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Conditions 

J. Ponce  de Leon 1 

Received October 10, 1992 

The energy conditions of general relativity are satisfied by all experi- 
mentally detected fields. We discuss their interpretation and apphca- 
tion to charged spheres. It is found that they prevent the existence of 
naked singularities, and demand that the effective gravitational mass 
be everywhere non-negative. We focus on the emergence of limiting 
configurations--sources of the Reissner-NordstrSm field that have van- 
ishing effective mass everywhere within the sphere. These configurations 
have a number of interesting features. Among them we find that, near 
the center, the limiting form of the equation of state is p + 3p = 0. 
Notably this is the only equation of state consistent with the existence 
of zero-point electromagnetic field, and it has been considered in differ- 
ent contexts, in discussions of cosmic strings and in derivations of (3+1) 
properties of matter  from (4+1) geometry. The consistency of these con- 
figurations with the Einstein-Maxwell equations is shown by means of 
explicit examples. These configurations can be interpreted as due to self- 
interacting gravitational effects of the zero-point electromagnetic field. 

1. I N T R O D U C T I O N  

G e n e r a l  r e l a t i v i t y  is a t h e o r y  o r ig ina l l y  de s igned  to  a c c o u n t  for m a c r o s c o p i c  

p h e n o m e n a ,  w h e r e  t h e  c u r v a t u r e  of  s p a c e - t i m e  m i g h t  p l a y  a s ign i f i can t  

role.  H o w e v e r ,  in p r inc ip l e ,  i t  can  b e  e x t r a p o l a t e d  to  t h e  m i c r o s c o p i c  scale ,  

w i t h o u t  i n t e r n a l  log ica l  c o n t r a d i c t i o n s .  Such  e x t r a p o l a t i o n  is p u r s u e d  to  
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extract physical predictions and to understand some important aspects in 
the theory. There are several questions in this regard. 

i) Is general relativity applicable to small structures such as the elec- 
tron? 

ii) If not, in extrapolating its domain of applicability to the micro- 
scopic scale, how far can one go and yet have physically plausible results? 

iii) What are the features exhibited by the limiting configurations, 
that stand at the edge of this domain? These questions are the concern of 
this paper. 

Some authors assume a positive answer to the first question, and ap- 
ply the Einstein-Maxwell equations to the electron, which is considered 
to have finite size [1-3]. In particular, Bonnor and Cooperstock [3] apply 
them to discuss the question of how the validity of singularity theorems of 
general relativity may be affected by the experimental evidence that the di- 
ameter of the electron is no larger than 10-16cm. Apart from details, they 
show that the weak and the strong energy conditions, whose fulfillment 
is mandatory for the validity of these theorems, must be violated within 
the electron. Bonnor and Cooperstock argue that these results are a con- 
sequence of the extremely small electron's size, and not of the particular 
model used to represent its exterior field. 2 

However, all experimentally detected fields satisfy the energy condi- 
tions (Ref. 4, p.85). In addition, it is not obvious whether general rela- 
tivity is appropriate for the description of microscopic objects. Therefore 
it is natural to ask whether the violation of the energy conditions 3 (and 
the corresponding emerging negative mass) is not an indication that the 
theory fails, and does not provide a correct description when it is applied 
to such small particles as an electron. 

Accepting this point of view one immediately arrives at the second 
question above. In other words, suppose the applicability of the theory can 
be extrapolated to the microscopic scale, where do we stop? At the nuclear 
scale? At the electron scale? The answer to this question is probably not 
unique and depends on the criterion of applicability used. 

In this paper the criterion adopted is suggested by the experimen- 
tal evidence that all detected fields satisfy the energy conditions. Conse- 

2 I t  has  not  yet been  tes ted experimental ly whether  or not  the zone near  the core of an  
electron exhibits the character  of a negative energy density. 

3 All forms of experimental ly detected known m a t t e r  satisfy the energy conditions 
and are described by ene rgy-momentum tensors of type I, except in some special 
cases of radiat ion when they are of type II. Ene rgy-momen tum tensors  of type I I I  
or IV describe fields tha t  violate the energy conditions, which have not  yet been 
experimental ly detected (Ref. 4, p.85). 
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quently, it is assumed that  the domain of applicability of Einstein-Maxwell 
theory should be restricted to regions of space-time where the weak and 
strong energy conditions are satisfied. 

