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The most general Einstein-Rosen solutions obtainable by the inverse scattering 
transform, using the Levi-Civit/t metric as seed are analyzed. They can be 
classified as a family of evolving metrics without a clear physical interpretation 
and a family representing gravitational waves absorbed and radiated by a 
massive cylinder. The physical interpretation is based on a perturbative analysis, 
which shows that the solition waves have a peculiar superluminal effect, on the 
evaluation of the optical scalars and on Thorne's C energy. 

1. I N T R O D U C T I O N  

This paper deals with axisymmetric solutions of Einstein's equations. The 
nonasympto t ic  flatness of these metrics makes them of little use for the 
study of astrophysical  or any realistic objects. However,  they are the 
simplest metrics for which exact gravitat ional  wave solutions are known.  
Their interest lies in the fact that  they allow one to study exact properties 
of gravitat ional  waves and that, one hopes, more  realistic models of  
gravitat ional  waves will share many  of  those properties. For  this reason 
cylindrical symmetric  solutions have been investigated extensively by m a n y  
authors  [ 1-3 ]. 

In recent years generating techniques have been developed to find 
solutions of Einstein's equations. A m o n g  them, there is the inverse 
scattering technique [4, 5]  (Solition technique) that  can be applied to 
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metrics with two commuting Killing vectors. Vacuum solutions with 
almost arbitrary complexity can be generated by such a technique. 

In this paper we analyze the solutions with cylindrical symmetry that 
can be generated this way. For simplicity we shall consider diagonal 
metrics only (Einstein-Rosen metrics), that is, hypersurface orthogonal 
Killing vectors. Those metrics can be seen as a limiting case of the more 
general nondiagonal metrics from which they can be obtained by a con- 
tinuous parameter transformation [6]. This is an important point because 
Einstein's equations for the Einstein Rosen metrics reduce to a linear 
equation plus a system solvable by quadratures, whereas the nondiagonal 
case is truly nonlinear. Therefore the diagonal solutions exhibited here can 
be expected to have a soliton-like behavior which is, typically, a con- 
sequence of nonlinearity. 

The result of our analysis is that these solutions can be classified as 
two different types, independently of the number of parameters they con- 
tain. The generic behavior of these Einstein-Rosen metrics can be worked 
out through the study of the simplest models. 

The first model, studied in Section 4, is the "one-soliton" solution with 
two parameters only. The most general static solution with cylindrical sym- 
metry is the Levi-Civit~ metric which can be interpreted as the external 
field of an infinite cylinder with a well-defined mass per unit length [2]. It 
is natural to use this solution (seed solution) as the starting point of the 
inverse scattering transform, and the result can be understood as Einstein- 
Rosen radiation on a Levi-Civit~ background. The asymptotic behavior of 
this simple model is far from satisfactory. However, it is of use to charac- 
terize, qualitatively, a model family of the "n-soliton" solutions. 

The second model, discussed in Section 5, is a "two-soliton" solution 
with four parameters and it characterizes the remaining n-soliton solutions. 
These solutions represent, now, localized soliton waves on a Levi-Civit~ 
background, possessing therefore the axial singularity only. We perform, in 
Section 5, a perturbative analysis of these metrics and show that they are 
characterized by a pulse-like perturbation, with a characteristic height and 
width, which propagates at a superluminal velocity. In Section 5 we use the 
space-time evolution of the optical scalars to gain further insight into the 
physical properties of these solutions. 

An interesting feature of the Einstein-Rosen metrics was discovered by 
Thorne [-3], who was able to define, unambiguously, a localized energy 
density, the so-called C-energy density. Also in Section 5, we make use of 
this quantity to draw complementary information about our metrics. 
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2. T H E  S E E D  M E T R I C  

As a first step one usually chooses a simple seed solution. This means, 
in fact, that we require of the seed more symmetries than are necessary to 
apply the solution technique. In this case we have choosen an abelian 
group G3 with the three Killing vectors c~,, 0~, 8z. 

