (2.23) 

with C constant. It can now be shown that the last equat ion-(2.7)  with.In = O- 
is satisfied identically. 

In order to select physically appropriate solutions we have to investigate 
their asymptotic behavior at infinity and at the horizon. By using standard 
asymptotic formulas for hypergeometric functions [7] we find that (2.13) 
with (2.15), (2.16), arid (2.19) with (2.20) and (2.17), imply 2o(I) ~ x t+l * "lm 
OR I) ~ x l - 1 , 2 0 0  I) oo ( I I )  ~ v -1-2 Im "'tin ~ X-t' and "'Ira ~ at x -+ oo. Thus only the solu- 
tions R (II) are well-behaved at infinity. Near the horizon (r -+r+, or x -+ 1) we 

iZ m 00(I )  get 2o(I) ~ ( x -  1) [1 - ( l /x)]  ~ ( x  - 1) -~ [1 - (l/x)] izm fo rZ  m :~0, " ' l m  ' " ' l m  
0 (I) 0/~(II) and ~lm ~ const for Z m = 0; further, 2~ ~ const, ..ira ~ (x - 1) -1 [1 - 

l /x)]  iZm. The conditions on R physically required at the horizon, are [5] 
2R < (const) (x - 1), OR <~ (const) A -1, so that only R (I) are admissible at the 
horizon. Finally, substituting 2y/m i n t o  (2.22), we can write 

~1  = Z ~)l lm (r, O, ~0) + c o n s t ,  
l, m 

~(I) (obtained from 2, (I)a and make sure that Chum Jlm) are admissible at the horizon, 
while 7n(II) (obtained from 2,,(IO~ ~llm rim j are admissible at infinity. 

We summarize the results of  this section by giving the original NP compo- 
nents (2.2) of  the electromagnetic field of  a source located between ri and r2, 
with r+ < rl < r2 < oo. In the region r+ ~< r < r~ the field reads as follows 

(1 ~ )  - ~ m  ~ Cbo = ~ a l m 2 [ l ( l +  1 ) ] - 1  _ r2. (I)1 1Y/m 
l ,m  d x  2 t .Vim] 
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(I)l = (~--/~COS ~ Z alm[l(l+ 1)1 -1 - 
l, m 

�9 [l(l+ 1)1 1/2 (r- iacosO)-~X,Ytm 1- (r+- r_)2yt 

d t2 ,(I)~ } Ea 
- iasinO - ~ y l m )  1Ytm. +(r- iacosO) 2 

(r+-r-) 2 ( 1 )  -izm 
- 2, (1) _ l y / m  (b2 (r-_iac-os-O-)2 Z alm 1- Ylm 

l, m 

while for r > r2, 

( 1 1 )  -iZmd2 
~o = ~ blm2[l(l+ 1)] -1 - r2 ,(II)1 1y/r n 

1, m d x  2 t ylrn J 

(l l zo *'-(-~--i~cos-~ Z blm [l(l + 1)1 -1 - 
l ,m  

oYtm (2.24) 

[( d f2. (II)-~ 2,,(II)] �9 [l(t+l)] 1]2 r-iacosO)~x~ylm )-(r+-r_) Y l m J  oYlm 

d - 2  (II).~ } Eb 
- iasinO ~xtYtm ) l Y l m  +(r_iacosO) 2 

(r+-r-) 2 (l 1) -izm 
(r - ~a ~os ~)2 E blm - 2,ylm(lI) -1 glm 

l, m 

Here, x and Zm are given by (2.13), 2yt~'(IO and their derivatives by (2.15)- 
(2.17)�9 The constants arm, btm, Ea, Eb are to be determined by the particular 
character of a source. Several concrete sources will be studied in the following 
section; the corresponding fields are constructed in Section 4. 

(2.25) 

w The Sources: Point Charges, Charged Rings, Current Loops, 
and Magnetic Dipoles 

In order to describe the sources from the point of view of local observers, 
we first introduce two sets of local proper reference frames [9]. 

(i) Local static frames (LSFs) which are at rest with respect to static ob- 
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servers at infinity and have orthonormal axes directed along the coordinate 
lines r, 0, ~o. 

(ii) Locally nonrotating frames (LNRFs-see ,  e.g., Refs. 8 and 9), which are 
orbiting around the black hole with r, 0 fixed, and 

d~ 2Mar 

dt  ~ ' 

(~= (I" 2 + a2) 2 - Aa 2 sin 2 0 

(3.1) 

The time-like axes of  the LNRFs are perpendicular to the hypersurfaces t = 
const, and two of the space-like axes are chosen along the coordinate lines r, O. 
At a given point, ro, 0o, and ~Oo, the transformation between the coordinates G 0 
of  the LSF and the Boyer-Lindquist coordinates is given by 

d~ 6 = [~o (Zo - 2Mro)] -1/u [(~o - 2Mro) dr + 2Maro sin s 0o dq] 

d~ ~ = (~o/Ao) 1/2 dr 

d~ ~ = (Zo) 112 dO 

d~ ~ = [Ao Eo/(Eo - 2Mro)] 1/2 sin 0o d~o 

(3.2) 

where ~o  = r~ + a 2 cos 2 0o, 2% = r~ - 2Mro + a 2. The transformation between 
the coordinates 7/~ of  the LNRF and the Boyer-lAndquist coordinates reads 

d~/6 = (Ao ~o/(~o) x/2 dt  

dn i = (Xo/Ao) 1/~ dr 

a~ ~ = (Zo) m ao (3.3) 

dr? ~ = (~o/F,o) 112 sin 0o [ d ~ -  (2Maro/ffo) dr] 

with (~0 = (to 2 + a2) 2 - Aoa 2 sin 2 00. Neither LSF, nor LNRF is a local inertial 
frame. However, at a given point ro,  00, and ~00 we can momentari ly choose an 
inertial frame, the origin of  which is at rest at ro, 00, and ~00 and its axes co- 
incide with the axes of  the LSF (though the ones are rotating with respect to the 
others), so that the components of  the four current o f  a source located at the 
common origin of  the systems are the same in both systems. Similarly, another 
locally inertial frame can be chosen in which the four current has components 
equal to the ones measured in the LNRF at the point in question. (Owing to the 
superluminal velocity of  static frames inside the ergosphere, LSFs have no good 
physical meaning there but LNRFs are physically meaningful for every r > I+.) 
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The contravariant components of  four currents transform according to 

