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ABSTRACT 

Flows of a perfect fluid in which the flow-lines form a 
time-like shear-free normal congruence are investigated. 
The space-time is quite severely restricted by this con- 
dition on the flow: it must be of Petrov Type I and is 
either static or degenerate. All the degenerate fields 
are classified and the .field equations solved completely, 
except in one class where one ordinary differential equa- 
tion remains to be solved. This class contains the 
spherically symmetric non-uniform density fields and 
their analogues with planar or hyperbolic symmetry. The 
type D fields admit at least a one-parameter group of 
local isometries with space-like trajectories. All vac- 
uum fields which admit a time-like shear-free normal con- 
gruence are shown to be static. Finally, shear-free per- 
fect fluid flows which possess spherical or a related 
symmetry are considered, and all uniform density solu- 
tions and a few non-uniform density solutions are found. 
The exact solutions are tabulated in section 7. 

w  INTRODUCTION 

Non-degenerate vacuum fields admitting a shear-free normal con- 
gruence of time-like curves were considered by TrUmpet [I] and were 
shown to be static. It is interesting, therefore, to investigate 
whether this result can be generalised. It is found that this is 
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the case for degenerate vacuum fields and non-degenerate perfect 
fluid fields. In the latter case the generalisation "depends essen- 
tially on the fact that the stress tensor is spatially isotropic. 

If the mean dynamical velocity, energy-density, and pressure are 
denoted by u a, p, and p respectively, the energy-momentum tensor 
can be written as 

Tab = pUaUb + Phab, (I.I) 

where hab is the projection tensor into the infinitesimal three- 
space orthogonal to u a, defined by 

h a b  = g a b  + UaUb .  (1.2)  

Equation (i.i) represents a vacuum field if p = -p = A, where A is 
the cosmological constant. The field equations, Rab - �89 = Tab , 
become 

Ra~b = �89 + 3p)UaUb + �89 - p ) h a b ,  (1.3) 

where units are chosen so that 8~G = e = I. 

The tensor Ua; b may be split up as follows [2] 

1 
Ua;b = ~ab + qab + ~ 8hab - UaUb, 

where 

~(ab) = ~[ab] = ~ab ub = ~ab ub = Ub ub = Obb = O. 

( 1 .4 )  

The kinematic quantities ~ab, ~ab, 8, and ~a represent respectively 
the vorticity, shear, volume expansion and acceleration of the flow. 
The conservation equations, Tab;b = 0, are 

habp,b + {~a(P + ~) = O, ( 1 . s )  

+ (p + p)o = o. ( 1 . 6 )  

The following propagation equations for the kinematic quantities 
defined above may be obtained [3-5] from the Ricci identity, 

Ua; [be] = �89 

and the field equations 

1 82 {} + ~- - {~a;a + 2(o .2 - a~ 2) + �89 + 3p) = O, ( 1 . 7 )  
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2 
haehbd~cd - haehbd~ [e ;d] + 2ad[a~db] + ~ e~ab = 0, (1.8) 

haChbd$cd - haChbdu(c;d) - ~aUb + ~ad~db + ~adodb 

2 i + ~ @~ab + ~ hab (2"(~2 - 02) + {~C;c) r Eab = 0, (1.9) 

~[ab;c] - ~[a~cUb] - ~[a~bc] = o, (1.!0) 

2 hab(~bc;c - abC;c + ~ 8, b) + (cab + oab)~b = 0, (I.II) 

2~(amb) + hCah%[m(ce; f + o(ce;f]qd)gefug = Hab , (1.12) 

where Eab and Hab are respectively the 'electric' and 'magnetic ~ 
parts of the Weyl tensor with respect to u a, and are defined by 

Eab = CacbdUCu d, 

and 

Hab = �89 

the Weyl tensor Cabcd being defined by the equation 

1 6a [c@bd]R. cabcd = Rabcd - 26[a[cRb]d] + 

The Bianchi identities, Rab[cd;e] = 0, are equivalent to the 
equations 

cabCd;d = Rc[a;b ] _ i gc[aR~b ] (i 13) 
6 " ~ 

Bquations (i.13) are equivalent to the conservation equations 
(1.5,6) and the sixteen integrability conditions [3-5]: 