This is, however, too mild a restriction; the general vacuum solution 
for this symmetry is known [1 ] and does not posses a clear physical inter- 
pretation. Instead of this we restrict ourseles to the static family found by 
Levi-Civitfi I-7]. This family can be written in the form 

ds3=flp (a2 1)/2(dp2-dtZ)+pa+l d~2 +pl adz 2 (1) 

with fl and 6 arbitrary parameters. This solution plays within the context of 
cylindrical symmetry the same role that the Schwarzschild solution plays in 
the spherically symmetric cases. 

There is, in general, an infinite line singularity at p = 0, rather than a 
point-like one. It is a naked singularity and an event horizon cannot be 
built to hide it. 

This solution was first studied by Levi-Civitfi, and in the Newtonian 
limit, he found 

l + 2 M  
6 -~ (2) 

1 - -  2M 

where M is the relativitic mass per unit length (GM/cZR) of a cylinder (R 
being a characteristic length of the physical problem). 

For  M = 0 ,  c5 = 1 and metric (1) is flat space; 6 grows without bound 
when 2 M - ,  1. One may take the parameter fl = 1, so that one recovers flat 
space in standard coordinates when 6 =  1 [-8]. However, Marder [2] ,  
studying the matching problem of (1) with an interior solution for a 
physical cylinder, assuming a specific equation of state, concluded that in 
this case/3 does depend on 6 (therefore on the mass density) and cannot be 
put equal to one. In what follows we shall assume 6 and /? arbitrary 
parameters. 

Thus, for c5 > 1 metric (1) can be interpreted as the exterior field of an 
infinite cylinder with certain mass per unit length, M. 

There is an important difference with the Schwarzchild solution that 
must be pointed out. The Levi-Civitfi solution is not the most general 
exterior solution to a cylinder. Looking at Einstein's equations with (total) 
cylindrical symmetry one can easily see that gravitational waves can be 
superimposed on the exterior field of a static cylinder. This is in contrast 
with spherical symmetry, and will be discussed in the next section. 
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3. THE EINSTEIN-ROSEN METRICS AND SOLITON SOLUTIONS 

The most general metric for gravitational waves in a vacuum, with 
cylindrical symmetry, was written by Kompaneets [9, 10] 

ds2=e2(~-q/)(dp2-dt2)-k-p2e -2~0 dq~2 q-e2~(dzq- A d~) 2 (3) 

with 7, 0, A depending on t and p alone. 
By requiring total cylindrical symmetry (i.e., invarance by ~b ~ -~b, 

z - - , - z )  it reduces to the Einstein-Rosen form [11, 12] A=0.  These 
metrics describe gravitational waves, with only one possible mode of 
polarization (instead of two modes) and they have been widely studied 
because the equations governing the field #/ are linear. (Besides once #/ is 
known ? can be found by quadratures only.) So that, in this case, one can 
superpose linearly the solutions ~ of the field equations. 

To the static Levi-Civitfi background (1) IPb= ( 1 -  6)/2 In p one may 
superpose wave solutions O(t, p). Marder [2] has calculated the effect of 
pulse waves on particles moving on geodesics and the change in proper 
mass per unit length of a particular solid cylinder. Thorne [3] found that 
the decrease of proper mass was equal to the C-energy carried by the 
waves. The C-energy of our solutions will be studied later. 

