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Abstract

In this paper a solution for the interior metric of a uniformly charged static fluid sphere has
been obtained. The model sphere obtained has a physically reasonable equation of state. It
is found that both the central density and the pressure become infinite when ¢ = g(l + g).
Here € = mg/rg, 0 = Q§/rg; mo, ro, and Qg are, respectively, the mass, radius, and charge of
the sphere. In the limit o — 0 the solution becomes identical to the Adler solution.

8(1): Introduction

Because of the nonlinearity of Finstein’s field equations exact solutions, in
closed analytic form, are difficult to obtain. A model approach to the solution
to these equations in the case of an uncharged perfect fluid sphere is well known
[1-3].

Recently Adler [4] has obtained the solution to Einstein’s equations for the
interior of a static fluid sphere in closed analytic form. In this paper we generate
a closed analytic solution to the Einstein’s equations for a uniformly charged
fluid sphere by a method similar to that used by Adler. When o = 0 (uncharged
case) our results are in exact agreement with those of Adler. This work may then
be considered as a generalization of Adler’s paper.

§(2): Solutions of the Field Equations

The Einstein-Maxwell field equations for an ideal matter fluid are [5]
Gy =-8nTy; 2.1
Ty = pusuy + p(uit; = &) + £ [ FyFy ~ L giiFr i F¥'] (2.2)
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(&) F7] ;= 4nT(-g)"* 23)

and
Flije =0 Q4
where G;; is the Einstein tensor, u' = dx"lds is the four velocity of a fluid ele-
ment, F'i is the electromagnetic field tensor, J* is the electric current, and 8ijis
the metric. (In this paper units are chosen so that ¢ = k = 1.) Spherical symme-
try requires only the radial component of the electric field, F* =-F° to be
nonvanishing.
The appropriate line element for a static spherically symmetric system is

ds® = e”dt? - eNdr? - r3(d6? + sin® 0d¢?) (2.5)

where v and X are functions of r only which vanish as r - o, The field equations
may now be written in the forms 5]

_Q 1 —h(i_lt)
8mp e Sl (2.6)
0* . f1 ¥\ 1
8ﬂp+—r;=e}‘r‘2+7 s Q7
Q2 N [V” Vrg V,)\’ V' _ ?\r
8mp- S =e M=+ - L+ 8
o oaTe 2 4 4 2r 2.8)
where
¥
Q=41rj JOrte®dr 2.9)
()}

is the charge up to radius . The corresponding electric field is given by
FO=(Q/r)e™®, a=(Atp)2 (2.10)

In these equations a prime denotes differentiation with respect to . Using equa-
tion (2.7) we may eliminate p from equation (2.8) and thereby write the field
equations in the final forms:

Q2 1 “A 1 7\'

Sﬂp_F__.__z_e _..2__7 (’!11)
Q2 =\ 1 ”' 1

Sﬂp+__4_e ;..2_+7 -= (212)

and

(2.13)



CHARGED FLUID SPHERE IN GENERAL RELATIVITY 495

To solve equation (2.13) we introduce the following functions:

Y(r) =e?
) =e? (2.14)
Equation (2.13) may now be written as a linear first-order equation for 7:
T +f(r)T=g80(r) (2.15)
where
200 +ry' - ")
r)y=- ; (2.16)
10 riry' +7)
Qriy+4v0%)
i v 2.17

Equation (2.15) has the immediate solution

¥ I d
T= e'F(’)[f eF e ydr' +f eF g () dr + Cl] (2.18)
where

gy =-2v/r(ry’ +7)
g1(r) =-4Q*[r*(ry' + )

F({r) =f f(rar', €y =const

Equation (2.18) together with equations (2.11) and (2.12) represent all solu-
tions for charged static spherically symmetric fluid bodies. Not all such solutions
will be physically reasonable. Only a subclass of these solutions, corresponding to
certain functions y(r), will admit a physically reasonable equations of state. Thus
the choice of y(r) is critical if one desires a physically meaningful solution.