= 3 x  ~' i v  

.~ Or~___~ ~ 
]LNRF = DX v ]v 

~ . S F  = OX---~ 

Or/___~ ~ ~v 
LNRF = OX v 

(3.4) 

To construct the source terms we need the equation of  continuity, 

1 
J";~' = (_g)m Ox ~, (_g)l/2j~) = 0 (3.5) 

where ( - g ) m  = ~ sin 0. (The same equation holds for ~1 ".)  The total charge con- 
rained in volume V is given by 

e = j v  (_g)mjo  dr dO d~o (3.6) 

(Since we assume that there are no magnetic monopoles, f v ( - g ) l !  2 ~o dr dO d~ = 
0.) Note that the vanishing of  the charge density in the LNRFs,fi.NRF = 0, im- 
plies jo = 0, so that the total charge is zero. 

The covariant components of  the null tetrad vectors are immediately ob- 
tained from (2.1) and then, knowing/~ and ~u, the quantities J1 = 1,(/~ + i~u) ,  
Jm = mu (/~ + i ~ ) ,  etc., can be calculated. In order to find the field outside the 
source, we only need to know the source term in equation (2.10), i.e., 2Jim, 
which is given in terms of  J ~  and Jn by (2.11) and (2.12). The explicit forms of 
J ~  and Jn read as follows: 

J ~  = mtz(J # + i ~l ~) = [x/~ (r - ia cos 0)] -* [- ia sin 0 ( jo + i ~o) 

_ ~ ( j 2  + i ~ 2 ) + i ( r 2  +a2) sin 0 (/3 + i~a)] 
(3.7) 

Jn = nu (JU + i ~II u) = 1 [(A/E) (j0 + i~liO) + j l  + i ~1 

- (aA/Z)s in  2 0 (j3 + /ha ) ]  

Now we find the source t e rms  2J/m for some special types of  sources. 
a. A Point Charge. The four current corresponding to a point charge e at 

rest at ro, 0o, and ~oo is given by/ '~  = e (Zo sin 0o)-18 (r - ro)8 (0 - 0o)8 (~ - ~0o), 
j i = j 2 = j 3 = 0. This leads-via J~ ,  Jn, and J2 - to  

2Jlr n = eA[2x/2-(r+ - r_)2(r o + ia cos 0o)] -l(ia sin 0o _lYtrn (0o, ~Oo)81(r - ro) 

+ ( (a2m/Ao)  sin 00 _l~m(OO, ~o) - [ l ( I+ 1)] a/20Ylm(Oo,~o)}8( r _ ro)) 

(3.8) 
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b. A Static Charged Axial  Ring. Consider a thin ring composed of  charges 
at rest, distributed symmetrically around the axis 0 = 0, 7r at r = ro. If  the total 
charge of  the ring is e, then 

/o = e(21r~o sin 0o)-~8 (r - ro)8(O - 0o), /~ =/.z =/.3 = 0 ,  

and 

2Jim = e A ~ m o  [2'V~ (r+ - r_ )2(ro + ia cos 0o)] -1 { ia sin 0o 

�9 - ~ o  (0o, O) 6 ' ( r  - r ~ - [1(l + 1)] x/2 oYto (0o, 0)5 (r - ro)} (3.9) 

c. A n  Axia l  Current Loop�9 Further, consider a thin current loop, symmet- 
ric around the axis 0 = 0, rr, with a total zero charge�9 The four current o f  such a 
source is given by/-o =/.1 =/.2 = 0,/.3 = C6 (r - ro)6 (0 - 0o), where C is a 
constant. 

Let us first focus on an infinitesimal current loop. Both the current and the 
magnetic dipole moment  associated with such a loop can be expressed in the 
LSF located on the axis of  symmetry.  (Here the LSF coincides with the LNRF.) 
Regarding (3.2) with ~o ~ 0 and with the azimuthal coordinate ~ replaced by ~', 
such that d~" = sin 0 d~p, we obtain 

- /LFS = 0, J~vs = d~" / 

= C2~/~ sin Oo ~i (~i _ ~ i )~  ( ~  _ ~ )  d~ ~ d~ ~ ~ 

= '/2 S o  s in  0o 8 - - 

Therefore, the total current as measured in the LSF is equal to 5 = C ( ~ o /  
Ao) 1/2 ~o sin 0o. Since the area of  the loop is given by S = 7r (ro 2 + a 2) sin 2 0o, 
the magnetic dipole moment  of  the loop can be expressed as ~ = 5" S = 
CTr sin 3 0o~o  1/2 (r~ + a2) s/2 , which conversely yields Cin  terms of  ~. (In all 
these calculations we neglect the terms of  higher order in sin 0o.) The procedure 
described above leads to the source term 