1 (1.14) hbaEbc;d hcd+ 3Hab ~b + nabcdUb~ceHde = ~ ~,bhba, 

hbaHbc;d hcd- 3Eab mb + qabcdUboCeEde = (~ + P)ma, (l. IS) 

hCah%Ecd + hf(a~]b)cdeUCHf d;e + Eab8 - 3EC(aab)c + ... (Cont.) 
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+ habEcd ~cd - EC(amb)c + 2Hd(anb)cdeuCu e (Cont I 

= - �89 + P)~ab, (1.161 

hCahdbHcd - hf(a~b,cdeUCEfd;e + Hab@ - 3HC(aOb)c 

+ habHcd qcd - ~HC(a~b)c - 2Ed(a~b)cdeuCu e = 0. (i.17) 

w SPACE-TIMES ADMITTING A SHEAR-FREE NORMAL CONGRUENCE 

If the vorticity vanishes a congruence is called normal and the 
vector u a is hypersurface-orthogonal [6]. If in addition the con- 
gruence is shear-free, coordinates may be chosen [I] so that 

h~w = P-2(xa)y~w(xh), (2.11 

and consequently the metric may be written as 

G = P-2~wdxVdx~ - V2(xa)dt 2, (2.2) 

where Greek and Latin indices run from 1 to 3 and 1 to 4 respec- 
tively. The expansion and acceleration of the flow are given by 

@ = - 3(PV)-ip,, uu = V-IvIu, (2.31 

where a prime and a single stroke represent respectively differen- 
tiation with respect to t and x~. 

It follows immediately from equation (1.12) with mab = aab = 0, 
that Hab = 0, and consequently that the space-time is of type I 
with vanishing eigenpseudoscalars. If (eAa,ua) is e tetrad of Weyl 
principal vectors, we may write 

3 
E ab = ~ ~AeAaeA b. (2.4) 

A=I 

This result, which does not depend on any assumption concerning the 
energy-momentum tensor, was proved by Trthnper [16], using different 
methods. 

Attention will be confined from now on to shear-free normal flows 
of a perfect fluid. With the aid of equation (2.31, Raychaudhuri's 
equation (1.71 and equation (1.111 become 

V-IvI~.Z-3[~V]2 + 3V-I[P~-~]' = �89 + 3p) (2.51 
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e ,p  = o,  i . e .  e = e ( t ) ,  ( 2 .6 )  

where a double stroke denotes a covariant derivative taken with the 
metric hp~. The remaining field equations are [I] 

[[~]2 .-irP,]'] 
R]~) - V-IvI~,w + 3(pv] - V [~-~3 6P~ = �89 - p)$P~, (2.7) 

~ 

where R~v is the Ricci tensor of hp~. The equations for the prop- 
agation of vorticity (1.8) and shear (1.9) are respectively 

1 
U[a;b] + ~[aUb] + ~ eu[aUb] : O, (2.8) 

~ 2 1 (2.9) Euw = RU~- ~(~ - ~ e2)h~ = P~, 

where Pp~ is the trace-free part of Rpw. If the acceleration is 
Fermi-propagated along u a, i.e. if ~[aUb] = 0, it follows that 

1 eU[a);b] = 0, and the space-time admits a conformal Kil- (U[a - 

ling vector, or, if 8 = 0, a Killing vector parallel to u a [2]. 
From equation (2z9) it follows that the Weyl principal vectors are 
eigenvectors of Rpv with eigenvalues 

2 1 ~A +-f(~- ye2) o 

If tetrad components of equations (i.14-17) are taken with res- 
pect to a Weyl principal tetrad (eAa,u a) and the surmmation conven- 
tion is suspended, the following equations are obtained: 

1 
~A.A + [ (~A - ~D)YADD - -~P.A = O, (2.10) 

P 

aA.46AC + (~C - ~A)YCA4 + 8~A6AC = O, (2.11) 

Y123(~i - e2 ) = Y231(~2 - a3 ) = Y312(~3 - a I) = E, say, (2.12) 

eA.C -eB.C + (~C ~B)YCBB (~C eA)YCAA + 2V-Iv - - - - .C(~A ~B) =0, (2 13) 

where a dot signifies a tetrad component of a covariant derivative, 
upper case Latin indices run from 1 to 3, and the y's are the Ricci 
rotation coefficients of the tetrad. Equation (2.11) is equivalent 
to the equation (p-ip~v), = 0, and with the aid of equation (2.3) 



ii0 

we obtain 

A. BARNES 

~A : P38A(xX), (2.14) 

(~C - aA)YCA4 = 0, for A # C. (2.15) 

Since aab = ~ab = 0, it follows from equation (1.4) that 

Y4AB : 0, Y4AA = Y4BB, for A # B. 