8(3): The Model Solution

We focus on the case of a fluid sphere with uniform charge density. We as-
sume that the sphere has radius ry and carries a charge Q. It then follows that
0 = Kr® with K = Q3/r3. The solution (2.18) for 7 will be particularly simple if
f=g. This leads to requiring that ry' - r*y"" = 0, or equivalently that

v(r)=A+Br? (3.1)
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A and B being constants of integration. Using equations (2.18) and (2.19) we ob-
tain 7(7) in the form

() =1- (AK*A[SB)r* - 2K°r* + Cir*(4 + 3Br%) 7P (.2)

The constants 4, B, and C,; are specified by matching the solution to the exterior
Nordstrom-Reissner solution for a mass mg, charge Qy, and radius 7,. We obtain
the following solutions:

y(r) =(1- 2e+0)"2(1 - Setot+iey?) (3.3)
8o(1-2e+o)y? 2
=1- 2 _ = 4
7(7) oo 59

[e(7a 10¢) + 80(1 - 3e+0)l(l- e+ o)y
Se(1- Se+a+3epy?)?P

(3.4

()= {_3_ oy + 60(2- 5¢ +20) [e(70- 10€) +40(2 - 5S¢ +20)]
2 Se 10e(1- Se+o+3ep?)??
X(1-e+0)P[3-2ep*(1- Se+o+ %eyz)‘l]} (3.5)
()_ ee™? [6(70 IOe)+4a(2 5¢+20)](1- e+ 0)*?
b (1- 3e+ot} y) 10e(1 - 2e+o+3ep?)P
7, 200Q2-5¢t20)
10 % 5¢ } (3.6)

where € =mq/ry, 0= Q% /r3, and y = r/ry. The mass distribution, defined as
m(r)=[1-exp (-N)]rf2is

20(2-5¢+2
m(r):ro{L(___Sei._U_)-’..G_

_ [e(70- 10€) +40(2 - 5¢ +20)](1 - e + 0)*
10e(1- Se+o+3ep?)?’

} » (37

In Figures 1 and 2 we have plotted p(7) as well as the equation of state p vs p
for this solution for the values m, =3 km, 7o = 10 km, and Qy = 0.5 km. Asin
the Adler solution the density peaks sharply at r =0, and the equation of state is
physically reasonable. This situation obtains up to O < 2.0 km. For gy > 2.0
km the figures change dramatically. Figures 3 and 4 are representatives of this
case. Figure 3 shows that p(r) is monotonically increasing while Figure 4 shows
that p(p) is monotonically decreasing. Thus for Qg > 2 km the behavior is un-
physical and the model is unstable. To obtain a physically reasonable solution
Qo must be restricted to Qg < 2 km, so that the solution has a maximum allowed
charge.
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Fig. 1. Density distribution for my =3 km, 7o = 10 km, and Qg =

0.5 km.
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Fig. 2. Equation of state p(p) for mg =3 km, 7y = 10 km, and Op=

0.5 km.
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Fig. 3. Density distribution for mg = 3 km, 79 = 10 km, and Q¢ =

4 km.
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Fig. 4. Equation of state p(p) for mo =3 km,rg = 10 km, and Q¢ =

4 km.
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8(4): Properties of the Solution

It is evident from equations (3.5) and (3.6) that p(0) and p(0) both become
infinite at the same value of € = —g— (1 + 0). The Adler interior solution has a sim-
ilar property in that the central presure becomes infinite when € = % It is then
clear that this singularity occurs at a slightly higher mass than in the uncharged
case.

In the low mass limit our solution yields

e’=1-3e+0+ey? 4.1)
(M =e*=1- (10e- 70)p?/5 - %ay4 4.2)
15€2 + 70)(1 - »?
_(5e 0)(2 %) .3)
407rg
and

3 5 3 11
- lte-2ep) -2of1-1 2 4.4
P 47rr(2,[e( ¢ 3€y> 2°< 9y>] “-4)

We may now eliminate y between equations (4.3) and (4.4) to obtain an
approximate equation of state for small e:

p=31p- Bet o)fdnr]] 4.5)
If in equations (4.1)-(4.5) we put ¢ =0, we regain the Adler resuits.
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