Here we shall superpose soliton waves on a static cylinder. The general 
n-soliton solution for the Einstein-Rosen metric 

ds2 = f ( dP 2 - dt2) q- g4,~ dO2 q- gzz dz2 (4) 

can be obtained by a coordinate transformtion from the diagonal n-soliton 
solution with the Kasner seed obtained in the cosmological context by 
Carr and Verdaguer [6] in the canonical coordinates (t, z). These coor- 
dinates transform simply to the canonical coordinates (p, t) of metric (3), 
and the solution in the cylindrical context reads 

where 

with 

g#=p2expE--2~b]exp[--2 L ~i(t,p)] gzz=p2/g# (5) 
i= l  

tPi(t, p) = - �89 In ai 

_ w,~+~, ~ [-w~-~ ( w , 2 + ~ )  ~ w ~ + ~ 7 ' / ~  
ai + = I - p - ~  + a,-T x/-2 + p4 + a ;  L IPT-- J 

ai-~ 1+2  p--------7~+ p4- j , zi-ti - t  
(6) 
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with wi, ti arbitrary real parameters. The two possible values of ai, a~,  
and a + are related by a F = (a +)-1  

The metric coefficient f is obtained by quadratures, once g #  and gzz 
are known [4].  The solitonic character of those solutions is attached to the 
functions ai(t, p), as it will,become apparent in the remaining sections. The 
general properties of metrics (5) will be qualitatively understood by 
studying the simple solutions with one soliton al ,  and with two solitons 
a~-a;. 

4. ONE-S OLITON METRICS 

These are the simplest solutions of type (5). They involve two real 
parameters, only w 1 and tl; without loss of generality we can take tl = 0. 
Its explicit form is, dropping subindices 

p(a 2 5)/20-6+2 
, go~=p1+aa, g=z=pl-aa -1 (7) 

where 

/ - I= (1 -c r )2+16w2a2p  2 ( 1 - a ) - 2  

To gain some insight on the properties of these solutions it is useful to 
study the limits Itl < p --' oo, Itl -~ p --, oo, p <Itt  --, oo, and p --* 0. 

For  Itl < p - - ,  oo the function a, taking the prescription a +, is 

2 w  
0- , '~  1 + - -  

P 

and metric (7) jus t  behaves as the Levi-Civit/t seed solution (1). The only 
difference is the value of the parameter in the function f :  instead of fi one 
has fl/16w 2. 

A similar behavior for the a function is found in the limit ]tl -~ p ~ oo 
since in this case 

cr_~ 1 + 2x/- ~ 

However, the intrinsic properties of the metric are very different from 
the Levi-Civit/t solution in this limit. In fact, if we write the Riemann tensor 
for a metric of type (4) 

(>~) = _ 
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where E and B are 3 x 3 matrices, whose only nonzero elements are 
E n  = e l ,  E22 =e2 ,  E33 = - e l - e  2 and B12 =B21 = b, the Riemann tensor 
components  in the limit It] ~ -p -+  oo have the leading terms such that 

e I ' ~  - - e  2 ~ b 

and that is a type N metric in the Petrov classification. That  is, on the light 
cone the family of solutions (7) behave asymptotically as pure gravitational 
radiation in the canonical coordinates (p, t): incoming radiation toward the 
symmetry axis in the past t < 0, and outgoing radiation in the future. The 
amplitude of the radiation is maximal on the light cone I tl ~ p, far from the 
axis. 

The limits p,~ Itl ~ oo and p ~ O  can be discussed simultaneously 
since the respective limits of a are 

~ - 4 ~  w24-t2 
[1 + 0 ( t - l ) ]  and cr-~ 4 - - 7 - -  [1 + 0 ( t - l ) ]  

and the metric becomes 

f ~j~46-Z(W2 +t2)6-Zp(~ 1)(a 3 ) /2  

1 
go(~,,~pa-14(wZ+t2), gzz~_p 3 a 4 ( w 2 + t  2) (8) 

This metric for It[ ~ W 2 and p --+ 0 behaves just as a Levi-Civitfi metric 
with a new 6 ' - = 6 - 2 .  Special cases are 6 =  1 ( 6 ' =  - 1 )  and 6 = 3  ( 6 ' =  1) 
since in both cases it tends to flat space. A possible interpretation can be 
given if we look at t = constant (t = to) hypersurfaces: the metric near the 
axis can be seen as a Levi-Civit~ metric with parameter  6 ' =  6 - 2  and a 
new parameter  fl' =f146-Z(w2+ t2) 6 2. At larger to, fi' gets larger if 6 > 2; 
but the function f 1 is proport ional  to Thorne's  C-energy [3]  and we can 
think that the C-energy of the field decreases as to grows. This may be 
related to the energy carried by the waves. 

