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Abstract 

We consider perfect fluid spatially homogeneous cosmological models. Starting with a new 
exact solution of Bianchi type VIII, we study generalizations which lead to new classes of 
exact solutions. These new solutions are discussed and classified in several ways. In the 
original type VIII solution, the ratio of matter shear to expansion is constant, and we pre- 
sent a theorem which delimits those space-times for which this condition holds. 

w Introduction 

Recent studies of  classical general relativity theory have tended to focus on 
two areas: those involving "local" questions (e.g., stellar models), and those in- 
volving "global" phenomena (e.g., cosmology and black holes). For both  mathe- 
matical and physical reasons, it is customary in either situation to postulate the 
existence of  an r-parameter continuous isometry group, Gr. In stellar and black 
hole problems, stationary axisymmetric systems are frequently studied (in which 
r ~> 2 and the orbits are timelike), whereas in cosmology most attention is given 
to spatially homogeneous models (in which r i> 3 and the orbits are spacelike). 
Normally, either local or global questions (but not both) are considered. In the 
present work, models originally local in nature (i.e., stellar end-states) are trans- 
formed into cosmological space-times. This is achieved by starting with a metric 
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which is stationary and axisymmetric, and then employing a complex (i.e., 
imaginary) transformation. In Section 2, the complex transformation yields a 
metric (2.1) which is spatially homogeneous (in fact, there is a Gr isometry 
group whose spacelike orbits are orthogonal to the flow lines of a perfect fluid 
matter congruence). The fluid congruence possesses the intriguing feature that 
the ratio of the rate of shear, o, to the volume expansion, 0, is constant. This 
fact, together with the form of (2.1), suggests two generalizations, which we ex- 
plore at some length. In Section 3, we generalize the form of metric (2.1) by in- 
clusion of arbitrary functions in place of specific terms. This leads to a (sur- 
prisingly) large number of exact solutions which appear to be new, and with 
(i/0 generally not constant. In Section 4, we examine a large subclass of spatially 
homogeneous models in which o/O is constant. The complete specification of the 
subclass is rather complicated, and is given in the statement of the theorem in 
Section 4. However, it is sufficiently broad to allow for the existence of solu- 
tions for all Bianchi-Behr types except IV and VII h (for details of the Bianchi- 
Behr classification, see [1 ]). This leads to even further exact solutions. The 
isotropy of the microwave background radiation limits the magnitude of or/0 in 
all these models. 

In most of the analysis, acquaintance with the usual techniques and conven- 
tions will be assumed. Details of the orthonormal tetrad formalism are given in 
[1 ] and [2], where this is applied in particular to the study of "orthogonal" 
spatially homogeneous models (in which the matter flow is orthogonal to the 
spatially homogeneous hypersurfaces). Locally rotationaUy symmetric (L.R.S.) 
models are considered in general in [3] and [4], and Ellis and MacCallum [1 ] 
discuss orthogonal spatially homogeneous models which are L.R.S. We use the 
notation and conventions of [1 ] throughout, t The equations most relevant to 
our discussion in Section 4 are the Jacobi identities {(2.11) and (2.12) of [ 1 ] ), 
the (0 v) field equations {(3.3) of [1 ]) ,  and the trace-free parts of the (/~ 8) 
field equations {(3.4) of [1 ]).  For convenience, these are written in the Ap- 
pendix [equations (A.1)-(A.4)]. 

w An Exact  Solution 

In this section, 2 an explicit family of spatially homogeneous cosmological 
space-times is presented. The cosmological matter is modelled by a perfect fluid 
with energy-momentum tensor 

Tab = (IX + P)UaU b + Pgab 

tAll indices which appear are tetrad indices. Green indices have values 1, 2, and 3, and Latin 
indices have values 0, 1, 2, and 3. The conventions for the Riemann and Ricci tensors are 
given by 2u b ;[cd] = Rabed ua and Rab = RCacb. The Einstein field equations are Rab - 
{ Rgab = Tab; the cosmological constant, A, is assumed to be zero throughout, although 
the theorem in Section 4 remains valid if A ~ 0. 

2Tlie content of Section 2 is taken from [5]. 
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and line element 

ds 2 = -a2tlo(1 + c2t2)-l  dt  2 + b2t 1~ ~-~y2dy2 

+ 9 c2tlo E2dx2 + tS(dz _ k2y2dx)2 (2.1a) 

where ~ : = k 1 + k2y  2 c 2 = (2- k2a b-1 )~ and a,b ,c,ka and k 2 are constants 
(without loss of  generality, a,b,c, and k 2 are positive). 

The solution of Einstein's field equations given by (2.1a) arises from a search 
for stationary, axisymmetric "interior" solutions to model relativistic stellar end 
states. Such space-times have two commuting Killing vectors a/~t and a/34~ and 
a metric of the form [6] 

ds ~ = -a -2 (d t  - ~2oy2dq~) 2 + a 2 V2d4~ 2 + ~-2(y2dy~ + a 8 V2dz  2) 

for a rigidly rotating perfect fluid with unit flow vector u = a(b/~t) ,  and where 
the 2-space of Killing orbits has coordinates chosen in the vorticity gauge [6]. 