The purpose of this paper is to find the consequences of assuming 
the universal validity of the energy conditions for sources of the Reissner- 
Nordstr6m field. We will consider an arbitrary charged sphere in static 
equilibrium (not necessarily an electron model), and show that  the en- 
ergy conditions lead to two sets of consequences, which will be discussed 
separately. 

The first set imposes geometrical restrictions on the source. In Sec- 
tion 3, we will show that  the fulfillment of the energy conditions in the 
Reissner-Nordstr6m field (a) ensures the non-negativeness of the matter  
distribution, and (b) prevents the existence of naked singularities. 

The second set concerns the third question above. It allows us to 
deduce some interesting aspects of the internal structure of limiting con- 
figurations, that is, of configurations that  stand at the junction between 
those that  do satisfy the energy conditions and those that  do not. In Sec- 
tion 4, we will show that they have the following properties: (i) the effective 
gravitational mass is zero within the body; (ii) the principal pressures are 
unequal, except at the center; (iii) the equation of state is a generalization 
of (p + 3p) = 0, which has been discussed in different contexts [5-10]. 

The above conclusions make no use of the Einstein-Maxwell equations 
in their explicit form. They use the boundary conditions only. Therefore 
in Section 5 we show, by means of explicit examples, that  the limiting 
configurations discussed here are consistent with the field equations. In 
particular, a simple model is constructed, for which the equation of state 
is similar to the one that  appears in discussions of cosmic strings. Section 
6 contains a summary of the results. 

2. FIELD EQUATIONS A N D  E N E R G Y  CONDITIONS 

To facilitate the discussion, we start  by reviewing the basic equa- 
tions that  describe a static, spherically symmetric charge distribution in 
curved space-time. 'We consider here anisotropic matter,  which is crucial 
to understanding the properties of limiting configurations, as we will see 
in Section 4. 

We choose the line element in curvature coordinates 

ds  2 = e~'dt 2 _ e ~ d r  2 _ r2(dO 2 + sin 2 0dr (1) 

where u and A are functions of r alone. In these coordinates the energy- 
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momentum tensor T#~ is diagonal, viz., 

( E2 E ~ E 2 E 2 ) 
T~ = diag M ~  , (2) 

where (0, 1,2, 3) - (t, r, 0, r E is the usual electric field intensity, M ~  
represents the energy-momentum tensor associated with the matter con- 
tribution, and M~ = M 3 because of the spherical symmetry. Note that 
M~, in general, does not have to be equal to M~. 

We assume that the energy-momentum tensor satisfies the weak and 
the strong energy conditions, viz., Tg~#~ ~ > 0, and [T~v 1 _ - ~ g . ~  T]~"~  ~ > 

0, respectively, for an arbitrary non-spacelike vector ~' .  The weak energy 
condition, for (2), demands 

( P+~-7~ _>0, (p+vr)_>0, p+p• _>0. (3) 

The strong energy condition requires, in addition, 

(Tg-T~-T?-T2)= p+pr+2pl+~ >_0, (4) 

w h e r e  ; - Mg, p~ = -M~ a n d  p•  = - M ?  = - M 3  a d e n o t e  the  rest  e n e r g y  

density and the principal pressures of the matter present, respectively. 4 
In geometric units (G = c = 1) the Einstein-Maxwell equations, cor- 

responding to (1) and (2), are 

8~rp+E 2 _e_~ ( 1  ~ )  1 = ~ + ~ ,  (5)  

- 8 ~ r p ~ + E  2 _e_X ( 1 ~ )  1 = ~ -t- q- ~-~, (6) 

- u" + + - -  (7) 
2 - 2 -  r 2 ' 

where the primes denote differentiation with respect to r. The electric 
field is 

E(r)  = q(r) q(r) - 4zr per2dr, (8) 
r2 , 

The  so-called dominan t  energy condi t ion  provides two addi t ional  requirements ,  
namely,  [p - -P r  + (E2/41r)] ~_ 0 and  (p - p•  ~_ 0. We win see, in subsect ion 4.2, t ha t  
they  axe au tomat ica l ly  satisfied. 
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where q(r) is the charge inside a sphere of radius r and p~ is the charge 
density which is related to the proper charge density ~ by p~ = e~/2~5~ 
(for details see, e.g., Refs. 11,12). 