AA Io 12(ro - ia) 2 1# -- 
2Jtm = 2 V ~  (r+ - r_)2(r~ + a2) s/: 5rno [t(l  + l)] oY/o ((3, 0) 

�9 [i(ro + i a )~ ' ( r  - ro)  + i~ ( r -  ro)] (3.10)  

[In taking the limit 00 ~ 0, we used the relation 

lim 1Y/o (0o, 0)/sin 0o : 1 [l(1 + 1)] 1/2 oY1o (0, 0).] 
0 o -+0 
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Next consider a current loop lying in the equatorial plane around the hole 
(r = ro > r+, 0 = 7r/2). The loop may be located inside the ergosphere, therefore, 
we will interpret constant C in terms of the total current 5 measured in the 
LNRFs. Since we will also study the thin ring of charges rotating around the 
black hole in the equatorial plane, we assume that in general the charge e of the 
loop is nonzero. Thus, in Boyer-Lindquist coordinates, 

]o = (e/2~r~o)5 ( r -  ro)6 (0 - ~/2), ]1 =]2 = O, and js = C5 ( r -  ro)6 (0 - 1r/2). 

The transformation (3.3) leads to 

]~LNaF = (~O/N0) 1/2 [C- Maroe/rr~,o ~o] 5 ( r -  ro)~ (0 - lr/2) 

= (~olAo)mro [C- Maehrro ~o1 6 (r/~ - r/~)6 07 ~ - 11~). 

Since 

= 

we obtain 

C = r~l[(Maehrt~o) + J(Ao/ffo)m] �9 

Taking into account the component ]3 only, we arrive at the source term in the 
form 

A6m~ [(Mae/~o) + zr ~(Ao[ (~o) lp ] 
- ( r . -  r _ )  2 

" [i(r~ + a2) - l~o @, O) 6'(r- ro) 

(3.11) 

If the loop does not carry a net charge (purely current loop), then (3.11) with 
e = 0 represents the final form of the source term. For e r 0 the total source 
term is given by the sum of (3.11) and (3.9) (with 0o = 1r/2) [(3.9) correspond- 
ing to ]o ].  

Finally, consider a ring of charges rotating in the equatorial plane around 
the black hole with an angular velocity d~o/dt = ~2. Owing to axial symmetry this 
system will not radiate, in spite of the motion of the individual charges. Each 
charge moves with respect to the LNRFs (located at the same r = r0) with the 
velocity v = d~7 ~ /d~? ~ = ro 2 A~ 112 ( ~to~2 - 2Maro). By focusing on a fixed (but 
arbitrary) event and, together with the LNRF at this event, also considering the 
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proper reference frame in which a linear element of charges is at rest, we can 
easily calculate the four current in the LNRF. In this way we find that the total 
current J ,  the linear density of charge p, and the velocity v (all quantities being 
measured in the LNRF) are related by 

~= pv = vero/27rl~/2 (3.12) 

Thus, the source term corresponding to the rotating charged ring is given by the 
sum of (3.9) and (3.11) in which J is expressed by means of (3.12). 

d. An Elementary Magnetic Dipole. It is of interest to compare the results 
for a small current loop around the axis of symmetry with those obtained for a 
corresponding elementary magnetic dipole. But we shall also study more general 
types of elementary magnetic dipoles. 

First consider a "radial" magnetic dipole occurring at rest at ro, 0o, and ~Oo. 
Such a source can be described by the "magnetic four current" with the com- 
ponents ~[SF = ~[SF = ~.SF = 0 and ~ S F  = - ~ 6'(~ 1 - ~)6 ( ~ -  ~5o) 6 (~5 _ 
~o3), where ~ is the magnitude of the dipole moment. (For ~ positive, the dipole 
is pointing radially outwards.) In Boyer-Lindquist coordinates we find ~1 = 

2 = ~3 = 0, ~~ = _ N (&o/2;o)1/2 [(r2 + a 2 cos 2 0) sin 0 o] -16'(r - ro)6 (0 - 
00)6 (~o- r (Note that, indeed,fv ~o (_g)V2 dr dO d~o = 0- the  total magnetic 
"charge" vanishes.) After some calculations (using the well-known properties of 
sYlm) we arrive at the source term in the form 

~IA(~~176 [6"(r - ~ ( r -  ro)_ .] 
2J/m = 2N/~ ( r ~ _ - - ~ - ~ a  cos 0o) (a rO)+ro +iacosOoJ 

�9 sin Oo _lY/m (0o, ~o) + i [6'(r - ro) + 6 (r - ro) ] 
L ro + ia cos 0oJ 

" [ l( l+ 1)] 1/2 0~/r n (00, tp0)- m(ia21Ao) {6 ' ( r -  to) 

+ [2(ro - M) Ao 1 + (ro + ia cos 00) -1 ] 6 ( r -  ro)} 

�9 sin 0o _lY/m (0 0, hg0)) (3.13) 

If 0o = 0, this expression goes over to (3.10) so that the equivalence of a small 
current loop and an elementary magnetic dipole is established�9 (This equivalence 
could not have been proved so easily had we started from an equation other 
than that for (b2-see Ref. 1 for the Schwarzschild case.) 