For non-degenerate fields it follows from equations (2.12,15) that 
the Ricci eigenvectors are Fermi-propagated along u a and that either 
all or none of the eigenvectors are hypersurface orthogonal. For 
degenerate fields the following theorem is valid. 

Theor. I. A degenerate field contains a Weyl principal 
tetrad which is hypersurface orthogonal. 

Proof: For type D fields we may choose ~i = ~2, without loss of 
generality and from equations (2.12,13,15) it follows that 

Y314 = Y234 = Y312 = Y231 : Y411 - Y422 : Y311 - Y322:0.(2.16) 

The vectors ela and e2 a are only determined up to a rotation of the 
form 

~i a = elacos ~ + e2asin# , ~2 a = - elasin~ + e2acos # .(2.17) 

Equation (2.16) is unaltered by this rotation, but since 

Y124 = Y124 + ~.4, Y123 = Y123 + ~.3, 

Y124 may be set equal to zero by means of a suitable rotation. If 
Y123 # 0, it may be made so by means of a time-independent rotation 
of the form (2.17). This can be seen as follows: the orthonormal 
triad (nA B ) of the auxiliary metric X~(x ~) defined by ~A B = p-IeAB , 
~AB = PeAB, is time-independent (since YCA4 = 0) and hence so are 
its rotation coefficients FAB C. The rotation coefficients are rel- 
ated to those of (CAB) by the equation 

YABC = PFABC + 26c[AP:B], (2.18) 

where P:B = PIXnB h. Hence F312 ~ F231 = 0, and Y123 = PFI23, and 
since under the rotation (2.16) FI23 = F123 + $:3, Y123 may be set 
equal to zero by a suitable time-independent rotation. For the 
conformally flat case it follows from equation (2.8) that PB~ = 0, 
and consequently the space cross-sections are of uniform curvature 
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K(t) [7], and coordinates may be chosen so that [8] 

Iii 

P = a + 8r  2 - 2 r . a ( t ) ,  Y>v = 8Vv, K = 4(~B - a 2 ) ,  ( 2 . 1 9 )  

where  r = x l i  + x2 j  + x 3 k ,  and ~, 8 ,  and a a r e  f u n c t i o n s  o f  t .  The 
c o o r d i n a t e  v e c t o r s ,  P - 1 6 A a ,  and t h e  v e l o c i t y  v e c t o r  u a a r e  h y p e r -  
s u r f a c e  o r t h o g o n a l .  

S i n c e  t h e  v e c t o r s  a r e  h y p e r s u r f a c e  o r t h o g o n a l ,  c o o r d i n a t e s  may 
b e  c h o s e n  so  t h a t  

h>vdxVdx v : P-2{(eYldml)2 + (eY2dx2)  2 + ( e Y 3 d x 3 ) 2 } ,  ( 2 . 2 0 )  

where  YA = YA ( x h ) "  The c o o r d i n a t e  v e c t o r s  a r e  R i c c i  e i g e n v e c t o r s  
and  t h e y  and t h e  r o t a t i o n  c o e f f i c i e n t s  a r e  g i v e n  by  

eA a = Pe-YASA a, YABC = O, 

for A,B,C #, 

YABB = Pe-YA(yB - logP),a~A a, 

( 2 . 2 1 )  

From equations (2.13,14,18) it follows that 

(~A - BB):C + (BC - BB)FCBB - (BC - BA)FCAA 

+ 2(BA - 8B)(IogPV):c = O. (2.22) 

The only term involving t in this equation is logPV and consequent- 
ly if the space is non-degenerate, it may be deduced that PV = f(x k) 
g(t). After a suitable redefinition of y~v, t, and V, we see that 
the metric (2.2) is of the form 