The effective gravitational mass inside a sphere of radius r is given by 
the Tolman-Whittaker formula [13], viz., 

~0 F MG(r) = 4~ ( T  ~ - T~ - T 2 - T3 ) r2e ( '+~) /2dr .  (9) 

There is a notable likeness between the definitions of charge (8) and effec- 
tive mass (9). Therefore, by analogy with (8), the quantity 

---- [(T3 - T :  (lO) 

can be interpreted as an effective mass density. A much simpler expression 
can be obtained from (9) if one substitutes eqs. (5)-(7) into it, namely, 

M G ( r )  ---- lr2e('-;~)/2z/. (11) 

It follows from eqs. (5) and (9)-(11) that  the energy conditions (3), 
(4) require 5 

e -~ ~ 1, u' > O. (12) 

We note that  the opposite is in general not true. In particular, the pos- 
itiveness of the effective gravitational mass MG(r), or # > 0, does not 
guarantee # > 0 everywhere. Situations of this kind could appear in vis- 
cous fluid [14], in the interior of charged spheres [15], and, in general, when 
the purely gravitational field energy, as described by the Weyl tensor, is 
large and negative [16]. 

To find the implications of (12), we have to use the boundary con- 
ditions with the exterior electrovacuum region. This region is described 
by the Reissner-NordstrSm field, which, in curvature coordinates, has the 
form 

ds 2 ( 1  2 M  q 2 )  = - _ _  + dt 2 

- 1 2 M  + 

---7- dr  2 - r2(dO 2 + sin 2 0dr (13) 

5 T h e  first inequal i ty  tbllows f rom (3) af ter  (5) ha s  been  in t eg ra t ed  as e -~  = 1 - 

f [  (. + E /s.)r dT. 
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where M and q represent the total mass and charge, viz., M -- MG((~), 
and q -- q ( ~ ) .  In the absence of surface concentration of charge at 
the boundary surface, say r = rb, necessary and sufficient conditions for 
matching the metrics (1) and (13) are given by the continuity of E,  v, A, 
and g~, viz., 

E (rb) = q2 (14) 
rb 4 ' 

( _ 
e ~(~b) = e -~(~b) = 1 2M + , (15) 

rb 

J ( r b ) = ~  rb- -  1 - - - - +  . (16) 
r b rb  2 / 

It then follows from (6) and (14)-(16) that  

p (ru) = 0. (17) 

We note that  p• need not vanish at the boundary. We are now ready to 
discuss the implications of (12). 

3. IMPLICATIONS OF THE E N E R G Y  CONDITIONS ON THE 
C H A R G E  A N D  SIZE 

Condition e -x  < 1 requires rb > (q2/2M),  while u' >_ 0 demands 
rb  _~ (q2/M).  These relations can be interpreted in two possible ways. 

3.1. C o n s t r a i n t s  on  t h e  c h a r g e  
The first possible interpretation is that  the demand that the energy 

conditions be satisfied leads to a maximum charge. Specifically, for every 
given (positive) mass M, there exists an upper limit, dictated by the energy 
conditions, on the amount of charge that  a sphere of radius rb might carry, 
namely, 

Iqlm~x. = MV~-~ �9 (18) 

Were the charge larger than this value, then the energy conditions would 
be violated. 

The existence of this limit is an interesting consequence of the energy 
conditions, because according to classical electrodynamics, a body in vac- 
uum might, in principle, carry an arbitrary charge. In fact, Maxwell equa- 
tions by themselves do not impose limitations on the amount of charge. 
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The limitations come from outside the theory, from considerations related 
to the properties of dielectrics and conductors. 6 

The question now is how restrictive this limit is. In principle, this 
limit can be applied to bodies of any mass and size. However, in prac- 
tice, it seems that  for all macroscopic bodies the charge is significantly 
less than in (18). For example, let us consider a dense object in vacuum, 
e.g., a neutron star of two solar masses and a radius of 10 km. According 
to (18), the upper value for the electrostatic potential near its surface is 
about 1026 volts. In real life exchange processes between the star and the 
surrounding medium appear to put a more stringent limit on it, namely, 
10s-10 l~ volts [17]. A similar situation occurs in the case of some micro- 
scopic charged objects, for example in atomic nuclei. For instance, the 
uranium nucleus contains ten times less charge than allowed by (18). An 
electron, however, does not satisfy (18); its charge is about 100qm~x. 7 

The conclusion is that,  although classical electrodynamics by itself does 
not impose formal limitations on the (maximum) amount of charge carried 
by a body in vacuum the energy conditions of general relativity do provide 
an upper limit on it, in the sense that  for charges larger than in (18) a neg- 
ative effective mass ,density becomes necessary to support  the gravitational 
field. This limit, however, does not appear to have practical consequences 
at the macroscopic level. 