Second, consider an elementary magnetic dipole located in the equatorial 
plane and oriented perpendicularly to this plane. This source is described by 
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 tsr = - ~LSF LSF = ~ltLsF = 0. It fol- 
lows that ~II ~ = ~liZol/2(~ sin 0)-IS(r - ro)8'(O - 7r/2)8(~0- ~Oo)and ~It I = ~I 2 = ~3 = 
0. The calculations then yield 

2Jim rn + iar~ 2': - [ I ( l + 1 ) 1 1 / 2  

�9 o Y l m ( - ~ , : o ) ] 8 ' ( r - r o ) + i { t l ( l + l ) - l - r n a ~ A ~  1 

(m + iar?~)] - ,~,n (-~ o) �9 ,~ + (ma:A~ ~ +iar~ ~ - m) 

�9 [l(l+l)]~/Zo-Ylm(-~,tpo)} 8(r-ro))  (3�9 

In Ref. 1 we also considered more complicated sources and found their fields�9 
Since, however, the procedure is clear in principle and the calculations become 
rather involved in the Kerr case we will not construct any other source ex- 
plicitly here. 

w The Fields of  Given Sources 

For all sources studied in the preceding section, in fact for all physically real- 
istic stationary sources outside a Kerr black hole, rl and r2 (r+ < rl < r2 < oo) 
between which the sources are located, exist. The field outside this region 
is given by (2�9 and (2.25), in which the constant coefficients air n and blm, as 
yet undetermined, follow from solving the inhomogeneous equation (2.10). The 
present section is devoted to the procedure of calculating these coefficients and 
constants E a, E b in the case of a general source and, in particular, it gives the re- 
suiting fields of the sources considered in the preceding section. 

2o(I) ~,~a 2o(ID given by (2.13) with 2ylr n substituted Since the functions "~'lm . . . . . .  Im , 

from (2.15) and (2.16), represent the fundamental system of the homogeneous 
equation corresponding to (2.10), the solution of the full inhomogeneous equa- 
tion (2.10) reads [10] 

2 2 ( H )  
_ 2R{l)(x]  f .  47~ 2Jlrn(~)  ' R l m  (~)  d ~" 

2 2 (I) 
. . . . .  P 41r Jtm (~) 'Rtm (~) 

- " R ~ ' ( x ) J ~ i e - - l ~ ( ~ y ~ ( T  ~ ~ d ~  (4.I) 

where W ~20(0 2~(II) ~) is the Wronskian of 2R(O 2R(II) at the point ~. k '~Hm ' "~Irn , Ira, " ' Ira  
S i n c e  2Jim = 0 outside the region (x l  = ( r l  - r_)/(r+ - r_) and x2 = 
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(r2 - r_)/(r+ - r_)), we may integrate from x2 + e to x in the first integral 
in (4.1), and from xl - e to x in the second integral, with e being an arbitrary 
positive constant which only indicates that xl and x2 are to be included into 
the integration. It is then easily seen that the boundary conditions required at 
infinity and at the horizon are satisfied by (4.1), and that the addition of any 
nontrivial linear combination of fundamental solutions would spoil the boundary 
conditions. Comparing (4.1) with (2.24) and (2.25) [and regarding (2.3), (2.9), 
(2.13)], we obtain 

2 2 (II) 

f; =+e Jlm (~) R l m  (~) 
aim = - 47r f ~-~ra7-~o-U3-- go-U-I) d~ 

,-e ~(~ *:"',*'Im' "'tin '~) 
2o(I) 

f] :~+e 2J/m (~) "~'lm (~) 
btr n = -  4rr ~ w : o ( i )  2o(n ) d~ 

-e ~(~- .,,,t..irn, *'lm ' 
~) 

Now it can be shown that the Wronskian is a constant, the value of which can be 
determined at x ~ oo. The asymptotic behavior of 2p(I) and 2o(II) implies that "'Ira *' lm 

9{2/?(1) 2p(II) 
t * ' lm,  *'lrn , ~) = 

(21+ 1 ) !P(2 -  2iZm) 

(l+ 1)!P( /+ 1 - 2iZm)" 

Thus, in their final form the coefficients aim and blm read as 

2o (Ix) (~) 
(l+ l ) ! P ( l +  1 - 2iZm) f x , + e  2jr m (~) ~'lm 

aim = - 47f -(2l -+ i )  ~. ~ 2  - 2i--~)m) a x~-e ~ (~ - 1) d~ (4.2a) 

(l+ 1)!P(I+ 1 - 2iZm) fx~+e ~Jtm (~) :R}In} (~) 
btm = - 4 ~  -(2l + i ~ - ( 2 _ _ - 2 ~  J x _ e ~ (~-  -~ d~ (4.2b) 

In Appendix A, the Gauss theorem is employed in order to show that 

E a = O, E b = �89 

where e is the total charge of a source bounded by rl and r2. [If also the black 
hole carries a small net charge Q, then E a = �89 Q, Eb = �89 (e + Q).] 

Finally, we give the resultant coefficients aim and btm for the sources dis- 
cussed in the preceding section. With these coefficients known, the fields are de- 
termined uniquely by (2.24) and (2.25). It is convenient first to find the co- 
efficients corresponding to three idealized source terms 2Jim: zX6(r - ro), 
2x6 '(r - ro), and A6"( r -  ro). Such coefficients are calculated in Appendix B. 
With the help of  the results of  this appendix, the following results can be de- 
rived without difficulty by substituting source terms 2Jim given by (3.8), (3.9), 
(3.10), (3.11), (3.13), and (3.14)into (4.2a,b). 
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a. The FieM o f  a Point Charge e. 

27re (l+ 1)!P(l+ 1 - 2iZm) 

alm = x / 2  (r+- r_)(ro + ia cos Oo) -~ l+  l ~ . F ( 2 -  

�9 ( - x ~  - r + - r _  

-izm 

- - s i n 0 0  _lY/m (Oo, ~o) L F(I+ 1,l+ 1 
Xo 

blm = 

- 2iZ m, 21 + 2;Xo 1) + [l(/+ 1)] 1/2 o-ft m (0o, ~Oo) 

Fq,  1 + 1 - 2iZm, 2l+ 2; x~l)} I 

2rre (l+ 1)!P(l+ 1-  2iZm) (1 1 Y  zm 

x / 2  (r+- r_)(ro + ia cos Oo) -~I +1)) -~2- '2 i -~m)  - x--~o! 