Assuming multiplicative separability for the metric functions o~(y,z), 
V(y , z ) ,  and ~ (y , z )  leads to a class of unphysical solutions with the property 
that a = a(z), p = p(z )  and/1 =/~(z). These unphysical solutions have a parame- 
ter which appears in the metric to even powers. Allowing this parameter to be- 
come purely imaginary and then relabeling ( t , z ,  4~) -+(z, t , x )  yields a metric of 
the form given by (2.1a). Substituting back into the Einstein field equations 
then establishes the restrictions on the parameters necessary to satisfy the re- 
quirement that the source is a perfect fluid. The change of variables 

where 

bo~ s 
t = Oft t, X = X  ~ + - -  

2 k  2 ' 

reduces the metric to the form 

1 
k 1 +k2y  2 = l e y '  z = _  , kl  X' 

Ol 4 , Ot 4 Z - 

a s = 2k2 4a2 

b 4 

a2t lo 
ds~ = 1 +c2t  z d P  +b2t l~ +e2Ydx2)+tS(dz  - eYdx) 2 (2.1b) 

where c ~ = 8 b 2 and a 2 = 8b 4 , and we have dropped primes. 
In order to discuss the properties of the space-times given by (2.1), an ortho- 

normal tetrad is chosen by defining the 1-forms 

e ~ =-atS(1  + c~t2) -1/2 dt = u 

e 1 = t4(dz - eYdx)  

e 2 = bt s dy 

e a = btSeYdx 
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Kinematic Properties. The matter flow is geodesic and irrotational, and the 
rate of expansion is given by 

0 = 14a -1 t-6(1 + c2t2) 112 

The space-times are anisotropic with rate of shear tensor given in the ortho- 
normal frame by 

%# = (o/3~/2)diag(-2,1,1) 

where o = a - 1  3 -1/2 t -6 (1 § c 2 t 2)1/2. 
Symmetries. The space-times admit a four-parameter group of motions with 

three-parameter subgroups, each acting simply transitively on the homogeneous 
hypersurfaces (t = const). Hence the space.times are L.R.S. The Killing vectors 
of the G4 are given by 

~2 = az 

a a 
~3 = X  . . . .  

ax ay 

_:y~ a__ + 2x a__ + 2e-Y (-x:  + 
J ~x Oy bz 

(2.2) 

The He algebra of the G4 is given by 

[~1 , ~ l  = [~ ,~3]  = [ ~ , ~ , ]  = o 

[~1, ~3 ] = ~1 (2.3) 
[~1 ,~41 = -2#3 

There is a three-parameter subgroup of Bianchi type VIII, generated by 
(~1 ,~3 ,~4}, and since the space-time is L.R.S., there is a family of three- 
parameter subgroups of Bianchi type III [ 1 ]. For example, (~1 ,~2, ~3 } and 
(~2 ,g3 ,~4} generate groups of Bianchi type III (n~fl = 0). 

This solution belongs to class IIIb in the Stewart and Ellis classification of 

L.R.S. models [4]. 
Petrov Type. It is clear that since the eigenvectors of the Weyl tensor are 

preserved by the local rotational symmetry, the Weyl tensor either belongs to 
Petrov type D or vanishes (Petrov type O). Stephani has shown [7] that, for 
perfect fluids, conformal flatness implies shear-free flow. Thus (2.1) is of Petrov 

type D. 
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Physical Properties. The pressure, p, and energy density, t2, are given by 

p = _a-2t-12(9 + 16c2t 2) 

= 7a-2t-x2 (9 + 8e2t 2) 

These relations yield an equation of state: 

a2(p/8 +/1/56) 6 = e12(p/9 + 2U/63) s 

Although the pressure is negative, the mass-energy is the dominating quantity 
and the strong energy condition 

/J+p~>0, /~+ 3p~>0 

the dominant energy condition 

t~>0,  -t/~<p <~ta 

and hence the weak energy condition are all satisfied. Since these energy condi- 
tions are all satisfied, the homogeneous, anisotropic space-time of metric (2.1) 
is a reasonable candidate for a model of the early universe. In fact, a recent 
study [8, 9] of superdense nucleons interacting through scalar (attractive), vec- 
tor, and spin-2 fo mesons (attractive) allows negative pressures, and requires 
only t~ + 3p to be positive. 

The ratio of the shear to expansion scalar is constant, with 

a/0 = ~4 3-1/2 ~- 0.04 

This value is larger than the present-day upper limit ~10 -3 obtained from in- 
direct arguments concerning the isotropy of the primordial blackbody radiation. 
This difference suggests the early universe as the regime best modelled by the 
space-times of metric (2.1). 

Generalizations. The metric given in (2.1) and its associated properties sug- 
gest two separate generalizations: 

(a) Replace the explicit functions of t and y in the metric (2.1) by arbitrary 
functions. This leads to an unexpectedly rich source of new solutions, which are 
discussed in Section 3. A particularly simple solution with equation of state 
p = p/3 is given. 