3.2. C o n s t r a i n t s  on  t h e  size 
The second possible interpretation is that  the demand that the energy 

conditions be satisfied leads to a minimum size. Specifically, for every fixed 
charge q and mass M, there exists a lower limit, dictated by the energy 
conditions, on the size of the corresponding sphere, namely, 

(19) rb=i~ M 

Were the size less than this value, then the energy conditions would be 
violated. 

It should be noted that only for M < Iql does this lower limit affect 
the structure of the sphere. This is because sources with M >_ ]q[ have 

6 This can be i l lustrated by the following well-known example. When  a positively 
charged metal  ball is placed in contact with the inside of an  insulated hollow con- 
ductor, all the charge of the ball is transferred to the hollow conductor. Then,  in 
principle, the charge on a hollow conductor and its potential can be increased with- 
out limit by repeating the process. In practice, however, the charge can be increased 
until  electrical discharge occurs through the air. 

7 This  number  follows from the experimental evidence tha t  the diameter of the electron 
is no larger than  10 -16 cm. 
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an event horizon at r+ = M + ( M  2 - q2)1/~, and a Cauchy horizon at 
r_ = M - ( M  2 - q2)1/2, so that  r+ > M > rbmln (r+ = r_ = M, if 
M = [q[). Therefore, as long as one is outside a source with M > [ql and 
outside the event horizon, rb  > rbmln. Consequently, the contention in (19) 
is that  for every given value of q and M, with M < [q[, there is a limiting 
configuration for which its lower radius is rbmi= = (q2 /M) ,  dictated by the 
energy conditions. 

It is interesting that  (19) is formally  equal to a quantity commonly 
known as the classical electron radius, which is a radius ascribed to the 
electron in order to avoid an infinite (classicM) self-energy. It might seem, 
therefore, that  rbmi= must be very small, as in the electron that  it is of 
the order of 10 -13 cm. But this need not be so in general, because in our 
discussion q and M are not restricted to any specific value (besides, of 
course , M < Iq[)- 

Equation (19) implies that  the mat ter  density p is bounded above, 
viz., pm~x "~ ( M 4 / q 6 ) ,  and it cannot be increased without limit. This 
leads to the following conclusion: A naked singularity does not happen in 
Re issner-Nords t rhm,  unless the energy conditions are violated. This is 
very interesting, because it is precisely the opposite to what happens in 
the singularity theorems, which require the validity of energy conditions. 

From the above discussion, we conclude that  the fulfillment of the 
energy conditions in the Reissner-Nordstrhm field (a) ensures the non- 
negativeness of the mat ter  distribution, and (b) prevents the existence of 
naked singularities. 

4. PROPERTIES OF THE LIMITING C O N F I G U R A T I O N  

We have seen that  the energy conditions will be satisfied if and only if 
Iql < Iqlrnax or equivalently rb > rbmln. Although these requirements on q 
and/or  r b seem to be well satisfied in all practical cases, one may still ask, 
as a question of principle, what the properties of the limiting configuration 
are where Iql --~ Iqlm~x, rb ~ rbmln. The specific question we want to 
answer is the following. In such a configuration, what relations must be 
satisfied by the mat ter  variables in order for the energy conditions to be 
satisfied everywhere within the source? 