�9 [_ ia (1 - 2iZm) sin 0o _lYlm (0o, ~Oo) 
[ r+- r_ 

�9 F(I+ 1,-1, 1 - 2 iZm;xo)+ [l(l+ 1)] 1/20Ylm (O0,~Oo)Xo(X 0 - 1) 

�9 F(l + 2, 1 - l, 2 - 2iZm;xo) j 

E a = O, E b = �89 e 

(4.3) 

b. The Field o f  a Static Charged Axial Ring�9 

8too 2~re (l + 1)! l ! 
aim = X/-2 (r+- r_)(ro + ia cos 0o) (2l+ 1)! (-x~ 

" { -  r+ia- r_ sin0o _l Yto (Oo, O) l F(l  + l ,  l + l ,  2l + 2; Xo 

+ [l(l + 1)] 1/2 o~o (0o, O)F(l, l + 1, el  + 2;Xol)} 

8m0 27re (l + 1)!l! 
b lm = ~ (r+ - r_)(ro + ia cos 0o) (2l + 1)! 

�9 I -  i a  sin0o _lYto (Oo, O)F(l+ 1,-l, 1;Xo)+ [l(l+ 1)] 1/2 
t r+- r_  

} �9 01710 (Oo, O)xo(xo - 1)F(I + 2, 1 - l, 2; xo) 

E a = O, E b = �89 

(4.4) 
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e. The FieM o f  an Axial Current Loop.  

1. For a small loop with the magnetic dipole moment N, 

6mo27ri~x/-~o (r o - ia) z (l + 1)!l! 
arm = - X /~(r+-  r_)(r~ +a2) s/2 (2l+ 1)! (-x~ [I(l+ 1)1 1/2 

�9 oYto (0,0) - [r_Ro+ia l_ F( l+ 1, l+  1,21+ 2;x~')  
[ r~ - r _  Xo 

+ F(I, l + 1,2l + 2 ;x~) ]  
(4.S) 

8mo27ri ~IV~o (ro - ia) 2 (l + 1)!l! [l(l + 1)1 ,/2 o~o (0, O) 
b~,. =- v ~  (~ -  ~-)(~ +a~) ~/~ (21+ 1)! 

[ro + ia F(l  + 1,-l ,  1 ;Xo)+ Xo (Xo- 1)F(l + 2, i -  1,2;xo)] 
", I.r+- r_ ] 

Ea =Eb =0  

For a current loop in the equatorial plane with current ~ (as measured in . 

LNRF) and zero net charge, 

_ 5mo47r2~ (l+ 1)[I! (Ao/]~o)l/2 (_Xo)_ l [ i r ~ + a  2 
aim N/~(r+- r_) (2l+ 1)! r+- r_ 

�9 _tYro ~-,0 1 , l + l , 2 1 + 2 ; x ; t ) +  iro_~Ylt~ 2 ,0 
Xo 

a 7r 0 1,21 + 2;xol) ]  -[l(l+l)]'/:ZoYlo(~, ~} F(1,1+ 
_ ~m041r2~  (1+  1 ) ! l ,  (Ao/~o)l/a[irg+a~_l-~lo(~O) ( 4 . 6 )  

0,., ~ ( r . -  r_) (21 + 1)! r , -  r---~_ ' L x- 1 

" oY/o (2 ,  0)} X o ( X o - 1 ) F ( l + 2 , 1 - l ,  2;Xo)] 

E a =Et~ =0 

3. For a charged ring rotating in the equatorial plane with constant angular 
velocity, the coefficients are given by the sum of the a, b given by (4.6) in the 
preceding case of an uncharged loop, and of the following expressions: 
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6mo27re (l + 1)!l! (ro (~o) -1 (-Xo) -l [- ia Aor~ l 
alm = N/2- @+- 1"_) (2 l+  1)r r+- r----~ x--o 

1 ,+1 o / 

~mo27re ( l + l ) ' l '  [ - (2  0) blm - V~ (r+- r_) 3 (2l+ 1)! (A~176 fro) - ia(r+- r_)rg _lYto 7r, 

" F(l + l, -l, 1; Xo) + {2i Mar~ -l~o (2 (~ + ( ~o - 

" [l(l+ l)]'/2 o~o (-~,O)} F(l+ 2,1- l, 2;Xo)] 

Ea=O, Eb=�89 

these coefficients describe the field of a charged current loop at rest with re- 
spect to LNRFs (i.e., 5 = 0). (This is obtained by calculating the a and b from 
the source term (3.11) with 5 = 0 and adding the a and b given by (4.4) with 
0o = 7r/2.) 

(4.7) 

d. The Field o fan Elementary Magnetic Dipole. 

1. For a radial magnetic dipole located at ro, 0o, and ~Oo, the source term 
(3.13) can be replaced by a simpler one which only contains the 6 function and 
its first derivative, the second derivative being expressed in the manner indicated 
in Appendix B. If the radial magnetic dipole is located on the axis of symmetry, 
the coefficients arm and blm are, of course, given by (4.5). In a general case, the 
resulting expressions are rather involved and will not be presented here. 