G = OV~{y~v(x k ) dx~dx  v _ d t 2 }  " ( 2 . 2 3 )  

The m e t r i c  a d m i t s  a c o n f o r m a l  K i l l i n g  v e c t o r  and f rom e q u a t i o n  
( 2 . 8 )  i t  f o l l o w s  t h a t  ~ [aUb]  = 0,  and h e n c e  t h a t  V -1  = A ( x  x)  + B ( t ) .  
C o n s e q u e n t l y  we h a v e  p r o v e d  t h a t  a n o n - d e g e n e r a t e  p e r f e c t  f l u i d  f i e l d  
a d m i t s  a c o n f o r m a l  K i l l i n g  v e c t o r  p a r a l l e l  t o  t h e  f l o w .  A t h e o r e m  
o f  Trfimper [ 1 ] ,  w h i c h  s t a t e s  t h a t  a vacuum s p a c e - t i m e  a d m i t t i n g  a 
c o n f o r m a l  K i l l i n g  v e c t o r  i s  e i t h e r  c o n f o r m a l l y  f l a t  o r  s t a t i c ,  may 
b e  g e n e r a l i s e d  i m m e d i a t e l y  t o  i n c l u d e  t h e  c a s e  o f  a p e r f e c t  f l u i d  
f i e l d  i n  wh ich  t h e  f l o w - l i n e s  a r e  p a r a l l e l  t o  a c o n f o r m a l  K i l l i n g  
v e c t o r  f i e l d  ( s i n c e  t h e  o n l y  a d d i t i o n a l  t e r m  i n  t h e  f i e l d  e q u a t i o n s  
i s  p r o p o r t i o n a l  to  Y~v)-  Hence t h e  f o l l o w i n g  t h e o r e m  i s  v a l i d .  

Theor .  2. A n o n - d e g e n e r a t e  p e r f e c t  f l u i d  f i e l d  i n  wh ich  t h e  
f l o w - l i n e s  form a n o r m a l  s h e a r - f r e e  c o n g r u e n c e  i s  s t a t i c .  
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Degenerate fields will now be considered, the conformally flat 
ones in section 3 and those of type D in sections 4-6. 

w FLAT SPACE-TIMES 

Since Epv = 0, i t  follows from equations (2.7,8) t h a t  

i Vtl VlP,v - ~ .hB~ = O. (3.1) 

I t  may be deduced from equa t ions  (2 .3 ,19)  t h a t  the  m e t r i c  can be 
written in the form 

G = (e + 6r  2 - 2 r . a ) - 2 { d r  2 + r 2 ( d 8  2 + s in2Odr  - V2dt 2, (3 .2 )  

where 

V = 3 {~' + 6'r 2 - 2r.a'} 

e ((~ + 6 r  2 - 2 r . a )  

where ~, 6 and a are functions of t only and w~ere three-dimension- 
al vector notation has been used for conciseness. V satisfies equa- 
tion (3.1) identically and from equations (1.6) and (2.8) it follows 
that the energy-density and pressure are given by 

i e2 a 2 1 82 = 3K + ~ = 12(~B - ) + ~ , (3 .3 )  

1 82 ~V i e2), p = -  ( 3 K + ~  ) - ( S K + ~  . (3 .4 )  

The m e t r i c  (3.2) admits  no K i l l i n g  v e c t o r s  in gene ra l  s i n c e  four  
f u n c t i o n a l l y  independent  i n v a r i a n t s  may be c o n s t r u c t e d  from ~, p 
and t h e i r  d e r i v a t i v e s  i f  the  rank of  the  f i v e  f u n c t i o n s  ~, 8, a ( t )  
over  t he  r e a l  c o n s t a n t s  i s  fou r  or f i v e .  I f  the  rank i s  t h r e e ,  
on ly  t h r e e  i n v a r i a n t s  may be so c o n s t r u c t e d  and t h e r e  e x i s t s  a 
s p a c e - l i k e  K i l l i n g  v e c t o r .  I f  the  rank i s  two, the  i some t ry  group 
i s  o f  d imension t h r e e  wi th  two-d imens iona l  s p a c e - l i k e  t r a j e c t o r i e s .  
The s p h e r i c a l l y  symmetr ica l  members o f  t h i s  c l a s s  were ob ta ined  by 
Thompson and Whitrow [9] .  The m e t r i c  may be w r i t t e n  in  the  form IB 
(see Table)  wi th  y g iven  by equa t ion  (6 .5 ) .  I f  the  rank i s  one,  
V = V(t)  and the  flow i s  geodes i c  and the  s o l u t i o n  i s  one o f  the  
Friedmann models [3] .  