The general picture for those metrics then emerges: take a value for 
6 > 3 and the hyperspace t > 0, the field in the region p --+ ~ is close to that 
of a static cylinder of mass per unit length M ~- �89 - 1/6 + 1) and with 
parameter  fl/16w 2. Near  the axis p -+ 0, it is the field of a cylinder with a 
mass M' ~- �89 - 1/6' + 1) with 6' = 6 - 2 and fl' -~ flw 2a'. If  we take now a 
hyperspaee at large t = to, in the region tc ~ p --+ ov we will have the field of 
the cylinder with 6, on the light cone p ~ to, the field is that of pure 
radiation and at a finite distance from the axis the field is that of a cylinder 
with mass M '  and f l ' -~fl t  2a'. Therefore the C-energy (~(/~ ' )  1) is now 



Einstein-Rosen Metrics 1147 

smaller: the energy has been radiated. In particular if we take 6 = 3 the 
evolution is toward flat space 6 ' =  1. 

This picture is symmetrical for t < 0 with incoming radiation. 
For metric (7) with prescription a -  the picture is qualitatively similar 

but near the axis it is like a Levi-Civitfi metric with c~'= 6 + 2. 
These metrics, however, do not have a clear physical interpretation 

since their global properties are not physical. Besides the usual axial 
singularity they are also singular at Itl ~ oo. 

The qualitative behavior of a metric of the general type (5) can be 
easily understood now. We write the g ~  component showing explicitly the 
different prescriptions used for as in (6) as 

g o r  l~ a/+ a[- 
i=1 i = k + l  

the asymptotic behavior near the axis is that of a Levi-Civitfi metric with 
~' = 6 + 2(n - 2k) whereas it behaves as the Levi-Civit/t seed at p ~ oo. 

For  n # 2k the global properties of these metrics are similar to those 
described above. However, for n = 2k the soliton metrics tend to the seed 
Levi-Civitfi metric in both assymptotic regions and they can be interpreted 
as localized finite disturbances (soliton like) on the Levi-Civitfi 
background. They will be discussed in the next section. 

5. T W O - S O L I T O N  METRICS 

These metrics are obtained as the linear superposition (in the sense of 
linear superposition of the field r of metric (3)) of two soliton fields on the 
Levi-Civitfi static background. They can be written [6]  as 

a~a2 { [  f=p[,a2 17)/2] ~ 6 8Z. 1 ~.2alo. 2 72 

H1H2 (1 -- cq)2(1 -- a2) 2 (oh + a2)p2 (1 + el)(1 + a 2 ) J  

64w~wZa~a~ )2 
- (1 ---~--/~-i ------a-2)2j (9) 

ge)~=pl+aalcra g:z = p l -a (a~a2)  1 

We shall take now the prescription a f  and af with w 2 • w 1 and, for 
simplicity, t 1 = t 2 = 0. 

The product a~ a + behaves in the asymptotic region Jtl ~ p ~ 0% like 
1 + O ( p - 1 ) ,  in the region p,~ it[-+ oo like 1 +O( t -~) ,  whereas in 
Jtl -~ p ~ oo it goes like 1 + O(t-u2). Thus, the maximum deviation from 
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the static background is localized, asymptotically, in the light cone region. 
The size, shape, and motion of this perturbation depends on the 
parameters wl and w2, as the analysis in the next section will show. From 
the expressions for g ~  and gzz it is apparent  that the metric tensor (9) 
tends to the Levi-Civifft metric in the limits It] ~ p ~  ~ and p ~  It] ~ 
and this is proved by the asymptotic behavior of the Riemann tensor com- 
ponents in the canonical coordinates. However, in the limit ]t] ~ p ~ ~ the 
leading terms of the Riemann components  are those of pure radiation, as it 
is typical of some soliton solutions [13 ]. Thus one can interprete naturally 
this metric as a soliton wave on the field of a static cylinder. The localized 
wave arises as an interference effect resulting from the superposition of two 
radiating fields of the type studied in the last section. 

