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Abstract 

We examine the three sets of junction conditions commonly used in general relativity: 
those due to Darmois, to O'Brien and Synge, and to Lichnerowicz. We show that those due 
to Darmois and Lichnerowicz are equivalent. The O'Brien and Synge set is stronger than the 
other two and is unsatisfactory in that it may rule out physically plausible junctions. We 
conclude that the Darmois set is the most convenient and reliable. 

w Introduction 

In this paper we discuss ordinary discontinuities across nonnull hypersur- 
faces in general relativity. By this we mean that surface layers are excluded: 
for consideration of  the latter see [1 ] .  

Three sets of  junction conditions are in use: those of  Darmois [2] (here- 
after denoted by D), O'Brien and Synge [3 ] (hereafter O), and Lichnerowicz 
[4] (hearafter L). 1 Almost certainly the set most commonly used are O: a 
study of  the Science Citation Index from 1970 to 1979 shows that [3] was 
quoted in 26 papers during that period. Inspection of  these papers reveals that, 
in about half, the conditions O were being applied to boundary value problems. 
It is therefore fair to say that O plays a significant part in general relativity 
today. 

D and L are evidently somewhat similar, and in both cases arose from a 
mathematical approach based on differentiability classes of  the metric coef- 
ficients girt. The method of  O was quite different, relying on considerations of  
a hypothetical boundary layer whose thickness was allowed to tend to zero, 

1Another approach, not to our knowledge so far used in problems, is that of Synge [5]. 
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similar to that sometimes used in electromagnetism. The junction conditions 
which they derived were not obviously equivalent to D or L. 

We shall show in this paper that D and L are equivalent but that O are not 
equivalent to the others. Although a junction satisfying O necessarily satisfies 
D and L, the converse is not true. This is made clear in Section 3, where we 
write out D and compare them with O, but we also show it in Section 4 by an 
example, taken from cosmology, in which there is a boundary satisfying D but 
not O. We shall argue that in this case the requirements of O are too restrictive, 
since they would rule out a physically reasonable situation. These conclusions 
are different from those of Israel [6] and of Robson [7]. We shall discuss their 
work in Section 5. 

In our opinion the neatest formulation of boundary conditions in general 
relativity is that of Darmois because it is manifestly covariant, and elegantly 
geometrical. It is also by far the most convenient because it does not demand 
the continuity of the normal coordinate. Examples of its use are given by Cocke 
[8], Bonnor and Faulkes [9], Vickers [10], and Bonnor [11]. A discussion of 
it is to be found in [12]. 

Throughout the work we shall suppose that the bounding hypersurface is 
nonnull, though it may be spacelike or timelike. Latin indices run from 1 to 4, 
Greek indices from 1 to 3. 

w The Three Sets o f  Junction Conditions 

Let V and V be two regions of space-time, separated by a hypersurface S. We 
shall suppose that the metric coefficients gitc are of differentiability class C 3 ex- 
cept on S. In 0 and L the same coordinate system is used on both sides of S, but 
in D this need not be the case. 

Darmois Conditions (D) Let x i, ~i be the coordinates in V, V, and gik, ~k 
the Corresponding metrics. Let S be given by the functions 

f (x  i) = 0 in V, f (x  i) = 0 in V (2.1) 

of class C 2 . Then the unit normals can be calculated: 

a b  ni =f,i(g f, af, b) -1/2 in V 

" - - g b - -  - -  ni =f,i(g f, of, b) -1/2 in V 

where ,i means O]~x i or O/3x i. These are needed to construct the second funda- 
mental form of S (see Section 3). We need, in addition to (2.1), the two para- 
metric representations of S: 

x i =gi(u l ,u2 ,ua)  in V, x i =gi(u l ,u2 ,ua)  in V (2.2) 

where gi, ~i are of class C a (see below), such that S is covered by the same 
domain of u~(a = 1,2, 3) in both representations. Then V and V are said to 
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match across S if  the first and second fundamental forms of  S, calculated as 
functions of  u c~ by means ofgik and g-ik, are identical. 

Lichnerowicz Conditions (L). V and V are said to match across S if for 
every point P of  S there exists a system of coordinates such that ~imir domain 
contains P, and such that the metric components and their first derivatives are 
continuous across S. Such coordinates are called admissible. 

O'Brien and Synge Conditions (0).  Let the coordinates be chosen so that S 
is given by x 4 = const (x 4 need not be a timelike coordinate). Then V and V 
are said to match across S if 

Oguu Tk 4 (2.3) gik , OX 4, 

are continuous across S, T~x being the energy tensor. 
Remarks (1) A further condition given by O'Brien and Synge, namely, that 

gi~ T~k - gtcc~ TC~ i 

shall be continuous across S, is automatically fulfilled, because of  Tik = Tta, if 
O are satisfied. It has been proved by Kumar and Singh [13] that the continuity 
of  T4k is implied by the continuity ofgik and Oguu/Ox 4 . 