2. For a dipole located in the equatorial plane and oriented perpendicularly 
to this plane we find 

27r~ (l + 1)'P(I + 1 -  2iZm) (1 -~n) -iZm 
a,m = ~ (r+- r_r  ~ - ;  I ~ r ( F -  2i-Y~) _ - - .  (-Xo)-' 

" [{ [l(l+ l)]l/Z oYtm (2,~o) - (m+~) -lYtm (2,~Oo)} 

�9 alF(l+ 1,l+ 1 - 2iZ,,,21+2;x~l)+i(r+ - r_) l[1 - l(l+ 1)] 
Xo t 
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�9 _lYtm ,,r + m-  [l(l+ 1)] oYlm ,qo 

�9 F(l, 1 + 1 - 2iZ m, 2l + 2; xffl)] 

27r~ (l+ 1)!l~(l+ 1 - 2iNto) (1 l liZm 
blm=x/~ (r+- r_)2r~ -~l+ l~.F(2---2i--~m) -X~o/ 

�9 [{ [l(l+ l)] 1/2 0~/m (2 '~~176 ( m+ rolia)_1~l m (2, @0) } 

"(1 - 2iZm)F(l + 1,-l,  1 - 2iZm;xo) + i (r +- r_) 

�9 {[1- t ( l+l)]_lYlm(~,~Oo) + (m [l(l+ 1)1 1/2 

- o)} ] �9 oYtm ,tp Xo(Xo - 1)F(l+ 2 , 1 -  l, 2 -2 iZm;xo)  

E a =E b = 0 

Some remarks concerning the properties of the above solutions are con- 
rained in the last section. 

977 

(4.8) 

w (5): Stationary FieMs on the Background o fan  Extreme Kerr Black Hole 

We will now outline how the preceding results are modified in case of an ex- 
tremely rotating black hole (a = M). Introducing [in analogy with (2.3)] the 
quantities 

~o =~o,~1 =(r -  iMcosO)~M-2Cbl, e~ 2 =(r -  iMcosO)ZM-2qb2 (5.1) 

we can write the Maxwell equations in a form corresponding to (2.4)-(2.7). 
Using the expansions (2.8) and (2.9), one arrives at the Teukolsky equation for 
2Rlm : 

at-  d2 [ Mzm2 - 2iMm (r-  M) (r -- M--~ )] ( r -M)  2 -7~ (2Rlm) + - l(l+ 1 

where 

f 2 .  f ~  2J/m =-'o ~o (r- /Mcos O)2M -2 

2glm = - 47T 2~lm 

(5.2) 

E J2 sin 0 -1 Ylm dO d~ 
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Notice that all source terms given for a < M, can easily be rewritten for a = M 
by replacing (r+ - r_) by M (and by putting a = M). introducing x = (r/M) - 1, 
we first find that, for m = 0, two independent solutions of  the homogeneous 

2o0)  = xt§ and 2R(II) = x -t. I f m  4= 0, write equation following from (5.2) are "'t0 "-oo 

2Rlm (x) = exp (im/x) 2ylm (X) 

and, further, 

%re(X) = X-%,. 

where ~ = -2 im/x .  These substitutions lead to the confluent hypergeometric 
equation 

~' l '~ + ( 2 t + 2 - ~ )  ' = 0  71lrn - 1711m 

Two linearly independent solutions can be chosen as 

~?(D = (_2im)2l+1 exp (~) ~-(2t+1) r (1 - l , - 2 1 ; - ~ )  
l m  

71(iI) = ~ (l, 2l + 2, ~) l m  

with dp denoting the confluent hypergeometric function, so that 

2 ,0 )  = xl§ exp (-2im/x)  r (1 - l, -2 / ;  2im/x) : l m  (5.3) 
21,(ID-','-I ~ (l, 2l + 2, -2im/x)  

: I r a  - r  

[Since q~ (1 - l, - 2 / ;  0) = r (/, 2l + 2; 0) = 1, these solutions are also meaningful 
if rn = 0.] Employing a procedure analogous to that  in Section 2, we find ~ 
to be given in terms of 2Rlm as in (2.18), only (r§ - r_) is replaced by M. Then, 
putting OR/,, (x) = exp (im/x) Oylm (X), we obtain the relation (2.20). Further, 
q~l can be expressed in terms o f  2ytm and its derivatives as in (2.22), the only 
difference being that [(1 - ( l /x)]  -~'Zm is replaced by exp (ira~x), and ( r+-  r_) 
by M. The final forms of  the vacuum solutions describing sources bounded by 
rl and r2 follow from (2.24) and (2.25), provided that the replacements 
a ~ M ,  (r+ - r_) -+M, and [1 - (l/x)] -iz,~ ~ exp (im/x) are made. Of course, 
2.(1) and 2.(II)  ..'lm :'lm are now given by (5.3). In case of  a general source, the coeffi- 
cients aim and blm turn out to be given by simple formulas [compare with 
(4.2a, b ) l :  

4rr : x ~ + e  
arm = 2l  + 1 2]lrn (~) ~-2 2/~(II)..lm (~) d~ (5.4a) 

X 1 - ~  

4n ff § blm 2l+ 1 2Jtm (~) ~-2 2o(I) = -  "'tin (~) d~ (5.4b) 

The values of  these coefficients for sources of  a 8 function type are given in 
Appendix B. The explicit forms of  the coefficients describing the fields of  the 
sources studied in Section 3 are given in Ref. 11, 
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w Rota t ing  Black Hole  in a Uni form Magnet ic  Field 

Finally, let us turn to an astrophysically interesting problem of  finding the 
electromagnetic field which is generated by placing a Kerr black hole in an 
originally uniform magnetic field. In general, the direction of  the magnetic field 
at infinity will not coincide with the direction of  the hole's rotation axis. A con- 
figuration with both directions aligned will eventually be established, however, 
this will occur after a time, which is expected to be very long (cf. Ref. 12 for an 
analogous problem with a scalar field). Here we are going to find out how the 
hole's geometry modifies the originally uniform magnetic field, without studying 
how the magnetic field influences the rotation of  the hole. 