4.1. E f f e c t i ve  mass  
Outside a sphere with radius rb > rbm,. (charge [q[ < [q[max), the 

gravitational mass (9)-(11) is positive. Therefore, its interior structure can 
always be modeled as having # > 0 everywhere. However, the situation is 
different in charged sources that  have rb = rbm,n (]q[ = [q[m~x). Indeed, in 
such sources MG vanishes not only at the boundary, but, in the absence of 
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singularities, it also vanishes at the center r = 0. This means # cannot be 
positive at every point because the slope (dMG/dr) = 47rr2# changes its 
sign somewhere inside the structure. The consequence of this is that  the 
strong energy condition will be violated within such a sphere unless p = 0 
at every interior point; viz., 

p + pr + 2;•  + = o. (20) 

The conclusion, therefore, is that  when rb = rbm,n (Iql = ]q[m~x) the 
energy conditions will be satisfied everywhere if and only if MG (r) = 0 
within the source. Since the force per unit mass, or acceleration of gravity, 
g(r), with which the gravitational field acts on a neutral test particle, at 
rest at a point r, is given by g(r) = --[MG(r)/r2]e -~/2, it follows that this 
is equivalent to the requirement that  the material content of the sphere 
has no effect on gravitational interactions. 

This conclusion may at first seem odd, but matter with such properties 
has been considered in different contexts by several authors. In fact, in 
the case of uncharged perfect fluid (E(r) = 0, Pr = P• eq. (20) reduces 
to the equation of state p = -3p,  which appears in discussions of the 
premature recollapse problem [5], in coasting cosmologies [6], in cosmic 
strings [7,8], and in derivations of (3+1) properties of matter from (4+1) 
geometry [9,10]. 

The question is how to understand the vanishing of the gravitational 
mass. Indeed, if the contribution from the matter is positive, where does 
the negative contribution, that  cancels it out, come from? One could ask 
whether this cancellation is not a consequence of the electrical field. We 
will answer this question in terms of the purely gravitational field energy, 
which is represented by the Weyl tensor. 

In a spherically symmetric space-time all the components of the Weyl 
tensor are proportional to the quantity W, defined by [15,16] 

r r3e-~ (t/-21u'2 u ' -  A' #A' l ) (21) 
W - 6  6 + 4 2r 4 - + ~ ' r  " 

Now using the field equations (5)-(7) and (11) we obtain 

MG= [ W+4rcr3"T (p + 2pr +p•  ('+:~)/2. (22) 

This expression is interesting because it does give the effective mass as the 
sum of two parts only; W and (p + 2pr + p• for the purely gravitational 
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field and matter  contribution, s respectively. But it does not contain the 
electrical field at all. 

In the case under consideration, one can conclude from (22) that  the 
vanishing of the effective gravitational mass throughout the source is pro- 
duced not by the electrical field, but by a large negative gravitational energy 
W, which exactly balances the positive contribution from the matter. (Note 
that  this contribution in the case of perfect fluid reduces to the familiar 
p + 3p.) This conclusion is completely general, because (22) follows solely 
from the field equations, and not from any particular assumption. 

Another interesting feature, in the ease under consideration, is that  
the total mass, measured by an observer at infinity, is completely of elec- 
tromagnetic origin, in the sense that  the only nonvanishing contribution to 
the effective mass in (9) comes from the electrical field outside the sphere, 
p = (q2/r4), while the content inside the sphere does not contribute at all. 

4.2. I n t e r n a l  s t r u c t u r e  
A charged body with radius rb = rbm,~ (Iql = [q]m~x) cannot be con- 

structed of perfect fluid but it necessarily consists of anisotropic matter. 
This follows from the fact that  (20) should take place not only in the in- 
terior of such a body, but also at its outer surface. In addition, the weak 
energy condition (3) and the boundary condition (17) require p(rb) > 0, 
and pr(rb) = 0, respectively. Therefore, (20) cannot be satisfied unless p j_ 
is different from zero, and negative on the boundary surface. This implies 
that  the limiting configuration with r b = rbmln (]q[ = [qlm~x) must have 
unequal principal pressures. 

In order to understand the physics behind this behavior, let us con- 
sider for a moment the (generalized) Tolman-Oppenheimer-Volkov equa- 
tion of hydrostatic equilibrium, corresponding to (2). It is [18] 

MG(p-4- P r )  e()~_u)/2 dpr qPe 2 
= - 8--7- + + -r ( p •  - p ' )  ( 2 3 )  

This equation uncovers a number of interesting features. In particular, we 
see that  there is an additional force, namely, 2(p• - p ~ ) / r ,  which points 
outward when p• > pr and inward when p• < Pr. We will see that it is 
precisely the existence of this force that  allows the energy conditions to be 
satisfied throughout limiting configurations. 

