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Abstract 

In  th i s  p a p e r  a s o l u t i o n  f o r  t h e  i n t e r i o r  m e t r i c  o f  a u n i f o r m l y  c h a r g e d  s t a t i c  f l u id  s p h e r e  has  
b e e n  o b t a i n e d .  T h e  m o d e l  sphe re  o b t a i n e d  has  a p h y s i c a l l y  r e a s o n a b l e  e q u a t i o n  o f  s t a t e .  I t  
is f o u n d  t h a t  b o t h  the  c e n t r a l  d e n s i t y  a n d  t h e  p r e s s u r e  b e c o m e  in f in i t e  w h e n  e = 2 ( 1  + g) .  
H e r e  e = mo/ro, o = Q2/r~; m o ,  ro ,  a n d  Qo a re ,  r e s p e c t i v e l y ,  t h e  m a s s ,  r ad iu s ,  a n d  2-charge o f  
t h e  sphe re .  In  t h e  l imi t  o ~ 0 t h e  s o l u t i o n  b e c o m e s  i d e n t i c a l  to  t h e  A d l e r  s o l u t i o n .  

w Introduction 

Because of the nonlinearity of Einstein's field equations exact solutions, in 
closed analytic form, are difficult to obtain. A model approach to the solution 
to these equations in the case of an uncharged perfect fluid sphere is well known 
[1-31. 

Recently Adler [4] has obtained the solution to Einstein's equations for the 
interior of a static fluid sphere in closed analytic form. In this paper we generate 
a closed analytic solution to the Einstein's equations for a uniformly charged 
fluid sphere by a method similar to that used by Adler. When o - 0 (uncharged 
case) our results are in exact agreement with those of Adler. This work may then 
be considered as a generalization of Adler's paper. 

w Solutions of the Field Equations 

The Einstein-Maxwell field equations for an ideal matter fluid are [5] 

a~j = -8~r i i  (2.1) 
1 k l  1 k l  Tij = PUiUj + P(Uiuj - gij) + ~ [g FikFj l  - g g i j F k l F  ] ( 2 . 2 )  
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[(-g)ll2 FiJ] , /=  4rrji(-g)l/2 (2.3) 

F[ ij, k] = 0 (2.4) 

where Gij is the Einstein tensor, u i = dxi/ds is the four velocity of  a fluid ele- 
ment, F i j  is the electromagnetic field tensor, j i  is the electric current, and gij is 
the metric. (In this paper units are chosen so that c = K = 1 .) Spherical symme- 
t ry  requires only the radial component of  the electric field, F ~ = - F  1~ to be 
nonvanishing. 

The appropriate line element for a static spherically symmetric system is 

ds 2 = eVdt 2 - eXdr 2 - r2(dO 2 + sin z OdO 2) (2.5) 

where v and ~ are functions of r only which vanish as r -+ ~ .  The field equations 
may now be written in the forms [5] 

Q----~2= 1 ( ~  ~ )  
87rp- r4 r2 e -x - (2.6) 

where 

8~p + = e - a  + r2 (2.7) 

Q~ ' [ 2  v'2 v'X' v ' -  ~ ' ]  
8 r r P - 7 = e - X  + 4 4 + 2-r J (2.8) 

~0 Y Q = 47r J~  (2.9) 

is the charge up to radius r. The corresponding electric field is given by 

F ~ = ( a / r 2 ) e  -~, a = (?t + v)/2 (2.10) 

In these equations a prime denotes differentiation with respect to r. Using equa- 
tion (2.7) we may eliminate p from equation (2.8) and thereby write the field 
equations in the final forms: 

8fro - r--- T = r-- 5 - e -x - (2.11) 

8~p + 7 = e-~' + - ~ (2.12) 

and 
1 + 2 Q 2 ) e  x v'X' v" v '2 X '+v '  1 

. . . . .  + - -  (2.13) 
~-  r 2 ] 4 2 4 + 2 r  r 2 
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To solve equation (2.13) we introduce the following functions: 

3"(0 = eV/2 

~-(r) = e -x (2.14) 

Equation (2.13) may now be written as a linear first-order equation for ~-: 

r' + f ( r )r=go(r)  (2.15) 

where 

2(7 + r3" - r23" '') 
f(r)  = - r(r3" + 3") (2.16) 

(2r27 + 43'Q 2) 
go(r) = -  rS(rT, + 3') (2.17) 

Equation (2.15) has the immediate solution 

r=e-F(r ) [ f reF(r ' )g ( r ' )dr '  +freP(r ' )g l ( r ' )dr '  +C1] (2.18) 

where 

g(r) = -27/r(r3"' + 3') 

gl(r) = -43"Q2 /r3(r3" ' + 3') 

F(r) f (r ' )dr ' ,  C1 = const 

Equation (2.18) together with equations (2.11) and (2.12) represent all solu- 
tions for charged static spherically symmetric fluid bodies. Not all such solutions 
will be physically reasonable. Only a subclass of these solutions, corresponding to 
certain functions 3'(0, will admit a physically reasonable equations of state. Thus 
the choice of  7 ( 0  is critical if one desires a physically meaningful solution. 