Perturbative Analysis 

A perturbative analysis assuming that w l -  w 2 = t~W is small (t6w[ ~ 1) 
allows one to obtain analytic expressions for the shape and motion of the 
solitonic perturbation as well as to give a physical meaning to the 
parameters (Wl, w2). Since the basic function of metric (9) is 0"10"2, because 
the f coefficient is determined by Einstein's equations in terms of go~ and 
gzz, we shall concretize the analysis on this function. If  we define a = 0" 2 
and w = wl we can write 

0"10"2 ~ 1 + 6w Ow In a (10) 

The right-hand-side perturbat ion is too complicated in terms of (p, t) 
(see (6)) to find analytic expressions for its shape and motion directly. 
Instead we shall introduce new coordinates (R, T) depending on w, defined 
by 

p = w cosh 2T sinh 2R 

t = w sinh 2Tcosh  2R 
(11) 

with ( 0 ~ < R < ~ )  and ( - ~ < T < ~ ) .  In terms of these coordinates 
0"= tanh 2 R. From (11) we deduce 

2w Ow R = - s i n h  2R cosh 2R(cosh 2 2R + cosh 2 2 T -  1) i 

and (10) becomes 

0w In a = - 2 w  1 cosh 2R(cosh 2 2R + cosh 2 2 T -  1) -1 
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and we can now find the maximum in the p direction of this function by 
solving the equation 

c~pSw In a = 0  (12) 

This can be easily done after finding ~pR and c3p T from the coordinate 
change (11). The solution in (R, T) coordinates is 

3 sinh 2 2 T =  cosh 22R 

It can now be transformed to (p, t) coordinates; using cosh22T and 
cosh 22R as intermediate coordinates the computations are rather simple. 
The final result which gives the trajectory of the mximum p,, in terms of t 
is 

p~,=(w+t/xf3)( . , f3t-w ) for t ) w / x / 3  

p2m=(t/,,~--W)(x/-3t+w ) for t<<.--w/x/3 
(13) 

and for - w / x / 3  <<.t<~ w/xf3 is Pm = 0. Thus the pulse has a maximum on 

the symmetry axis for -w/x~<~t~w/x/-3 and at time Itl > w / x ~  this 
maximum propagates on the (p, t) plane. Thus the parameter w/xf3 
characterizes the time of formation of the pulse (soliton). 

The speed of this pulse in terms of (p, t) is now found to be 

dpm/dt=(w-l-~t)(Bw@x/-3t)-l/2(x~t--w)-l/2 (14) 

for t >1 w/x/3. For t < 0 the expressions can be trivially obtained from the 
t > 0 so we shall not discuss them further. From [14) we see that the speed 
of the soliton is infinite at the beginning t = w/x/-3 and it tends to unity (the 
speed of light) when t --* oo. The trajectory of the maximum approaches the 
asymptotes p = t+ w/x/3 for the outgoing pulse and p = - t +  w/x/3 for 
the incoming pulse. 

The shape of the pulse, its height h and width A, can now be found. 
The height is defined by 

h = 16w ~w In c~(pm)j 

Using again the intermediate variables cosh 22T and cosh 22R, which 
make the algebraic manipulations become simpler, and then substituting 
back the (p, t) coordinates, we finally get 

h =  wl(,/3w 't- '  + 3 , / g t  2)1/2 (15) 
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Thus, initially at t=w/x f3  , h~6w/w, but for large t, 
h~(6w/2)(3x/3)m t 1, independently o f  w. The parameter 6w charac- 
terizes the strength of the pulse and a small w gives a higher pulse initially. 

