
General Relativity and Gravitation, Vol. 21, No. 12, 1989 

Geodesic Deviation at Null Infinity and the 
Physical Effects of Very Long Wave 
Gravitational Radiation 

Malco lm  Ludvigsen I 

Received January 25, 1989 

Given the news function d- of a radiating space-time describing an isolated 
source, one can construct two physically important functions on the infinite 
celestial sphere surrounding the source: 

~6- dr and 6 dr (z = Bondi parameter) 
ce -oo  

The first describes the energy flux of radiation through the sphere and is the 
dominant function for high-frequency radiation. The second function contains 
information about the very low-frequency radiation and dominates at such 
frequencies. The physical effects of this function are investigated, and it is shown 
that, even for an arbitrarily small energy flux, it can cause a finite amount of 
geodesic deviation in the radiation zone. An explicit formula for this deviation 
is obtained in the case of a bifurcating star in the low-frequency approximation 
where the energy flux can be neglected. 

1. I N T R O D U C T I O N  

It  is well  k n o w n  tha t  the  ene rgy  flux of  a r a d i a t i n g  space - t ime  can  be 

desc r ibed  by  a single w e i g h t e d  func t ion ,  6- ( the news  func t ion) ,  de f ined  at 

fu ture  nul l  inf ini ty  I +. A l t h o u g h  no  r i g o r o u s  p r o o f  exists,  there  are  

a r g u m e n t s  wh ich  ind ica te  t ha t  the  q u a n t i t y  

[ a ]  = d" dr  (z = B o n d i  p a r a m e t e r )  
- -oo  

is in gene ra l  n o n v a n i s h i n g  for  all phys ica l ly  r e a s o n a b l e  r a d i a t i n g  sys tems  
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with no incoming radiation. These arguments are based on the behavior of 
linearized scattering systems [2, 3 ] (for such a system, nontrivial scattering 
implies [e l  is nonzero) and the semiclassical limit of a quantized nonlinear 
gravitation [4] (the infrared modes of the gravitation make [~r] nonzero). 
Furthermore, it is precisely the nonvanishing of this quantity which 
prevents a canonical reduction of the BMS group to the Poincar6 group, 
and hence the associated difficulties of defining angular momentum for 
radiating systems. Therefore, it is of interest to know what actual physical 
effects the nonvanishing of [a] can have, and it is the purpose of this paper 
to describe one such effect: total geodesic deviation near null infinity. 

Imagine an inertial observer in the radiation zone of a star that emits 
a pulse of radiation. He places a stationary test particle at a distance d 
from himself before the pulse, and observes the same particle again after 
the pulse. We shall show that if [a]  ~0  the particle will again appear 
stationary but, in general, its distance will be different. Only if [a]  = 0 will 
the total deviation [d] (the change in distance) be zero in all directions. 
Furthermore, we shall show that [dl  ~0  only in lateral directions (i.e., 
space-like directions orthogonal to both the world line of the observer and 
the radius direction linking the observer to the star) and that 

[z] = , /5  0(r -2) 

where z is a complex number specifying the particle's initial position in the 
complex plane of lateral directions, and [zl is the total deviation z' - z. 

In the final section of this paper we derive an explicit formula for the 
total deviation [-z] in the case of a star which emits radiation by exploding 
into two halves with relative velocity, v. In order to obtain this formula, we 
employ a low-frequency approximation in that we assume ~-oo a~ dr to be 
negligible. (It is important to note that 6 can be chosen such that 
~oo6~d~ is arbitrarily small for any given [~]). Physically, this 
corresponds to the assumption that the division of the star occurs at a suf- 
ficiently leisurely rate for the total energy flux of radiation to be negligible. 
It is clear that, by allowing sufficient time for the division to take place, the 
rate of change (or rather, acceleration) of the system can be made 
arbitrarily small for any given relative velocity between the components of 
the star. It thus appears reasonable to suppose that this low-frequency 
approximation is valid for a wide range of physically interesting processes. 

It is assumed that the reader is familiar with the properties of 
asymptotically flat space-times and the asymptotic spin-coefficient for- 
malism based on future null infinity I +. The metric of physical space-time, 
)f/, is denoted by ~ and that of the conformally related space, M, by 
g(=~22~). Indices of hatted quantities are raised and lowered by ~ and 
those of unhatted by g. We use units such that c = G = 1. 
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2. GEODESIC DEVIATION NEAR I + 

The description of total geodesic deviation given in the introduction 
depends on four physical concepts: 

1. An isolated gravitating system (e.g., a star). 

2. Asymptotic parallelism. 

3. The space of lateral directions for an asymptotic inertial observer. 

4. The radial distance r of the observer from the star. 

Our first task is therefore to capture these physical concepts in the 
form of definitions applicable to general relativity. 