w The Model Solution 

We focus on the case of a fluid sphere with uniform charge density. We as- 
sume that the sphere has radius ro and carries a charge Qo- It then follows that 
Q = Kr a with K 2 a = Qo/ro. The solution (2.18) for r will be particularly simple if 
f = g. This leads to requiring that rT' - r23' '' = 0, or equivalently that 

7 (0  =A + Br 2 (3.1) 
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A and B being constants of  integration. Using equations (2.18) and (2.19) we ob- 
tain ~-(r) in the form 

r(r) = 1 - (4K2A/5B)r 2 2 ..2 4 - -~A r + Clr2(A + 3Br2) -2/3 (3.2) 

The constants A,  B, and C1 are specified by matching the solution to the exterior 
Nordstr6m-Reissner solution for a mass mo, charge Qo, and radius ro. We obtain 
the following solutions: 

7(r) = (1 - 2e + o)-l/z(1 - 5e  + o + Ley2h 2 / 

r(r) = 1 - 8o(1 - ~5ee + o)y 2 _ 52 oY 4 

= oy  2 + 

(3.3) 

[ e ( 7 o -  10e) + 8o(1 - ~e  + o)](1 - e + o)2/ay 2 
+ (3.4) 

= 1 {  ee-kl 2 
p(r) 47rr~ ( 1 -  ~ e + o +  gey  ) 

5 e ( 1  - s e + o + 3_2 eY2) 2/3 

60(2 - 5e + 20) [ e ( 7 o -  10e) + 4o(2 - 5e + 2o)] 

5e 10e(1 - 5 e  + o + ~ey2) 2/s 

3 ey2)-i  } X ( l -  e+o)2/a[3-2ey2(1 - ~ e + o + g  1 (3.5) 

[e (7o-  10e) + 40(2 - 5e + 2o)1(1 - e + o) 213 
3 ey2)21s 1 0 e ( 1 - ~ e + o +  

7 2o(2 - 5e + 2 0 ) ]  

- 1--0 ~ 5e I (3 .6) 

where e = mo/ro, o = Q~/r~, and y = r/ro. The mass distribution, defined as 
m(r) = [1 - exp (-X)] r/2 is 

m(r) ro {-20(2- 5e + 20) o 
5e 5 

_ [e(7o - 10e)10e(l_S_~_+o+~_~y2~ I T +  4o(2 - 5e + 2o)](1 - e + O) 2/3 } yS (3.7) 

In Figures 1 and 2 we have plotted p(r) as well as the equation o f  state p vs p 
for this solution for the values mo = 3 km, ro = 10 kin, and Qo = 0.5 km. As in 
the Adler solution the density peaks sharply at r = 0, and the equation of  state is 
physically reasonable. This situation obtains up to Qo ~< 2.0 kin. For Qo > 2.0 
km the figures change dramatically. Figures 3 and 4 are representatives of  this 
case. Figure 3 shows that p(r) is monotonically increasing while Figure 4 shows 
that p(p) is monotonically decreasing. Thus for Qo > 2 km the behavior is un- 
physical and the model is unstable. To obtain a physically reasonable solution 
Qo must be restricted to Qo < 2 km, so that the solution has a maximum allowed 
charge. 
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Fig.  1. Dens i t y  d i s t r i b u t i o n  f o r  m o = 3 k i n ,  r o = 10 k m ,  and Qo = 
0.5 kin. 
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Fig. 2. Equation o f  state p(p) fo r  m o = 3 k r n , r  o = 10 k in,  and Qo = 
0.5 kin. 
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Fig. 3. Density distribution for mo = 3 km, ro = 10 km, and Qo = 
4 km. 
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Fig. 4. Equation of  state p (p) for m o = 3 km, r o = 10 km, and Qo = 
4 km. 
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w (4): Propert ies  o f  the Solu t ion  

It is evident from equations (3.5) and (3.6) that/9(0) and p(0)  both become 
infinite at the same value of  e = ~ (1 + o). The Adler interior solution has a sim- 

2 ilar property in that the central presure becomes infinite when e = g. It is then 
clear that this singularity occurs at a slightly higher mass than in the uncharged 
case. 

In the low mass limit our solution yields 

e v = 1 - 3e + o +  e y  2 (4.1) 

7-(r) = e - x =  1 - ( 1 0 e -  7o)y2 /5  - ~ o y  4 (4.2) 

( lSe 2 + 7o)(1 - y2) 
P = 407rrg (4.3) 

and 

- _ _  5 ey2)  _ 3 _ __ 3 [ e ( l + e - - ~  - o P - 4 ~ r r ~  ~ (1 1-1 y2)]  (4.4) 

We may now eliminate y2 between equations (4.3) and (4.4) to obtain an 
approximate equation o f  state for small e: 

3 P = i-6 [P - (3e + o)/47rrg] (4.5) 

If  in equations (4.1)-(4.5) we put o - 0, we regain the Adler results. 
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