(b) Start with o/0 = const and search for spatially homogeneous cosmologies 
possessing that feature. This is investigated in Section 4. 

w Generalization of(2.1) 

In this Section the metric (2.1) is generalized to 

as ~ =-at  2 + F2(t)dy 2 + I ~ ( t ) a~ ( y ) dx  2 + G2(t) [dz-  ~2(y)dx]2 (3.1) 

where F(t), H(t), G(t), a(y),  and B(y) (FHGa ~ 0) are arbitrary functions 
which must satisfy the Einstein field equations. The general metric form (3.1) 
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wiU be shown to contain solutions belonging to four distinct classes, all of which 
are spatially homogeneous, and with (r/0 generally not constant. 

In all the above cases it is possible to decouple the field equations into two 
first-order ordinary differential equations determining the spatial dependence of 
the metric and two second-order nonlinear ordinary differential equations 
governing the time evolution of the metric. Essentially, the solutions of the 
spatial equations determine the symmetries of the space-time, while the solu- 
tions to the time equations lead to expressions for the pressure and the density. 

In each case the field equations are exhibited and algorithms for finding 
exact solutions are presented. The kinematic quantities of the fluid are calcu- 
lated, together with the nonzero components of the Weyl tensor. In addition, 
isometry groups are investigated and each case is classified. 

Field equations. From (3.1) we choose an orthonormal tetrad: 

0 
e~ = u =  ()t 

e I = G-1 O 
az 

(3.2) 
e2 = F -  1 0 

0y 

e 3 = ( H a ) - l (  32--a +-~-a ) .  0z ax 

The commutation coefficients, '̀ /Cab, are defined from the commutators by 

and satisfy 

The nonzero ,̀ /cab (a < b) are 

3'Ioi = -G -I G, 

[%, eb ] = : "/cab e c 

,,/Cab = -3'Cba 

3'~o~ = -F-~F,  ,`/303 = _ H - I / ~  

3'123 = 2 (FH) -1 GX, ,`/323 = - F  -1 v 

where we have introduced the functions 

X := ~-133' and v := a -I a'  (3.4) 

Here the primes denote a/ay and dots denote a/at. The field equations relative 
to the basis (3.2) can now be written as follows: 

Roo = - / ~ - l P - / 4 - 1 / ~ _  C-1 6 = ~ ( .  + 3p) 

R .  = G -~ 6 + a -1 d ( n  -1/:/+ F -1 k) + 2 X~F-~n -~ C ~ 

= ! (u- p) 
2 

(3.3) 
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R22 =F-1/~+ F - I F ( H - I / t +  a -I G) - 2 X 2 F - 2 H - 2 G  2 - F - 2 v  2 - F - 2 v  ' 

= 1 ( u -  p)  
2 

R33 =H-1Br + H-'IdI(F-X iz + G - 1 6 ) -  2 X 2 F - 2 H - 2 G  2 _ F-2v2  _ F - 2 v ,  

= ! ( u -  p)  
2 

R31 = F - 2 H  -a GX' = 0 (3.5) 

Ro2 = F- '  v(H-aI?I- F -1 F)  = 0 (3.6) 

Equation (3.5) implies 

X' = 0, i.e., X = const = ho (3.7) 

Substituting (3.7)into the remaining field equations (using Rll = R22 = R33) 
leads to 

F -1 P -  H -1/7 + O-1 d(F-1 p _  H-1 h)  = 0 (3.8) 

w ~ #  - a-' d -  F-'k(o-'  d - n - ' m -  4XgF-:~r~O2 - ~ o : F  -~ -- 0 (3.9) 

v' + v 2 = evo 2 (3.10) 

where e = +1 and evo 2 is a separation constant, together with equation (3.6). 
The pressure, p, and the density,/a, are given by 

p = - F  -1/7 - H -1 / / -  2 a -15  - G -1 d (/_/-1dr + F -1 F)  - 2 Xo2F-2H-2 G 2 

(3.11) 

and 

---F-1/~- zr 2 c - '  5 + 3 a - '  d( t / - ' t~  + F 1 / 9 , 6 X g F - ~ n - ~ a  ~ 

(3.12) 

Four distinct classes of solutions can be distinguished: 

(I)  either v = 0 ,  Xo = 0  or v v ' • O , v  o =O, xo  = 0  

(2) v • 0 ,  and either v ' = 0  or V o v ' ~ O  

(3) ~ = 0 ,  Xo Go, PlF~/tlZr 

(4) either v = O, Xo ~ O, ~' /F = i I / H  or vv' 4= O, v o =0,  Xo :/: 0 

When v o and Xo are nonzero they can be scaled to unity and �89 respectively, 
and will be so taken in what follows. 