We can now find the width of the pulse. It is defined by A = IPl - P21 
where p~ and P2 are the p coordinates where 6w 0 w In a equals h/2 (full 
width half maximum). 

The analytic expression for the width is found to be 

A = @ ~ 3 3 + l ) 1 / z (  [t[xf~ 1~1/2_(z__! [tl+l~l/2(.[t[_x/-~ 1) 1/2 
wz2 / k W x/3 / \ wz~ 

where 

and 

z l ~ x [ ( 1  Z2 ] Z2 ] - 1 ]  

Z2~Z [( 1 -L~l/2-~zt] ~]/2( 1 -Z) I/2Z2J -- 1] 

Z - (4 + x/ -~)  1/3 + (4 - x / i5 )  1/3 

Its behavior for large t can be easily computed from the previous 
expressions 

tlim A 2L\x/~+ - + _~4.87 (16) 

and it is found to be independent of w. 
All the properties of the space-time. (9), that is, its curvature and 

physically associated quantities such as those discussed in the next sections 
will have a behavior qualitatively similar to the pulse wave discussed here. 
We can now summarize and comment upon some of those properties. 

First we have seen that this pulse propagates at a speed greater than 
the speed of light and only approaches it asymptotically. Thus the soliton 
pulse cannot be interpreted as the propagation of a causal effect; it is rather 
the result of the interference due to the superposition of ai- and cr~ by 
means of which different parts of the space-time get localized perturbations 
at different times. 

Although there is no definition of a soliton in General Relativity, these 
pulse waves have features similar to the classical solitons such as in 
hydrodynamics. The classical solitons are characterized by being localized 
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perturbations of constant amplitude, with some characteristic speed of 
propagation, that emerge basically unmodified after collisions. Here we see 
that they are localized perturbations and have a characteristic speed of 
propagation. Although their amplitude decreases with time this must be 
understood as a consequence of being localized at a larger radius as time 
increases. Their width, however, becomes constant at large times. The 
properties of these perturbations under collisions cannot be studied in the 
two-soliton solution, we need at least the four-soliton solution. In the 
cosmological context it has been shown, in [13],  that the cosmological 
solitons emerge unmodified after scattering. Such conclusions can be trans- 
lated easily into the cylindrical context after a coordinate change. 

Optical Scalars 

To analyze further those solutions and, in particular, their "solitonic" 
character it is convenient to study the optical parameters associated to a 
null congruence. The interest is twofold: on the one hand, the Einstein- 
Rosen metric admits a preferred vector field associated to geodesic null con- 
gruences. Therefore an invariant characterization of the metric can be done 
by the expansion, 0, shear, a, and rotation, co (co = 0  for these metrics) 
associated to the null congruence. On the other hand, the shear and expan- 
sion produced by the solitons on the null rays give physical information 
about these waves and measure, in some way, the energy carried by them. 

The expansion and shear are given by 0 = (1/2~-2)(1/fp) and 

1 1 
a=60 2x/~ f[(ln~rl~2),t+(lnala2).p ] 

To explore their behavior we shall use the congruence of null rays, defined 
by 

t=p+c (17) 

where c is an arbitrary parameter ( - oo < c < oo) (Fig. 1). We shall give the 
optical scalars in terms of the affine parameter 2 defined by 

2=f  f(p+c, p) dp (18) 

The reason for using the affine parameter is its physical meaning. For  
the Minkowski metric, the seed metric with 6 = 1, it is 2 ~ p  (there is 
always an arbitrary multiplicative factor) and therefore 0 ~ 1/2 so that 2 
can be interpreted as the "parallax" distance from the symmetry axis [ 14]. 

842/18/11-5 
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t : C:l / C:l] ...-" C-'"l 

2 ~ / /  / "  /"" c:-2 

1 "" / "  - /  - /"  / ,-- j 
: . . /  ,.." / . .  