We begin by assuming that an isolated system can be adequately 
described by an asymptotically simple space-time (AI, ~). The definition 
of asymptotic simplicity [1]  provides us with a conformally rescaled 
space-time (M, g=g22oa) with a null boundary I + on which g2=0 and 
V a g2=na r  

In the presence of radiation, which has a well-defined meaning in the 
context of asymptotically simple space-times, the definition of an 
asymptotically parallel vector field, ~ ,  is not as straightforward as one 
might expect. This is because the obvious definition, namely 

lim (~-lVa~b)=O 
-Q~0 

is incompatible with the nonvanishing of the news function. Therefore, we 
require a weaker definition that allows radiation but is sufficiently strong 
to capture the physical idea of asymptotic parallelism. 

The definition given below satisfies these conditions in the sense that 
it imposes no restrictions on the physical space-time and restricts the vector 
field to have the expected number of asymptotic degrees of freedom. It also 
reduces to the "obvious" definition when the news function vanishes. 

Definition. A vector field ga in ~r, normalized for convenience such 
that ~a~ a = 2, is said to be asymptotically constant if 

1. va= ga admits a smooth extension to I +. 

2. The condition, na = va on I + determines a Bondi scaling on I + 
(i.e., I + is divergence-free and the Gaussian curvature of its cross 
sections is given by K =  1/2). 

3. The condition ~ = 0  implies ~--l/~a--~-0 on I + ( " - "=vaVa) .  

Note that, since ~ j a =  2, v~va= 2s and hence v ~ is null on I +. The 
requirement that the scaling be of Bondi type restricts the vector field to 
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be, in a sense, laterally parallel. It imposes no restriction on the radial 
behavior of the field. The condition ~ -- 0 can easily be seen to imply that 
~ a = 0  on 1 +, and hence that ~2 l~a is well defined on I +. The requirement 
that this quantity vanishes on I + restricts the vector field to be asymptoti- 
cally parallel in a radial sense. 

The freedom in the choice of Bondi scaling on I + is given b y  
f2' = v-Xg? where: 

1. naVa v = 0 on I +. This implies that I + is divergence-free in the new 
scaling. 

2. OZv = 0 on I +. This implies that the new Gaussian curvature, K' ,  
is constant. 

3. 1 = v2+ vOOv-OvOv. This implies K ' =  1/2. Here "O" is the edth 
operation based on any cross section of I + (in the original 
scaling). 

Since the equation d2v = 0 is linear and has four linearly independent 
solutions (e.g., the first four spherical harmonics), the space of solutions V 
forms a four-dimensional vector space. Furthermore,  V possesses a natural 
Lorentz metric given by 

v . w = 2vw + vOdw + wOdv - dvdw - dvOw 

(note that, since dZw= O2v= O, d(v .  w ) =  0, and hence v. w is a constant). 
We thus see that each Bondi scaling, and hence the asymptotic components 
of each asymptotically parallel vector field, is in one-to-one correspondence 
with a vector v E V normalized, such that v. v = 2. Our definition therefore 
gives the expected number of degrees of freedom for an asymptotically 
parallel vector field. 

We now consider the problem of defining radial distance r and the 
space of lateral directions for an asymptotic inertial observer. We make 
essential use of the fact that Va determines n a ( = V , O )  uniquely on I +, and 
hence that f2 is defined up to ~ ~ 0Q where 0 = 1 on I +. 

Since we are concerned purely with the radiation zone where all quan- 
tities which fall off faster than Q can be neglected, it is necessary to define 
r 1 only up to this order. Thus r may adequately be defined by 
x/~r = f2 -1. (The factor x/~ is due to our normalization V%a = 2.) 

Since va--n~ = 0 on I +, the quantity ( v a - n a ) ( 2  -1 is well defined on 
I +. Using this fact, together with vava = 2922 and 0 = vaVa(2 = vana = 0, it 
is easy to see that nanaf2-2 = - 2  on I +. Thus n ~ defines an asymptotically 
unique vector in M according to h a = n a, which satisfies l ima ~ o har~ = - 2  
and ~na  = 0. This vector defines the radial direction for an asymptotic 
observer with four velocity ~ .  The space of lateral directions can now be 
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defined as those which are orthogonal to both ~a and r~ a. This space is 
spanned by a complex vector rh a defined by r /a rha=Yrh ,=0 ,  rharha = - 1  
and rh ~ = 0. This vector is defined up to rh ~ --* e%h a where ,~ = 0 and can be 
used to define a basis (n a, m a) on I + by setting rh~= Dm" (note that this 
implies n~ma = 0 m~rh~ = - 1  on I + ). 

Using the fact that K =  1/2, n~ = Va on I + and g)=  0 in M, one can 
now show that the following relations hold on I +. 

f2 lm~nbVavb = O, Q _  lma~bVavb  (1) 

f2 - lm~mbV~va = (2 - l m a m b V ~ n b  

where 6" is the news function on I +. 
We now consider the problem of geodesic deviation near I + for an 

asymptotically parallel, time-like, geodesic congruence with tangent vector 
~a. 