First, note that  the regularity conditions require q(r) = 0, and p~ = 
p• at the origin r = 0. Then it follows from (20) that  the limiting form 

8 E q u a t i o n  (22) sugges t s  t h a t  the  q u a n t i t y  (p "4- 2p,. + p . )e  ("+~')/~ can  be  i n t e rp re t ed  
as an  "average" effective m a t t e r  dens i ty  inside a sphere  of r ad ius  r .  
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of the equation of state at the center is p = -3p,  which is the equation of 
state mentioned above [5-10]. 

This, in particular, means that  p~ is negative at the center. 9 In ad- 
dition, (dp~/dr) is positive, because Pr vanishes at the boundary. This 
indicates that  the force associated with the pressure gradient points in- 
ward. Consequently, in the case where MG(r) > 0 inside the source, the 
pressure acts in conjunction with gravitation to counteract the electrical 
repulsion and maintain the equilibrium. This shows that  the hydrostatic 
force is not strong enough to counteract, by itself, the electrostatic repul- 
sion. Therefore, in the case where MG(r) = 0, in the absence of gravi- 
tational attraction in the sphere, the equilibrium requires the presence of 
a substitute force acting toward the center, at every point. This force is 
provided by the last term in (23). 

The conclusion is that  the energy conditions are satisfied in spheres 
that  have Iql = Iqlrnax, rb = rbmln if and only if (p• - p~) < 0, where the 
equality takes place at the r -- 0 only. 

5. SOME EXPLICIT MODELS OF LIMITING CONFIGUIIATIONS 

So far, we have mainly used the consistency between the boundary 
and the energy conditions. But, the field equations have not yet been 
used. Therefore, one should ask the question of whether the limiting con- 
figurations are consistent with the field equations. Now we will show, by 
means of explicit examples, that  the answer to this question is positive. 

Since .~r ) ---- 0 inside the source, it follows from (11) that  u' = 0. 
Einstein equations (5)-(7) can be combined to get 

8 ~ r ( p + 2 p r + p •  r 2"1 (24) 

This equation can be easily integrated as 

e -~ = 1 + Cr 2 - 16~rr 2 f r  (p + 2pr_ +p•  dr, (25) 
7o r 

where C is a constant of integration. 

5.1. E q u a t i o n  o f  s t a t e  p + 2pr + p• = 0 
We have seen that  the configurations under discussion exhibit the 

following features: (i) the effective gravitational mass is zero within the 

9 Also, one finds that the dominant energy condition holds everywhere within the 
sphere. 
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source, (ii) the principal pressures are anisotropic, and (iii) the limiting 
form of the equation of state at the center is p + 3p = 0. The latter 
motivates one to assume that  the equation p + 2p~ + p• = 0, which is the 
anisotropic generalization of p + 3p = 0, takes place everywhere within the 
source. The interior metric is then 

ds2= ( l _ M )  d t 2 _ ( l _ M r 2 ~  -1 ra ] dr 2 - r2(d02 + sin 2 0dr (26) 

The corresponding equations of state are 

M 
P = - P r  Jr 4n.rb3, (27) 

M 
P = P• + - - z  "Trrb ----~-~ " (28) 

Note that  Idpr/dpl = I@./dp[ = 1, which means that  the distribution 
is consistent with the causality condition [dp/dpl _< 1 (see for example 
Ref. 19). In the case where the charge is uniformly distributed throughout 
the sphere, the interior mat ter  distribution is 

= + = 1 - , ( 2 9 )  

E2(r ) = M r2" (30) 

5.2. Uniform density 
Another simple model arises if one assumes that  p and Pc are constants 

throughout  the matter .  In this case 

87r 16n-2 n r4  (31) 
e - ~ = l - Y p r  2 -  4--'-5Pc , 

where the constant of integration has been set equal to zero to avoid singu- 
larities at r -- 0. From the boundary conditions we find p = (3M/lO~rrb3), 
and p~ = (9M/16r2rbs) .  The interior line element is 

- 1 5Vb3 dr 2 - r2(dO ~ + sin 2 OdeS). (32) 
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Note that the matter  contribution to the effective mass in (22) is 
positive everywhere, viz., 