Class (1): either v = 0, Xo = 0, or vv' 4 = O, v o = O, Xo = O. 
In this case the metric (3.1) reduces to the general form of a type I space- 

time. Many authors [1 ] have investigated these solutions and they will not be 
discussed further here. 
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Class (2): v 4= 0; either v' = 0 or roY' 4= O. 
(i) Suppose first that v is a nonzero constant. 
Equation (3.10) is satisfied identically with e = 1 and v =+Vo, and (3.6) can 

be integrated to give 

F = kH, k = const 

where without loss of generality we may take k = 1. Equation (3.8) is now 
satisfied identically and (3.9) becomes (v o = 1, Xo = 1/2) 

F - l / ~ -  G-1G + F-2/~2 - F-li~G-1G - F-4G 2 - F -2 =0 (3.13) 

The spatial dependence of the metric is determined using (3.4), from which we 
get 

a = e +-y 

and 
[j2 = +e+-y + ko 

where k 0 is a constant of integration which can be transformed to zero. 
In order to simplify equation (3.13), the function 

R := GF -l (3.14) 

is introduced and substituted into (3.13), yielding 

3(F2)'/~ + 2F2J~ + 2R 3 + 2R = 0 (3.15) 

where/~ ~ 0. Considered as a first-order linear differential equation for F 2 , 
(3.15) yields the formal first integral 

F2 = -2 ( R 3 + eR 
3 - ~  J ~u dt (3.16) 

where R(t)  is arbitrary and e = +1. The explicit form of the line element is then 

as 2 =-a t  2 + F2(t) (dy 2 + e+-2ydx 2 + R2(t) [dz~e+-Ydx] 2) (3.17) 

Note that (2.1) is a special case of (3.17). 
Pressure and density. An algorithm for generating exact solutions of this 

class (2i) is as follows. Specify the function R(t) and integrate (3.16), thus ob- 
taining F(t).  The function G(t) can then be determined from (3.14) and the 
pressure and density are given by (3.11) and (3.12). It should be noted, how- 
ever, that the solutions generated by this procedure are not guaranteed to satisfy 
any physically reasonable energy conditions (cf. the remarks in Section 4). 

Kinematic properties. It is clear from (3.1) and (3.2) that the acceleration, 
fi, and the vorticity vector, ~ ,  are both zero (this will be true for all four 
classes). The expansion and the shear are given by 

0 = 3F-1F+R-1/~  (3.18) 



EXACT SPATIALLY HOMOGENEOUS COSMOLOGIES 813 

and 

where 

Symmetries .  
Killing vector fields: 

0 ~  = ( 0 / 3 1 / 2 )  diag (-2, 1,1) (3.19) 

o = B-V= IR - ' /~ I  

Direct calculation using Killing's equation yields the following 

a a 

a a 
~3 = X - - - - -  ax ay 

a a a 
sr = (-x2 + e-Y) ~x + 2x ~ + 2e -y az 

[cf. (2.2)], with the Lie algebra 

[~q ,~:~] = [~:~,~:3] = [~:~, ~4] = o 

[cf. (2.3)]. There is a three-parameter subgroup of type VIII, generated by 
{~, ,s a, ~4 }. Since the space-time is L.R.S., there is a family of three-parameter 
subgroups of Bianchi type III [1 ]. For example {~:1, ~2, ~a } and {~2, ~a, ~4 } 
generate groups of Bianchi type III (naa = 0). 

Petrov type.  By local rotational symmetry and the fact that the shear is non- 
zero, it follows that the solutions are of Petrov type D. The repeated principal 
null vectors are 

I = 2 -x/2 (% - e t )  
(3.20) 

n = 2-112 (e ~ + e, ) 

(ii) Now suppose that v 0 v =~ 0. 
Without loss of generality, e = -1,  since the case v o u 4= 0, e = +1 yields a 

metric of form (3.17) with new functions a ( y )  and/~(v). The new metric is 
diffeomorphic to (3.17) under transformations of the form 

x = - e -2~ tanh y 

y = 22-+ ln(coshy-') 

z = ~-- tan-' (sinhy--) 

The general form of the metric is 

ds = = - d t  2 + F~( t )  [dy = + a2dx = + R 2 ( t ) ( d z  - /32 dx) = ] (3.21) 
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a = a  1 s iny  +b~ c o s y  

t 3z = - a l  c o s y + b  1 s i n y + c  I 

where a 1 , b l ,  and c I are constants satisfying a I b 1 ~ 0. Without loss of  general- 
ity a 1 > 0; moreover we may, without loss of  generality, put a 1 = 2 -1/2 , 
b 1 = 2 -1/2 , and cl = 0 by means of a linear coordinate transformation. These 
results follow from (3.7) and (3.10) when roY' ~ O. The functions F( t )  and 
R(t)  are related via (3.16) with e = -1 .  

An algorithm for exact solutions proceeds as in class (2i) above. 
The metric (3.21) allows the following Killing vectors: 

a a 

a a a 
~3 = v cos x ~xx + sin x ~ - (a  - v/32) cos x a z  

a 0 0 
r = -~ sin x ~ + cos x ~ + ( ~ -  ~ 2 )  sin x a-~ 

The Lie algebra is 

[ ,h,  ~4 ] = ~1 

There is a three-parameter subgroup generated by (~1' ~3, ~4 ~, which is of  
type VIII.  The space-time is L.R.S. and therefore admits a family of  subgroups 
of  Bianchi type III  [1 ]. 

Class (2) solutions belong to class I l lb of  Stewart and Ellis's classification of  
L.R.S. metrics [4]. 

Class(3): v =O,X o = 1/2, F'/F--# IJI/H. 
In this case the general metric can be written as 

ds 2 = - d t  2 + F2( t )  dy 2 + H2(t)  dx 2 + G2(t)  (dz - y dx)  2 (3.22) 

which follows from the definitions (3.4) of  X and v upon setting v = 0 (we have 
chosen suitable coordinates to absorb integration constants). 