I f  8 = O, the  above a n a l y s i s  i s  not  v a l i d .  However, c o o r d i n a t e s  
may be chosen so t h a t  P = 1 + �88 2 where K i s  a c o n s t a n t .  V i s  
g iven  by equa t i on  (3.1) and on i n t e g r a t i o n  i t  f o l l ow s  t h a t  

V = { ~ ( t ) , +  6(t)r 2 + r.a(t)} (3.5) 
(I + �88 2 ) 
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The energy density and pressure are given by 

Ii3 

i 
U = 3K, p = - 3K + ~(a.E + 4B). ( 3 . 6 )  

If the rank of the functions a, 6 and a is greater than two, the 
dimension of the isometry group is the same as in the corresponding 
case with @ # 0. If the rank is two, the metric admits a three- 
dimensional isometry group acting on two-dimensional space-like 
trajectories of constant curvature. The spherically symmetrical 
members of this class are the interior Schwarzschild metric with 
time-dependent pressure [10,11]. If the metric is static (i.e. if 
the rank is one) the metric is equivalent to that obtained by Step- 
anyuk [12] and admits a four-dimensional isometry group [13]. If 
p # constant, this group is complete. If, however, p = constant 
-~ the solution is the Einstein universe and admits a complete 
seven-dimensional group. If p + v = 0 the space is an Einstein 
space and being conformally flat is of constant curvature [7] (i.e. 
it is one of the de Sitter universes). 

If the rank of the functions is one or two, the metric may be 
written in one of the follo~ing forms 

G = (~ - ~2)-idr2 + r2d~ 2 

I 

- {D(t) + E(t)(k - Kr2)~}2dt2 for K # O, (3.7) 

G = dr 2 + r2(d8 2 + sin2@dr 2) 

- {E(t) , D(t)r2}dt 2 for K = O, (3.8) 

where d~ 2 = d@ 2 + f2(|162 with f(@) = sing , @, sinh8 , for k = +I, 
0, -i, respectively. The energy-density and pressure are given by 

2DK 
= 3K, p = - 3K + V ' for K # O, (3.9) 

4D 
= O p =--~-~, for K = O. (3.10) 

Finally, it is noted from equations (3.7-10) that all static 
conformally flat perfect fluid fields with non-negative density 
are spherically symmetrical. 

w SPACE-TIMES OF TYPE D 

With the aid of equations (2.20,21) it follows that the integra- 
bility conditions are equivalent to the equations: 

l ] 
(~ - ~ ~).3 + 3~(YC - logP).3 = O, I (4.1) 
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1 3 V 
(~ + ~ U).C + ~ a(Y3 + l ~  = O, 

1 
(a - ~ P).C + 3a( logV).C = 0, 

(4.1)  

where C = 1,2, and al = a2 = -2~3 = -2a. It follows from equation 
(2.14) that P can he chosen equal to al/3 in these equations and 
hence it may he deduced that 

G = a-2/3(e2y(XX)dg2 + e2y3(x t ) ( d x 3 ) 2  _ e -Y3+2Z(x3 , t ) d t2 ) ,  (4.2) 

where do 2 is a two-dimensional metric involving x I and x 2 only and 

1 -1 
Y,3 = ~- a P,3, (4.5) 

(logal/3v) i a-i C i ,C = ~ : - ~ Y3,C" (4.4) 

The conservation equation (I.5) becomes 

P,X = - V-Iv, I(P + ~ ) ,  (4.5) 

and it is easily seen that since V # V(t), otherwise EU~ = 0, 

p = p(V,t), ~ = p(V,t). (4.6) 

The volume expansion is given by 

@(t) = - (aV)-Is ' �9 (4.7) 

It follows from this equation and (1.6) that if @ = 0, 

= ~ ( x X ) ,  ~ = v ( x ~ ) .  