(2) It has in the past been assumed, usually tacitly, that in O and L the gik 
as functions on S of  the surface coordinates are sufficiently smooth for the 
existence of  at least the second tangential derivatives. In the case of  D the cor- 
responding assumption is that on S gik(U a)  a r e  of  class C 2 at least, which entails 
that gi and ~i in (2.2) are C 3 at least. These assumptions will be made in this 
paper also. 

w Equivalence o f  Sets o f  Cc, nditions 

The equivalence of  the Darmois and Lichnerowicz conditions is easy to see. 
If  the first and second fundamental forms of  S are the same when approached 
from either side, then it follows, as shown by Darmois [2],  that if one uses in 
V and V Gaussian coordinates with S given by x 4 = 0, x 4 = 0, then g ~  = g~r 
a n d  Oga(3/Ox 4 = ga/3/OX 4 on S. Since in Gaussian coordinates g44 = g44 = 1 and 
g4a --" g4~ = 0, all the gig and gig, 4 are continuous, and Gaussian coordinates 
constitute admissible coordinates in the sense o f L .  This shows that i f D  are 
satisfied so are L. 

Next, assuming L,  i.e., that there exists a system of coordinates in which 
gig and gig/OX m are continuous, across S, we at once see that the first and 
second fundamental forms of  S, which depend only on gik and ~gik/~X m , will 
be the same when approached from either side, so D are satisfied. 

Turning now to the comparison of  D with 0 let S be given by 

x 4 = const, x 4 = const (3.1) 
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in V and V. Suppose that the other coordinates and the parametrization of S 
are such that on S 

x ~ = x ~ = u ~ ( 3 . 2 )  

The first fundamental forms of S, obtained from V and V, are 

ds2 = go~ dua du~, ds2 = g ~  d ua du ~ 

and according to D we have 

ga~ = ga# (3.3) 

so ga~ is continuous on S, which is part of O. 
The second fundamental form of S is 

3x i ~x k 
dc~# du a du # = -ni;l~u- ~ ~--~du a du # (3.4) 

n i being the unit normal, which in case (3.1) is 

n i = ~4i(g44)-1/2 

(assuming g44 > 0, otherwise the modulus must be taken). Using (3.1) and (3.2) 
we have for the equality of the second fundamental forms required by D 

0 =fie# - deg = na;~ - n-~;# = ff~/3n4 - F ~ n 4  

A short calculation gives 

{(ff44),/2 [aft, 4] - (g44)1]2  loaf, 4] ) = [~f, 7] ~ 4 " y ( ~ 4 4 ) - 1 / 2  _ g 4 7 ( ~ 4 4 ) - 1 1 2  )= 0 

( 3 . 5 )  

where [af, i] is the Christoffel symbol of the first kind. Because of (3.3) we 
have put [af, 3'] = [otf, 3']. Evidently if 0 are satisfied so is (3.5), but not the 
converse, since (3.5) do no t  imply, for example, that g44 = ff44, which is a 
consequence of O. Hence i f  O are satisfied D are satisfied, bu t  no t  the converse. 
In other words, O are more restrictive than D. 

w A n  Example  

The example, which was first discovered by Vickers [14], refers to a spheri- 
caUy symmetric dust distribution. Using comoving coordinates x i = (r, O, ~, t), 

we may take the metric for this as [15] 

ds 2 = -(R')2F -2 dr 2 - R2(dO 2 + sin 2 r~ddp 2) + d t  2 (4.1) 

where, on account of the field equations (without cosmological term), R (r, 0 
must satisfy 

1~ 2 = P: - 1 + 2FR -1 (4.2) 
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The prime and the dot mean partial differentiation with respect to r and t, 
respectively, and F and F are arbitrary functions of r. Another arbitrary function 
h of r arises on integration of (4.2). We shall assume 

/~v~ O, 

and number the coordinates 

X 1 = r ,  X 2 = 0 ,  

The only nonzero component of Tik is 

R' r 0 (4.3) 

X 3 = r  X 4 = t 

2F'  
T 4  4 = 87rp - R 2R' (4.4) 

We consider two regions of space-time, both with metrics of form (4.1) 
but with different functions F, F, and h, separated by a hypersurface S defined 
by 

x 1 = r = a (a const) (4.5) 

so appropriate adaptation is required of the work in Sections 2 and 3, where 
the boundary was taken as x 4 = const. In this example we may take all four 
coordinates as continuous across S. It will'be convenient to denote by C the set 
of functions which are continuous across S. 