M r  ~ 
(p -t- 2pr -t- p• -- 40a.rb 5 �9 (33) 

The radial and tangential pressures are given by 

p [  r 2] 15p (34) 
p~=-~ 1 - ~  , rb2-S~p~' 

P [  14 r2 ]  
p •  l + - ~ - r ~  " (35) 

More general solutions can be obtained if, instead of (27) and (28), 
one assumes the equations of state Pr = A l p  + A2, Px = B lp  + B2, where 
A and B are constants. It is not difficult to show that the resulting models 
are physically reasonable, in the sense that, for a wide choice of A and B, 
the models are causal, free of singularities and satisfy the usual energy 

3 conditions, namely, p > O, p + ~i=1 Pi >_ 0 and p >_ ]Pi[. 
Consequently, one can conclude that lhere are physically reasonable 

distributions of charged mailer that have no effect on gravitational inter- 
actions. 

6. S U M M A R Y  A N D  CONCLUSIONS 

This work was motivated by the fact that all experimentally detected 
fields satisfy the energy conditions. Our aim was to discuss the answer 
to the following questions: If, in the Einstein-Maxwell theory, the energy 
conditions have to be satisfied, 

(A) What  can one deduce about the general behavior of charged 
spheres? 

(B) What  are the consequences on their internal structure? 
We have seen that there are two sets of consequences. The first one 

concerns the question (A). In Section 3, using the Reissner-NordstrSm 
metric to represent the exterior field we found that the demand that the 
energy conditions be satisfied (i) ensures the non-negativeness of the mat- 
ter distribution, and (ii) prevents the existence of naked singularities. This 
is interesting because the singularity theorems establish that a singularity 
is inevitable if the strong energy condition is satisfied (given some other 
technical conditions). 

It is important to keep in mind that these conclusions follow solely 
from the boundary and energy conditions, not from the modeling. In 
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particular, the source does not have to be assumed static. Therefore, they 
are valid also in the case of charged spheres in dynamical evolution. 

The second set of consequences concerns the question (B) noted above. 
The purpose here was to describe the properties of what we have called 
limiting configurations, which are configurations that stand at the junction 
between those that  do satisfy the energy conditions and those that  do not. 
Their basic features are the following. 

(i) The effective gravitational mass is zero within the source. 
(ii) The principal pressures are anisotropic. 
(iii) The limiting form of the equation of state at the center is p+  3p = 

0. 
To the best of our knowledge, configurations with such properties have 

never been discussed in the literature. 
These configurations are interesting because the matter does not grav- 

itate. This property also appears in discussions of cosmic strings [7,8] and 
in a derivation of (3+1) properties of the matter from (4+1) geometry by 
Davidson and Owen [9], and by the present author and P. S. Wesson [10]. 

How can one interpret these configurations? As far as the physi- 
cal origin is concerned, one may imagine these configurations as due to 
self-interacting gravitational effects of the zero-point electromagnetic field. 
This interpretation is motivated by two particular features of the models, 
which were discussed in subsection 4.1. One of them is that the mass is 
completely of electromagnetic origin, in the sense that  the only nonvanish- 
ing contribution to the effective mass in (9) comes from the electrical field 
outside the sphere--the content inside the sphere does not contribute at 
all. The other feature is that  the equation of state within the source is the 
anisotropic generalization of p + 3p = 0, which is the only equation of state 
compatible with the existence of zero-point electromagnetic field [20]. The 
question of how these configurations relate to the real universe remains, 
however, open. 

There is a notable likeness between the properties (i), (ii) and (iii) 
mentioned above and the properties of the effective energy-momentum 
tensor discussed by Davidson and Owen [9] in their four-dimensional in- 
terpretation of a five-dimensional universe. Besides being spherically sym- 
metric, it has unequal principal pressures and contains a parameter that  
can be identified with the electrical charge. More importantly, the effective 

3 equation of state is p + ~i=I Pi = 0, as in the case discussed here. 
Is there any physical meaning behind this likeness, or it is casual? 

The answer to this question is not yet clear. But, it clearly suggests that  
an interesting example of configurations of the kind discussed here might 
emerge from Davidson and Owen's effective energy-momentum tensor, if 
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it is interpreted as a combination of mat ter  and radial electric field. The 
demonstration of this assertion requires a more detailed investigation. 
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