The fields may be divided into four invariant classes: 

I. P = u(t); II. u = p(x3,t); III. p = ~(xl,x2,t); 
IV. p = ~(xl,x2,x3,t). 

Class I may be subdivided into four invariant subclasses defined 
as follows: 

A. a = constant; 
B. ~ = a(x3,t), i.e. the hypersurface, a = constant, contains 

the space-like eigenblade of the Weyl tensor; 
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C. ~ = ~(xl,x2), i.e. the hypersurface, ~ = constant, con- 
tains the time-like eigenblade of the Weyl tensor; 

D. a = a(xl,x2,x3,t), i.e. the hypersurface contains neither 
eigenblade. 

This classification generalises that of static perfect fluid and 
vacuum fields [13,14]. 

Class I 

Since ~ = v(t), the conservation equation (4.5) can be integra- 
ted to yield 

2A(t) 
P + ~ - V (4,8) 

From equations (4.2-4) it follows that the metric may be written 
as 

G = ~-2/3(da2 + (dm3) 2 - e 2 Z ( x 3 ' t ) d t 2 ) .  (4.9) 

Class IA 

For this class it can be shown that p + v = 0, and that both the 
eigenblades of the Weyl tensor are two-dimensional spaces of con- 
stant curvature v. Consequently the metric is [13,15] 

G = I (v) (d@ 2 + f2 (e )dr  + (dx3) 2 - f2(x3)dt2), 

where f(e) = sin @, @, sinh e, and I(v) = v -1, i, -v -1, for v > 0, 
=0, <0, respectively. The invariant ~ is given by ~ = -2V/3, and 
for v = 0 it is easily seen that the space is flat. For V ~ 0, the 
space is static and the complete isometry and isotropy groups are 
of dimension six and two respectively. 

Class IB 

As ~ = ~(x3,t), the metric (4.9) can be expressed as 

G = R2(z,t){dq 2 + z-2dz 2} - V2(z,t)dt 2, 

by means of a coordinate transformation of the form z = z(x3). 
field equations are 

+ w'"l  + " ) 

(4.10) 

The 

1 
= ~(~ - p), (4.11) 
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z2[VI 33 Vi3 2R133 2R~3 kRl32 VI3Rf3.) 

v + - - + - - + - -  Vz R Rz R 2 VR 

+ V 2 - [~ + 2R'---~2R 2 V'R----~'I = �89 - P ) ' V B  (4.12) 

l f<: + + + 3 <  2 
VR Vz ) [ RV R 

= �89 + 3 p ) ,  ( 4 . 1 3 )  

--R-~--] = 0. (4 .14)  
13 

It can be deduced from equation (4.11) that the Gaussian curvature 
k of d~ 2 is constant and consequently coordinates can be chosen so 
that da 2 = de 2 + f2(@)dr where f(@) = sin@, @, sinh@, for k = I, 
O, -I, respectively. If @(t) = O, i.e. if ~ = ~(z), it follows 
that in terms of curvature coordinates the metric can be written 
as 

G = r2da 2 + W2(r )d r  2 - V2(r,t)dt 2. (4.15) 

Integration of the field equations yields [13] 

1 2 --W 2 = k - "~ vr - 2mr -I, (4.16) 

f 1 2 V = W(B(t) + A(t) r(k - ~ ~r 2mr-l)-3/2dr). (4.17) 

The pressure is given by equation (4.8) and a = -2mr -3. If m = 0 
the space-time is conformally flat and the metric reduces to the 
form (3.7). If A(t) is proportional to B(t), the field is static, 
and, in particular, if A(t) = 0, the metric represents a static 
vacuum field, and it is the exterior Schwarzschild line-element 
with cosmological constant or a related solution possessing planar 
or hyperbolic symmetry [10,17]. If ~ = a(t), it follows from equa- 
tion (4.7) that either V = V(t) or a = constant As V # V(t), 
otherwise E~v = 0, it follows that a = constant and that the fields 
belong to class IA. The cases with a = a(z,t) will be considered 

in section 6. 