A straightforward application of junction conditions 0 to S gives 

R , R ' , F ~ C  (4.6) 

However, if we differentiate (4.2) with respect to t and use (4.3), we obtain 

= - F R  -2 (4.7) 

and since from (4.6) R and K are continuous, so must F be: 

F E C (4.8) 

Similarly differentiating (4.7) with respect to r and then changing the order of 
differentiations we have 

(R' )"= 2FR'R -3 - F 'R  -2 

The left-hand side and the first term on the right are continuous at r = a because 
of (4.6) and (4.8), so 

F ' E  C (4.9) 

Finally, differentiating (4.2) with respect to r and using (4.6), (4.8), and (4.9) 
we have 

F ' C  C (4.10) 

Collecting these results together we find that 0 require 

R , R ' , F , F ' , F , F '  E C  (4.11) 
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We now apply D to this example. The unit normal n i to S is 

ni = 5i 1 (-g11)1/2 

The parameters u a are (0, r t), (ct = 2, 3, 4) and the first fundamental form on 
S is 

- [R (a, t)] 2 (dO2 + sin 2 0 dO 2) + d t  ~ 

Since this has to have the same form whichever side of S we approach, it evi- 
dently implies 

R ( r , t ) E C  (4.12) 

The coefficients of the second fundamental form are found from (3.4) to be 

d ~  = P l~ ( -g l l ) l / 2  

and the continuity of this at r = a requires 

F R E C  

Once again, from (4.2) we obtain (4.7) with result 

F E C  

No further conditions are required by D. 
We sum up as follows: 
(a) O r e q u i r e R , R ' , F , F ' , F , F '  EC, 
(b) Drequire R , F ,  F E C .  

We note in particular that D do not require that gll be continuous. D are evi- 
dently less restrictive. 

From (4.4) we see that 0 require continuity of the density at r = a, a result 
previously noted by Just [16]. This is too restrictive. Our model applies, for 
instance, to a condensing region in the expanding universe, and it is undesirable 
to demand that the density be continuous at the boundary. Indeed, if we put the 
Schwarzschild exterior in Friedmann form [15] and try to match it, using O, 
with another Friedmann model, the continuity of the density requires that it 
vanish on the boundary, and therefore, because of the homogeneity, throughout 
the Friedmann model. Thus it is not possible to satisfy O for this simple problem 
using comoving coordinates. 

We conclude that there are boundary value problems for which 0 are 
unsuitable. 

w Conclusion 

We have shown that D and L are equivalent, but that 0 are different from 
D and L, and are stronger in that all junctions satisfying 0 also satisfy D and L, 
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but  not  conversely. This is at variance with some previous writings [6, 7] and we 
shall now explain why.  

In this paper we have taken O to express boundary  conditions across any 
nonnuU hypersurface S specified by  x 4 = a. We have assumed metrics gik ,~k  

given on the two sides of  S, and we have not allowed any transformations o f  
coordinates on these metrics. This is in the original spirit of  O'Brien and Synge, 
but  contrary to the treatments of  Israel [6] and Robson [7] ,  who use co- 
ordinate transformations in at tempts  to show the equivalence of  L and O. 

If  coordinate transformations are allowed it is obvious that  L and O are 
equivalent in the sense that  there exist coordinate systems in which they reduce 
to the same conditions.  Gaussian coordinates with S given by  x 4 = 0, ~4 = 0 

form such a system. To see this we note that the differences between L and O 
are 

(i) that  in L ~g4i/~x 4 must be continuous whereas in 0 this is not  required. 
(ii) that  T4e is to be continuous in O. 

Regarding (i) it is clear that  in Gaussian coordinates ~g4i/~x 4 are necessarily 

continuous because g4i are constants; and ifgik and ~gik/~X 4 are continuous so 
is T 4 k [5 ] so (ii) is automatical ly satisfied. Hence in Gaussian coordinates both  
L and O reduce to the same requirement,  namely,  the  continui ty ofgie and 
~g~/~x  4 . 

Since 0 are not  covariantly stated it need occasion no surprise that they are 
equivalent to L (and therefore to D) in some coordinate systems but  not  in 
others. The difficulty with 0 is to know whether the coordinate system one is 
using is suitable for 0 or not:  in the example of  Section 4 the use of  0 with co- 
moving coordinates led to an unphysical result. With L too  there is a difficulty, 
namely,  to transform the metric into an admissible system of  coordinates,  which 
is often very hard. This leaves D as the most convenient and reliable formulation 
of  junct ion condit ion in general relativity. 
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