Let g~ be an orthogonal connecting vector satisfying the deviation 
equation ~ g  = 0, i.e., 

~ =  (Vb~)2  b (2) 

By writing 

~ = at1 a + zrh a + zm  a (3) 

we see that, in the asymptotic region near I+, d and 2 describe the obser- 
ved radial and lateral velocities of a neighboring particle with position 
vector (a, z) with respect to the frame (r/a, rhb). Furthermore, by expressing 
Eq. (2) in terms of the conformally related quantities n a, m a, and v ~, and 
using Eq. (1), we obtain 

limo(a(2- ~ ) = 0 l 

l i m o ( / ~ - l )  = 6.2 ~ 

or 

a =  O(r  2) l  

= + 

(4) 

(S) 

Thus, in the radiation zone, geodesic deviation takes place only in lateral 
directions and is determined by the news function 6". Assuming that 6- has 
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compact  support  (or else falls off sufficiently rapidly) the formula for total 
deviation follows directly from (5) and is given by 

[ z ]  = ~ / 2 r - 1 [ a ]  2 + O(r-2) (6) 

3. T O T A L  D E V I A T I O N  P R O D U C E D  BY A B I F U R C A T I N G  STAR 

In this section we derive an explicit formula for the total deviation 
produced by a star which, initially in a stationary state, explodes into two 
halves, each of which eventually settles down to a stationary state. Our  first 
task is to develop a relativistic model of such a physical situation. 

In terms of the standard spin-coefficient formalism based on I § [1],  
the "mass aspect" of a solution of the Einstein equations is given by a 
weighted function g~2 on I § In the case of a stationary solution, ~u 2 has 
the general form 

~2 = - M w - 3  (7) 

where w ~ V and is normalized such that w. w = 2, and M is the Bondi 
mass. 

Also, in the stationary case, ~u 2 transforms according to ~ = v 3 ~ 2  
under a change of Bondi scaling. Thus, by setting v = w, we obtain a center 
of mass scaling in terms of which ~u~ assumes the simple form ~u 2 = - M .  

Since w may be considered as a time-like vector (normalized such that 
w. w = 2) in the abstract vector space V, it is natural to interpret w as the 
four velocity of the center of mass world line of the solution. 

From these considerations, the most natural relativistic model of the 
physical situation described above appears to be an asymptotically simple 
space-time with mass aspect ~u2, satisfying 

1. lim ~2 = - M w - 3  "~ 
z ~  -oo  

and (8) 

2. lim ~r/2 = --m(v -3 q- v'-3) 
T~oo  

where M and w are the total mass and center of mass velocity of the star, 
and m, v, v' are the mass and velocities of its component  halves. From the 
symmetry of the situation, we also demand that w- v = w. v' and that w, v, 
and v' lie in the same plane. 

Using the spin-coefficient equation [ 1 ] 

~ 2  = - - a 2 G - - G f f  
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together with (8) we obtain 

02[ff]=-{Mw 3--m(v-3-.~v'-3)}+ (r~dT (9) 
c o  

The quantity S 6~ d~ describes the energy flux of radiation through I + 
and depends on the detailed nature of the physical process. It is, however, 
a second-order quantity depending, essentially, on the rate of change of the 
process and may therefore be neglected if we restrict attention to processes 
which occurs at a sufficiently leisurely rate. Under this approximation, 
Eq. (9) reduces to the simple form 

0 2 1 6 ] :  _ { M w - 3 _ m ( v  3+v,  3)} (10) 

which allows us to determine [6] and hence the total deviation. 
By conservation of momentum, which is actually implied by (10), we 

have 
Mw : m(v + v') (11) 

and hence (since w. v = w. v', and w. w = 2) 

M =  m(w. v) (12) 

By choosing a center of mass scaling (i.e., w=  1) we see that (10) becomes 

M 
t0 2 [ - ~ ]  - -  (V -~- U' - -  V - 3  - -  V ' - 3 )  (13) 

(w-v) 

Furthermore, since w = 1, we obtain 

Ov + Or' = 0 ]  
! 

and ~ (14) 

v + Odv= v' ) 

By direct substitution into (13) and using Eqs. (14) it can be now shown 
that a particular solution of (13) is given by 

[ 6 3 =  2(wTv) + (15) 

That this is actually the only solution can be seen by considering the 
general properties of  spin-weighted functions [1]. By Eq. (6) the formula 
for total deviation is therefore given by 
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By introducing spherical coordinates 0 and ~o adapted to the axisymmetry 
of the system, we have 

w=7(1  + Vcos 0), Ov=?VsinO ] 

v ' = 7 ( 1 -  Vcos 0), Or'= - 7 V s i n  0 (17) 

where ? = x/~/x/1 - V 2 and V is the speed of the components of the star 
relative to the center of mass line. We therefore have 

V 2 sin z 0 f(O)2 
[ Z ] = r ( 1 - V Z c o s 2 0 )  2+O(r-2)= r + O ( r - 2 )  (18) 

Finally, by writing m a = l /x/2(0 + i~b), and z = 1/x/2(x + iy), we obtain 

[x]=f(Or)X+O(r 2) 1 

(19) 

[ y ] - f ( - O r ) y  O ( r - 2 ) J  

where I-x], [ y ]  are deviations in the directions of longitude and latitude. 
The major effects of total deviation are therefore 

1. Zero deviation at the poles. 

2. Maximum deviation at the equator with a contraction in the direc- 
tion of latitude and an expansion in the direction of longitude. 
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