The field equations (3.6) and (3.10) are satisfied identically and equations 
(3.8) and (3.9) remain to be solved. In order to simplify these equations, we 
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introduce the functions 

Q : = FH-1 

S := H a G (3.23) 

T : = FHG -1 

Equations (3.8) and (3.9), respectively, now become 

QS = const (3.24) 

and 

S-1S -3T-17  ; - Q - 1 Q -  3 T - l J ~ ( S - ' S + Q - X O - T - 1 T ) + 4 T  -2 =0 (3.25) 

Since equation (3.25) is a nonlinear equation iil each of Q, S, and T, no direct 
algorithm exists in this case. One can, however, specify Q(t) and then, upon 
using (3.24), a second-order nonlinear differential equation remains to be solved 
for T(t). The pressure and density can then be determined from (3.11) and 
(3.12) with the use of (3.23). Here again, solutions generated by this procedure 
may not necessarily satisfy physically reasonable energy conditions. 

Kinematic Properties. The expressions for the expansion and the shear are 
given by 

0 = (FHG)- '  (FHG)" 

and 

oc~t3 = diag [(3G 2)-1FH (G2H -a F -1 )', 

(3F 2)-1 GH (F ~ G -1 H -1)', (3H 2)-1 FG (H a F-x G-1 ). ]. 

The 'shear scalar is given by 

= 3-i/2 [G-2~2 +H-21;1a +F-2p2 F-Xl~G-I~_ H-1151F-li~_ H-lilG-1G[ 

Petrov Type. With respect to the null tetrad formed from the vectors (3.20) 
and m = 2-1/2(e2 + ie3) , the nonzero components of the Weyl tensor are fro, 
f~ ,  and f4 .  The solutions of this class are therefore of Petrov type I. 

Symmetries. The Killing vector fields allowed in this case for the metric 
(3.22) are 

b 
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with Lie algebra 
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[r r ] = [r r = 0 

[~1, ~31 = ~2 

The solutions of class (3) are therefore, of typ.e II; they are not, however, L.R.S. 
Class (4): either v = 0, X o = 1/2, F/F = H/H, or vv' 4= 0, v o = 0, X o = 1/2. 
(i) Suppose first that v = 0, Xo 4= 0, and F/F = H/H. In this case the metric 

takes the form 

ds 2 = - d ?  +F2(t)  [dy 2 +dx 2 + R 2 ( t ) ( d z - y d x ) ~ l  (3.26) 

F'=-2 
31~ 2/----- ~ dt 

which follows from (3.9) and (3.14) upon setting v o = 0 (we have eliminated 
integration constants by a suitable choice of coordinates). 

Kinematic Properties. The expressions for the expansion and the shear are 
identical with those of Class (2), viz., (3.18) and (3.19). 

Pressure and Density. An algorithm for finding exact solutions and thus the 
pressure and density proceeds exactly as in Class (2). 

Symmetries. With regard to the Bianchi classification the metric (3.26) al- 
lows four Killing vectors: 

~ 1 = ~  ' ~ = a z '  ~ 3 = ~ + X a z  

and 

The Lie algebra is 

~' -- ~ b---y + �89 (x=-y ' )  -YUx 

[g,, g~l = [ ~ , g s ]  = [g~, g41 = 0 

The only three-parameter subgroup is generated by {~1 ,~2 ,~a} and is of 
type II. The solutions are thus type II L.R.S. solutions. They belong to class 
IIIb of Stewart and Ellis [4]. 

Petrov Type. The solutions are L.R.S. and hence belong to type D. 
(ii) Now suppose that vv' 4= 0, v o = 0, and Xo = �89 The metric for this case 

is diffeomorphic to (3.26) under transformations of the form 

x = ~- sin Y 
- -  m 

y = y  COS X 

z = ~ + y 2  sinYcos~- 
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Table I. A Summary of the Results Obtained in Section 3 
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Solution class 1 2 3 4 

0 4:0;u~r  0 0 
v v r O;v~ /:O;uo = 0 v r O;voUtr 0 0 u r  O;uP r = 0  

k o 0 arbitrary . h o r 0 . k 0 r 0 
(P/F = I:I/H) (FIE 4: H]H) (FIE = Ill~H) 

Group type I III, VIII II II 

L.R.S. Some Yes No Yes 

Petrov type I, D, O D I D 

An example of  (3.26) with equation of  state p = t2/3 is given by 
(t = 31/2 T4 /4 )  

ds ~ = - 3 T 6 d T  2 + T S ( d y  2 + dx  2) + T2(dz  - y d x )  2 

where p = (7/6) T -8 , and a/0 = 31/2/12 ~ 0.144. 
We summarize the results of  this section in Table I. 