Denoting the components of  a uniform magnetic field in asymptotically 
Minkowskian coordinates x = r sin 0 cos ~0, y = r sin 0 sin % and z = r cos 0 by 
Bo,X Bo,Y and B~), the electromagnetic field tensor in Boyer-Lindquist coordinates 
at r -+ oo has the form 

F m = F ~ = F ~ = 0 

F 12 = r -1 ( c o s  ~oBo y - sin ~0B~) (6.1) 

F la = (r sin 0) -1 [sin OB~o - cos 0 (sin ~oBo y + cos tpB{)] 

F 23 = (r 2 sin 0) -1 [cos OBZo + sin 0 (sin ~oB y + cos ~0B~)] 

With a view to (2.2) and (2.1) (and the properties of  spin s spherical harmonics), 
we can write the asymptotic  form of  the corresponding NP components as 
follows: 

~0 = i (4rr/3) 1/2 [2 -1/2 (B~ -I- iBYo) 1 Y1-1 (0, 99) + Bg 0Ylo (0, ~9) 

- 2 - 1 / 2  ( B ~  - /BoY) I r n (0,  ~o)1 

r = (i/2) (47r/3) I/2 [2 -1/= (B~ + iBo y) oY1-1 (0, ~p) + B~ oYlo (0, ~o) 

- 2 -a/= (B~ - iB y )  0Y11 (0, ~)1 (6.2) 

~2 = (i/2) (4rr/3) 1/2 [2 -1/2 (Bg + iBYo) -1 I"1-1 (0, ~o) + B{ -1 Ylo (0, ~o) 

- 2 -1/= (B~ - iBYo)OYll (0, r 

It is now easy to find the field we are looking for. It must satisfy the same 
boundary conditions at the horizon as all the fields studied hitherto, however, 
at infinity it must go over into (6.2). Regarding (2.24), it is seen that such a 
field is given by (2.24) with E a = 0, and 

al  -1 = i (rr/6) 1/2 (B~ + iBYo) 

alo = i @/3) 1/2 B~ (6.3) 

all =- i  (~/6) 1# (B~ iBo y) 
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(all the other aim being equal to zero) everywhere outside the hole. With small 
modifications (see Section 5), (2.24) represents the field on the background of 
an extremely rotating black hole. 

In calculating the electromagnetic field tensor Fuv, we observe that the 
presence of the hole's angular momentum also gives rise to an electric field 
though the field is purely magnetic at infinity. If the rotation axis of the hole 
and the asymptotic direction of the magnetic field are aligned, our results co- 
incide with those of Wald [3]. (Note that Wald's method of finding the field 
cannot be extended to obtain the field in the general case treated here.) 

w Concluding Remarks  

2 , , ( I )  - 2 ( [ I )  The expressions (2.24) and (2.25) with arm , btm , .ylrn, aria Ylm given by 
(4.2a,b), (2.15), and (2.16), respectively, and with E a = 0 and E b = �89 represent 
the vacuum electromagnetic field outside and inside the radius at which a given 
source (with total charge e) is located in Kerr space-time. The special sources 
studied in this paper had a ~ function character. However, the procedure used to 
obtain the fields of  such sources can easily be generalized to render it applicable 
to finding fields inside spatially extended sources (e.g., in plasma clouds in the 
vicinity of a black hole). 

On inspecting the behavior of the fields of the sources given in Section 4, we 
find that blm ~ 0 as the sources approach the horizon quasistatically in a 
physically permissible way. For example, if a charge is lowered toward the hole 
along the axis of symmetry or if current loops contract quasistatically towards 
the horizon, the fields outside the radii, at which the sources occur, decrease to 
zero and a Kerr-Newman black hole is created. However, if a charge is lowered 
to the horizon in the equatorial plane, it moves with a superluminal velocity 
when entering the ergosphere, and the coefficients blm do not approach zero (a 
similar result is true in case of a magnetic dipole in the equatorial plane). Of 
course, as indicated in Section 1, the fields of sources very near the horizon (in 
proper distance) are necessarily dynamical so that the above considerations can- 
not serve as more than an indication of the validity of the "no-hair hypothesis." 

More astrophysical problems connected with some of the solutions discussed 
here will be dealt with in a future paper. 

Appendix  A:  The Gauss Theorem 

In the Boyer-Lindquist coordinates the Gauss theorem can be written in 
the form 

27r 7r 

; f (_g)1/2 Fol dO d~o=47re(ro) (A.1) 
~'O "JO 
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where the integral is taken over the "sphere" r = ro which contains the total 
charge e(ro). Expressing Fvv by means of the ~ and regarding (2.1), we find 

F 01 = (r~ + a 2) X -1 d) 1 - ia sin 0 [X/~ (ro + ia cos 0)]-1 (I)2 

+ iaA o sin 0 [2X/~- ]~(ro - ia cos 0)] -1 q~o + c.c. 

where "c.c." denotes the terms complex conjugated of the preceding terms. 
Owing to the integration over ~o, axially nonsymmetric terms do not contribute 
to the integral in (A. 1). The axially symmetric parts satisfy the relation 
A. r = - 2 ( r -  ia cos 0) 2 r as can be learned from (2.24), (2.25), and 
(2.14) with m = 0. Now, some calculations (which employ the properties of 
sYlrn and their derivatives) show that, of  all terms in (2.24) and (2.25), only 
those proportional to E a and E b give a nonzero contribution to the lhs of (A. l). 
As the result we find that (A.I) reduces to 