: . , /"  / /  . / "  
"" I" " e i ...... "~ // '~" 

Fig. 1. Null geodesics t = c + p used to study the behavior of the optical scalars. 

For a massive cylinder 2 ~ p(62+ 1)/2 and 0 ~ 1/2 as before, therefore one can 
again interpret 2 as the parallax distance from the axis that would be 
defined by a local observer measuring 0. Since metrics (9) represent some 
finite perturbations on the background field of a cylinder it seems 
reasonable to compare the expansion and shear of congruences ( i0)  with 
those of the background: Ob, o-b. 

In Figs. 2-5 the ratios 0(2, c)/Ob(2, c) and o-(2, C)/O-b(2, C) are represen- 
ted. Those ratios are almost unity everywhere except in the regions where 
the null ray "hits" the interference region where they get expanded and dis- 
torted. For the null ray with c = 0 those ratios are different from unity 

C : I  

C : 8  

C :-1 

C "-2 

, i r 

\ _ . _ -  

i i i i i i i i i i 

! 2 

~lative expansion foe klta = 1 

Fig. 2. Relative expansion in arbitrary units, for 6 = 1, shown as a function of r. Each curve 
shows the deviation from 1 along the null geodesics defined by the values c =  1, 0, - 1 ,  - 2 .  
The maximum deviation is found where the null ray hits the soliton (for c =  - 1 ,  - -2) ,  or 
when it moves in the same direction (c = 0). 
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i i , i i i I , , i 

C : 6  . . . 

i i , i J i J 

A 
6>1 [____--J ~,,,,. . . . . . . .  

C :'-2 
l l l i ~ l l l i J J ~  

0 i 2 

Relative expansion tot klta : 2 

Fig. 3. Relative expansion in arbitrary units for 5 = 2. 

everywhere,  ind ica t ing  tha t  the interference region is local ized near  the null  

cone and they a p p r o a c h  uni ty  as 2 ~ oo because  the interference ampl i tude  
also decreases in this limit. The  sol i tonic  ( local ized)  charac te r  of  the wave 
is c lear ly seen f rom those  d iagrams.  The  loca l iza t ion  of  the d i s tu rbance  is 

governed  by  the pa rame te r s  Wl and  w2, the smal ler  their  difference the 
more  local ized the d i s tu rbance  is. 

To unde r s t and  how the energy carr ied  out  by  the wave has modif ied  
the source we can turn  now to Thorne ' s  C-energy.  

Fig. 4. 

Czt 

C:g 

r 
J i J i i 

C :4 

I r r F r 

C >2 ~ - - - - - - - - - " N . _  
r i i r i 

l 

Relative shea~ tot klta : t 

J i i J r p  

2 

Relative shear in arbitrary units for 6 = 1. The same null geodesics have been used to 
study its behavior. The qualitative results are the same. 



1154 Fustero and Verdaguer 

C : I  

C:8 

C - ' - 1  

C : - 2  

i i r 

i i i 

i i i 

I [ l l l l l  

w 

i i i i i i i 

i i i i i i i lh 

2 
~lative s~ar tot klta : 2 

Fig. 5. Relative shear in arbitrary units for 6 = 2. 

Energy Density Analysis 

Although metrics with cylindrical symmetry are not asymptotically 
fiat, Thorne [3] ,  was able to define a total energy, called C-energy, for 
those systems. In fact, one can define a contravariant C-energy flux vector 
P~ obeying a conservation law P~ = 0. The energy density is localizable and 
locally measurable. Near the axis of a static cylinder it reduces to the 
proper mass of the cylinder. Such energy is also propagated by Einstein- 
Rosen gravitational waves. It is thus a very useful quantity [15]. 

The key function from which the C-energy is defined is the potential 
C-energy function, which in our coordinate system reads E - ( 4 G ) - 1 7 ,  
where 7(P, t) is defined in (3). 