(3.27) 

w a/O Constant 

We have shown in Section 2 that the metric (2.1) is L.R.S., spatially homoge-  
neous (of  a particular type),  and such that the normal  congruence to the homo- 
geneous hypersurfaces satisfies the condition 

o/0 = const (4.1) 

We observed that the matter content was a perfect fluid flowing along the nor- 
mals and that the shear eigenframe could be chosen to be Fermi-propagated 
along the fluid flow. Since the metric is L.R.S., the shear tensor, ai], possesses 
two equal eigenvalueS, and, since oii is trace-free, there is therefore (at most) one 
algebraically independent component  (viz., one of  the eigenvalues) o f  oii. Thus 
we can express our restriction (4.1) in one of  two ways: either ( i ) the  eigenvalues 
of  the shear tensor, aii, of  the normal congruence are in constant proport ion to 
the expansion scalar, 0, or (ii) the shear scalar, a, is in constant proportion to the 
expansion scalar, 0. 

In a general space-time, condition (i) is stronger than (ii) [i.e., (i) =~ (ii) but 
not necessarily conversely], but whenever oq possesses two equal eigenvalues, 
conditions (i) and (ii) are equivalent. 

In order to obtain a simple, tractable generalization of  this situation, which 
encompasses the entire class of  spatially homogeneous models, we could relax 
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the condition of local rotational symmetry, while maintaining the condition that 
aii has two equal eigenvalues and at the same time adopting either of the equiva- 
lent conditions (i) or (ii) above as an "ansatz." In fact, we can improve upon this 
by relaxing also the condition on the equality of the eigenvalues, and then de- 
manding that (i) [and hence (ii)] holds. The case where (ii) holds, but (i) does 
not, does not appear to be very tractable. 

Thus we shall investigate the consequences of imposing the condition (i) 
above on the class of all 3 spatially homogeneous models, together with the re- 
quirements that the source of the gravitational field be a perfect fluid flowing 
along the normals to the spatially homogeneous hypersurfaces, and that the 
shear eigenframe is, or can be chosen to be, Fermi-propagated along the fluid 
flow. Condition (4.1) is sufficiently strong to allow the construction of explicit 
solutions in all types except IV and VII h . 

It turns out that in "most" models, these conditions in fact force the shear 
tensor to have two equal eigenvalues; however, there are certain exceptional 
cases, viz., types I, V, and VI h (naa = 0). This is understandable to some extent, 
since one might expect more freedom for this to happen in the most special 
types (see the specialization diagram in [2]). 

Theorem. Let M be a space-time which is spatially homogeneous, and in 
which the matter source is a perfect fluid flowing orthogonally to the homoge- 
neous hypersurfaces. I fM is of class B, suppose that the shear eigenframe is (or 
can be chosen to be) Fermi-propagated along the fluid congruence, and further 
that M is not of class Bbii (type Vih with h = - ~-). Suppose also that the fluid 
has the property that all shear eigenvalues are proportional to the volume ex- 
pansion rate and that oO :/: 0. Then M belongs to one of the following types: 

Class A: I, II, Vi0 (n~  = 0), VII o , VIII, and IX 

Class B: V, VI h (and h - - 1 i f n ~  r 0) 

Moreover, for each type listed, there exist space-times with the above properties, 
and the fluid shear tensor necessarily has two equal eigenvalues in all types ex- 
cept I, V, and Vih (n~  = 0). 

Proof. It is shown in [1 ] that for class A space-times there is an 0rthonormal 
tetrad {Ca}, with eo = u, such that the vectors {er are eigenvectors of n ~ ,  and 
moreover that they are Fermi-propagated shear eigenvectors of the fluid flow. 
Thus, according to the conditions of the theorem, the shear eigenframe will al- 
ways be Fermi-propagated. The proof will now divide into two parts, since we 
shall first discuss class A space-times, and later we shall examine class B space- 
times (in which there is in general no tetrad of eigenvectors common to %t~ 

aExcept for one case, viz., Case Bbii of [1], which is of type VI h with h = -1[9. 
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and n~t~). In all cases, we will express the components of  crat ~ in a frame of  shear 
eigenvectors as follows: 

oa# = diag ( ]  kO, (�89 l - �89 k) O, (- �89 l - �89 k) O) 

where k and l are constants [(k: + l : )  0 4= 0].  This represents, in general, two 
constraints on the time-evolution of  (r~t~. These constraints are compatible if 
and only if a certain algebraic relation holds [viz., (4.4) below in class A, and 
(4.9) below in class B]. The method of  proof  then lies in demanding that this 
relation holds in an open set; i.e., it must remain valid when propagated along 

e 0 . 

Class A .  The shear propagation equations (A.4) can be written in the form 

k(ao0 + 0 ~) = ao [Oll- �89 ( ~  + ~ ) ]  + 0 [ol l-  1 (o~ + a~)] 
= - 2 n ~  ~ + n ~  ' + n ~  ~ + [nl~ - ~- (n~ +n3~)] (nll +n~2 + n ~ )  

(4.~) 

and 

l(OoO + 0 2)  = ao(~22  - cr33) + 0 (o22  - o33)  

= - 2 ( n ~  ~ - n33 ~) + ( n ~  - n33) (nil  + n2~ + n~3 ) ( 4 . 3 )  

Without imposing any further restrictions, such as a specific equation of  state, 
there are no more constraints that must be satisfied. It therefore remains to de- 
termine under what conditions (4.2) and (4.3) are compatible. This is the case 
if and only if 