E + f f  = e(ro) (A.2) 

where 

E = E a if ro < rl ,  E = E b if ro > r2 

Starting out with the Gauss theorem for "magnetic charges," 

2 r r  7r 

f f ( - g ) ' #  F *~ dO d g = 0  
, .10 ~" 0 

and making calculations similar to the preceding ones, we arrive at the relation 
E -  E = 0 which, when combined with (A.2), yields 

= �89 

Assuming the charge of the black hole to vanish, and the total charge of a source 
located in the region <rl, r2> to be equal to e, we conclude that the constants 
E a and E b in (2.24) and (2.25) are given by 

E a = 0 ,  

We note that the same result can be derived in the case of  an extreme Kerr 
black hole (a = M). 

Appendix  B: The Coefficients atrn and btr n for  the Sources 
o f  a 8 Function Type 

L T h e c a s e a < M .  

1. Let 2Jim = CA8 (r - ro) = C(r+ - r _ ) x ( x  - 1)8 (x - Xo), with C constant 
and ro such that r, -<< ro ~< r2. Substituting this source term into (4.2), where 
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the 2Rlr n are expressed from (2.13), (2.15), and (2.16), we obtain 

( l + l ) ' P ( l + l - 2 i Z m )  (l ~o)-iZm 
arm =-41rC(r+- r_) ~ - ~  1)v.-~2"_-'2/-~m ) - 

�9 F(I,I+ 1 - 2iZrn,21+2;xg 1) 

b l m = - 4 7 r C ( r ' - r - ) ( l + l ) ' P ( l + l - 2 i Z m ) ( 1 - ~ o )  ' z m ( 2 1  + 1-~. P(2 -- -2 i -~m ) - 

"F(I+ 2, 1 - 1 ,2 -  2iZm;xo) 

(-xo) -t 

Xo (Xo - 1) 

2. Let 2Jlr n = CAB' (r - ro) = Cx (x - 1)8'(x - Xo). We then find [using 
(2.15)-(2.17)] that 

(l + 1)!r(l  + 1 -  2iZm) (1 1 .~-'Zm 
atm =-4zrC -(21 + l~.P(2- 2i-~m) x - Xo---] (-x~ 

.[ iZm F(l, l + 1 - 2iZ m , 2l + 2;x~ 1) + - -  
xo (77o- 1) xo 

�9 F(I+ 1,I+ 1 - 2iZm,21+2;Xol)] 

=-47rC (l+ 1)!r(l  + 1 - 2iZm) {1 - k ~  iZm 
btm (2l+ 1) !P(2-  2iZm) \" Xo]-- 

�9 [iZ m F(I + 2, 1-  l, 2 -  2iZm ;Xo)+ (1 - 2iZm)F(l + 1,-/, 1 -  2iZm; Xo)] 

3. Let 2J/m = CA5" (r -  ro) = C(r§ - r_)-lx(x - 1)8"(x - Xo). Instead of 
substituting for the R's directly from (2.13), (2.15), and (2.16) we can rewrite 
(4.2) as follows: 

47rC (l+ l ) !P( /+  1 - 2iZm) l d2 [2o(iI)1 ~ 

47rC (Z+ 1)IF(l+ 1- 2iZrn)[Z2m -iZm(2Xo _- 1) 
= (r-+7~-) --(fl-+i)T~ 2-- 2iZm) L Xo (Xo- 1) 

_ 47rC ( l + l ) ! P ( l + l - 2 i Z ~ ) [  Z2m-iZm(2Xo-1)  
- ) r-d : L- -~o (X--o -7 1-) 

dx 
x 1 - E  

] 2~,(a) (Xo) l(l+ 1) "'ira 

+I(l+ 1)] 

where we have used the homogeneous equation associated with (2.10). An 
analogous result can be derived for btm. Therefore we see that the source term 



STATIONARY ELECTROMAGNETIC FIELDS AROUND BLACK HOLES 

2Jtm = CA6" (r - ro) can be replaced by 

C [I Z~--iZ---m-(2-x~ l )]  A6 ( r -  ro) 
2J/m = ( r . - r _ ) 2  ( l+ 1 ) -  Xo(Xo - 1) 

II. The case a = M. 

1. For 2Jtm = CA6 (r - ro) = CMx26 (x - xo), we obtain 

aim = C47rM (2l + 1) -1 exp (im/xo) xg Icb (l, 21 + 2 , - 2 i m / x o )  

btm = C47rM(2l+ 1) -1 exp (-im/xo)xlo +1 cb (1 - l , -21,2im/xo) .  

2. If  2Jtm = CAB' (r - ro) = Cx26 ' (x - xo), then 

aim = C47r (2l  + 1) -1 exp ( im/xo)Xo I [(im/x~) �9 (l, 2l + 2 , - 2 i m / x o )  

+ (l/xo) �9 (l + 1,21 + 2, -2im/xo)]  
1+1 btm = C4~r (2 l+  1) -1 exp ( - im /xo )xo  [(im/xo 2) * (1 - l , -21,  2im/xo)  

- ( /+  1)Xo 1 cb(- l , -21 ,2 im/xo)]  

3. Finally, we f ind that  2J/m = CA~" ( r -  to) = CM-ix2~ '' (x - Xo) can be 

replaced by 

2Jtm = CM -2 [l(l + 1 ) -  (m 2 - 2 imxo)xo  2 ] A6 ( r -  ro) 
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