It is interesting to note that for a solid cylinder considered by Marder 
[-21 the change in proper mass per unit proper length, when it emits a 
gravitational wave pulse, is precisely Ewave = E a f t e r -  Ebefore; which is also 
the total C-energy per unit standard length carried away by the wave pulse 
I-3]. This can also be computed in our solutions (9) evaluating E for some 
fixed radius p (large) at t = 0, before the passage of the wave, and after at 
t ~ ~ .  In both cases the metric tends to the static background but with a 
different coefficient/L 

The explicit result is 

1 
E . . . .  "~ - -  In 

4G 

16w~w~ 7 
(w~ -----~2)4 J 

Thus the passage of the wave has permanently 
gravitational field: energy has been radiated away. 

affected the 



p=2 

PLOT OF PO IN THE RANGE T= 2, 2 R=,O1, 2 D=I  

Fig. 6. Plot of the energy density P~ p) in arbitrary units (6 = 1). The metric parameters 
used have been, w 1 =0,05, w2 = 0.1. The soliton is localized near the light cone centered at 
t = 0 .  

p=. 5 

F 

i L 

L J 

PLOT OF PO IN THE RANGE T=-2,2 R=5;2 D-2 

Fig. 7. Plot of the energy density P~ p) in arbitrary units (6 = 2). This corresponds to a 
massive cylinder ( M =  1/6). The qualitative behavior is similar to the fiat background case, 
with the exception of the growth of po, as we approach the axis, due to the presence of the 
mass  singularity. 

1 1 5 5  
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PLOT OF DR IN THE RANGE T= 2 2 R= 11 2 r )= l  

Fig. 8. Energy flux in the p direction, PP(t, p), in arbitrary units for 6 = 1. The energy flux is 
negative for t < 0, and positive for positive t. The flat surface of the plot means  zero flux. 

PLOT OF PR IN THE RANGE T = - 2 . 2  R= 5. 2 D=2 

Fig. 9. Energy flux in the p direction, in arbitrary units. This corresponds to & = 2, i.e., 
M =  1/6. The flux is found to increase near the axis al though it is null for the static 
background. 
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An interesting picture emerges f rom a quant i ta t ive  evaluat ion  of the 
energy density P '  and the energy flux PP defined [3 ]  by 

PP =2rcp(a+ l)/2 f •E 

- T /  

These quanti t ies represent  the local energy density measured  by a local 
observer  with velocity (1, 0, 0, 0) and the local flux measured  by tha t  obser-  
ver a long the p direction. Those  quanti t ies have been plot ted in Figs. 4 and 
5. As expected they are localized near  the light cone as the dis turbances  of 
the optical  scalars were. 

The  computa t ions  are made  for a flat backg round  and a massive cylin- 
der. No te  that  when we have a flat backg round  an observer  at a certain 
fixed p will see at t ~ - oo a flat space with ~ = 1 and fl = 1. However  at 
t = 0, when the pe r tu rba t ion  is concent ra ted  on the axis, the observer  will 
see a static Levi-Civitfi field with 6 = 1 but  f i(Wl, w2) r 1. This is the effect 
due to the " incoming"  energy, in agreement  with the above  analysis. At 
t ~ oo the fl = 1 value is restored. 

The  localized aspect  of  the per turba t ion ,  that  is clearly displayed in 
Fig. 4, suggests that  a p r o p a g a t i o n  velocity be defined for it, and it be inter- 
preted as a localized energy density p ropaga t ing  th rough  the space-time. A 
na tura l  definition for its p ropaga t ion  velocity is the one of the max imum.  
However ,  it turns out  that  this in terpre ta t ion  cannot  be sustained because 
this velocity is greater  than  one, as the per turba t ive  analysis of  Section 5a 
indicates. Therefore  what  we are seeing is merely a super luminal  effect due 
to the interference of a {  and a~-. 
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