1{-2nl l  2 +n2~ 2 +n~32 + [ n l l -  �89 (n22 +n33)] (nla +n22 +n33)} 

= k ( - 2 ( n 2 2 2  - n332)  + (n22 - n33 ) ( n l l  + n22 + n33)) ( 4 . 4 )  

for some constants k and l satisfying k ~ + l 2 4= O. 
Case 1. Suppose first that oa# possesses two equal eigenvalues. By renum- 

bering if necessary, we can arrange for this to imply l = 0. Then we obtain, from 
(4.4), (n22 - n33)(n:2 + n33 - n11) = 0. Thus either n22 = n33 , or nl l  = n22 + n33, 
n22 4= n33. Ifn~2 = n33, the possibilities that arise are nll = 0, n~2 = n33 = 0 
(type I), nl1 4= 0, n22 = n33 = 0 (type II), nxl = 0, n22 = n33 4= 0 (type VIIo),  
and nxl 4 = 0, n:2 = n33 4= 0 (types VIII  or IX, according as nlln22 < 0 or 
nll  n22 > 0). All such models are L.R.S. [1]. The space-time of  metric (2.1) is 
an example of  a type VIII  L.R.S. space-time. I f  n l l =  n22 + n33 and n:2 4= n33, 
there is only one possibility: n11 = 0, n22 - -n3a 4= 0 (type Vio,  n ~  = 0). These 
space-times are not L.R.S. (and in fact the only class A space-times in which the 
shear tensor possesses two equal eigenvalues but which are not L.R.S. are those 
of  type VI o with n ~  = 0) [1 ]. 

Case 2. The eigenvalues of  (ra# are distinct. Thus l(l - 2k)( l  + 2k)  4: 0, and 
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we must investigate the preservation of (4.4) in general. We may write (4.4) as 
the vanishing of a homogeneous polynomial of degree 2 in n11 , n22 , and n33 : 

Anxl ~ + Bn2~ +Cn332 + 2Dn22n33 + 2En33n11 + 2Fn,,n22 =0 (4.5) 

where 

A = 2 D = - I ,  B=2E=�89 and C = 2 F = l l - k  

One possibility is n, ,  = n22 = rt33 = 0 (type I), in which case (4.5) is identically 
satisfied, and there is no more to prove. The case where two eigenvalues of  nat3 
are zero, and the third is not,  is inadmissible, since ABC --/: O. We now show that 
the remaining case (in which there is at most one zero eigenvalue) is inadmissible. 

Demanding that (4.5) be preserved yields, using (A.2), a second condition: 

A'nl~ 2 + B'n222 + C'n332 + 2D'n22n33 + 2E'n33nll + 2F'n1,n22 = 0 (4.6) 

where A '  =A(1  - 4k),B' =B(1 - 31 + 2k),  C'  = C(1 + 31 + 2k),D' =D(1 + 2k),  
E '  = E(1 + 3l/2 - k), and F '  = F(1 - 3l/2 - k). I f  we suppose without loss of  
generality that nl l  is a nonzero eigenvalue of  nat3, we may  divide (4.5) and (4.6) 
by nl l  2 . We thus obtain two equations for the quantities n2~/nll and n33/n11.  

Each equation can be considered geometrically as defining a conic section in the 
(n22/n11, n33/n11) plane. Either these conic sections intersect in a finite number 
of  points, or they are identical, or they are line pairs, with one line in common.  
In the first case, n22/n,1 and n33/nll are constants, and then equation (A.2) 
shows that n22 = n33 = 0~ This is impossible, as we have already observed. I f  the 
conic sections were identical, the ratio of  coefficients in (4.5) and (4.6) would 
have to be the same, and this is impossible. Finally, there is the case of  each 
conic section being a line pair, and the two line pairs having one line in com- 
mon. In this case there is a linear relationship connecting n l , ,  n22, and n33 , of  
the form 

an11 +/3n22 + 7n33 = 0 (ol2 +/32 + 72 ~ 0) (4.7) 

The requirement that (4.8) be preserved yields, using (A.2), the constraint 

a(1 - 4k)n11 +/3(1 - 3l+2k)n22 +7(1  + 3l+2k)n33 = 0  (4.8) 

As before, we can divide both  equations (4.7) and (4.8) by nl ,  and regard them 
as specifying two straight lines in the (n22/n11, n33/n11 ) plane. These lines can. 
not be distinct, since then n22/n,1 and n33/nll would be constants, which, as 
we have seen, is not admissible. Therefore equations (4.7) and (4.8) are equiva- 
lent. Suppose first that ot ~s 0. Then either ~ 4 :0  or 7 4 :0  (or both) ,  since 
/3 = "r = 0 = ~ n ,  = 0, a contradiction. Without loss of  generality,/3 4= 0, and so, 
by equating coefficients, we obtain l = 2k, a contradiction. Now suppose that 
a = 0. Then at least one of/3 or 7 is nonzero. Suppose, without loss of  generality, 
that/3 :/: 0. I f  7 v~ 0, then, again by equating coefficients in (4.7) and (4.8),  we 
have l = 0, a contradiction. Finally, if a = 7 = 0 and/3 4: 0, then n22 = 0, and 
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(4.5) yields A n n  2 + Cn332 + 2En n n33 = O, which implies either n33/n n is con- 
stant or A --- C = E = 0, both  of  which are contradictions. Therefore, the only 
additional possibility in case 2 is n n = n22 = n33 = 0, which is a type I space- 
time in which the shear eigenvalues are distinct. 

Class B .  Since we are not considering class B models which belong to case 
Bbii, i.e., which are type VI h with h = --~, it follows that a t~ is a shear eigenvec- 
tor [1]. Thus, in a shear eigenframe, 

at~ = (a, 0, 0) with a 4= 0, and n~t3 = n22 n23 

n23 n 3 3 /  

We shall assume that the shear eigenframe is (or can be chosen to be) Fermi- 
propagated, and use the same technique as before. The shear propagation equa- 
tions (A.4) can be written in the form 

k(ao  0 + 0 2) = 1 [n2~ _ n33)2 + 4n232] 

and 

I(~o0 + 0 2) = 4an23 - n~22 + n332 

These equations are compatible if and only if 

l 
k [4an23 - n222 + n332 ] = ~ [(n22 - n33) 2 + 4n~32 ] (4.9) 

for constants k and l satisfying k 2 + l 2 # 0. 
The (01) field equation (A.3) shows that,  in a shear eigenframe, 

3aa n = n23(a22 - 033 ) 

which, with our present specialization, becomes 

2ak  = ln23. (4.10) 

It is clear from (A.1) and (A.2) that (4.10) is automatically preserved in time. 
Substituting (4.10) into (4.9), we obtain 

[ , ] (n22 - n33 ) k(n22 + n33 ) + ~- (n~2 -n33  ) = 0 (4.11) 

I f  we demand that (4.11) holds in an open set, we obtain, renumbering if neces- 
sary, the following possibilities: 

(i) n22 = n33 = 0; n23 = 0. The space-time is of  type V. Equation (4.10) re- 
quires that k = 0, which is equivalent to a l l =  0; thus the model is not L.R.S. 

(ii) n2~ = n33 = 0; n23 4: 0. The space-time is of  type VI h with n ~  = 0. This 
is L.R.S. if and only if n23 = +a ~ h  = - 1 (and there is a one-parameter family 
of  Bianchi type III). 
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(iii) n22 4= n33 and k = 1/2 --/= O, n22 = O, naa ~ O. The space-time is of type 
Vih with h = - 1 and n ~  4: 0. This is L.R.S. (and the space-time is invariant 
under a one-parameter family of groups of Bianchi type III, and a group of type 
VIII). This case was obtained in our discussion of class A, case la above, and is 
exemplified by metric (2.1). 

This completes the proof. [] 
Despite the apparent freedom in being able to impose the condition (i) con- 

cerning the eigenvalues of ai], it should be recognized that in general this may 
give rise to models in which the fluid variables are unreasonable in some sense 
(for instance, the usual energy conditions might be violated in some epoch of 
the evolution; cf. the remarks in Section 3). We have not attempted an exhaus. 
tire treatment of this question, but indications are that, at least for some of the 
simpler types of models, the energy conditions are satisfied. For instance, there 
are certain cases in which the energy density,/~, and the pressure, p, are such 
that p = (7 - 1)/a (1 ~< 7 ~< 2) and/a/0 2 is constant. Some of these solutions have 
previously been obtained: for type I with 7 = 2 [10], for type II with 1 ~< y < 2 
[11 ], for type VI o with 3' = 1 [ 1 ] and with I < 3' < 2 [ 11 ], and for type VI a 
with 1 ~< 3' < 2, h v~ -~, and - (2 - 3')/(3"r - 2) < h < 0 [11 ]. Conditions under 
which/~ = 0 2 implies a = 0 are given in a theorem in [12]. There are also cases in 
our analysis in which/~/0 2 is not constant. These, together with the Bianchi type 
VIII and IX solutions in [13], provide further examples, in addition to those 
listed in [12], which show that the converse result (that o = 0 implies/a o: 0 : )  is 
false. 

Because the only field equations to be used in this section are the (0v) and 
trace-free (/36) equations, the above theorem is also valid when the cosmological 
term is included. 
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Appendix 

The following equations are relevant to the discussion in Section 4, and are 
taken from [I ]. The quantity ~2 a is the angular velocity of the shear eigenframe, 
relative to a Fermi-propagated frame; in the discussion in Section 4, ~2" = 0. 

Jacobi Identities 

~oac~ + oa~a ~ + ~ Oac~ + ea~.ra~2 "r = 0 (A.1) 

aon~t~ + 2n~(&~).r~r I2 n - 2n. r (~ot3) ~ + ~ n~O = 0 (A.2) 
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Field Equations 

(0v): 3a~o~v- e~r nr~ %~ = 0 

Trace-free (/38): 

30008 = -0008 + 2o~(#e6)rr ~2 r + 2era (#n~)ra a 

- 2nsunU ~ +nn#~ + � 8 9  ( 2 n ~ r n K r -  n =) 

Here n = nC~c~. 
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(A.3) 

(A.4) 
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