Classes C and D 

For these classes arc 4 0 for C = 1,2. The field equations 
(2.7) become 

2-i/3( i/3)~, -z . (Cont) R~w= + - e (eZ)n~ = .. 
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- a 2 / 3 e - Z ( a - 2 / S e Z ) I u 1 6 5  = O, ( 4 .18 )  

= 

where R~ and JJ denote the Ricci tensor and covariant derivative 
of the metric ~vdx~dx w = dd 2 + (dx3) 2. From equations (4.7,18) 
with ~ = 3, v = 1,2, it may be deduced that 

i/3 • a = X(xl,x 2) r Z(x3,t). (4.19) 

For ~,~ = 1,2, equation (4.18) is equivalent to the equation 

~X~h = XI~v ~ .hOly = O~ 

and consequently' the metric dd 2 is of the form [14] 

dd 2 = fld%2 + fdr 2, (4.20) 

where f = f(X). 

Class C 

As a = ~(xl,x2), after a translation of the coordinate X, Y may 
be set equal to zero. It can be shown [23] that p + V = 0, and 

i 2 i 2 G = (k - ~ ~x - 2mx-l)-idx 2 �9 (k - ~ ~x - 2mx-l)dr 2 

+ x2(dz 2 - f2(z)dt2), (4.21) 

where f(z) = sinz , z, sinhz , for k = I, 0, -I, respectively. The 
time-like eigenblade of the Weyl tensor is of constant curvature 
and the solution is static. The complete isometry and isotropy 
groups are of dimension four and one respectively. 

Class D 

Only three of the field equations are not identically satisfied: 
the [3.3) component and the trace of the equation (4.18) and Ray- 
chaudhuri's equation (2.5). These equations are equivalent to 

2 
(X + Y ) ( Z , 3 3  + Z ,3  - � 8 9  - 2Y,33 + f ' ( X )  = O, (4 .22 )  

(X + Y)2(Zj33 + Z~32) - 2(X + Y)(Y133 + Yi3ZI3 + �89 + ..(Con~ 
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2 
�9 ." + 3(YT32 + f) = P + ( Y i 4  + 2(X + Y,)Y,4Z,4)e -2Z, ( 4 . 23 )  

2 - 2Z  
(Y t33  + YJ3Zi3  - Yi4Z]4 e-2z)(X + Y) = �89 + P) - Y~4 e ( 4 .24 )  

From equations (4.8,24) and the equation 

= (X + y)-leZ ' 

it may be deduced by equating coefficients of X that 

Yl4 = O, Yr33 - YI3Z13 = A(t)e-Z" 

Consequently the volume expansion is zero and the analysis of [13] 
shows that 

G = (X + Y ) - 2 { f - l d x  2 + f d ~  2 + g - l ( y ) d y 2  

where 

- g ( Y ) ( B ( t )  + A( t ) Ig -3 /2dy )2d t2 } ,  

~ ( X )  = • X 3 + cX + d, 1 
g ( X )  = - f ( - X )  - ~. v ,  

( 4 .25 )  

with X + Y > 0, and a = • -~ y)3. The field is static if A(t) is 
proportional to B(t), and in particular if A(t) = 0, the metric 
represents a static vacuum field. The complete isometry group is 
Ahelian and of dimension one or two. 

It has been shown that all fields of classes A, C and D with 
p + ~ = 0, i.e. vacuum solutions with a cosmological constant, are 
static. This result is also valid for class B since the proof of 
Birkhoff's theorem [18] generalises immediately to include the 
cases with planar or hyperbolic symmetry. Consequently the fellow- 
ing theorem is valid. 

Theor. 3. A vacuum space-time admitting a shear-free normal 
congruence of time-like curves is static. 

w CLASSES I I - I V  (VARIABLE DENSITY)  

Class II 

In this class ~ = ~(x3,t) and consequently it is easily seen 
from equations (4.3,4,6) that V = V(x3,t), p = p(x3,t), a = a(x3,t), 
y = y(x3), and y~ = Y3(x3), and by means of a coordinate transforma- 
tion of the form-Z = Z(x3), the metric may be put in a form identi- 
cal with equation (4.10). 
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If @ = 0, it follows that ~ = a(z), and that the metric may be 
written in the form (4.11) with 

W - 2  = k - k - - [ r p ( r ) r 2 d r  - 2mr - 1 ,  
r J  0 

i - 3 s r  a = ~ r  0 ~ ' ( r ) r 3 d r  - 2mr - 3  

The remaining field equation for the function V cannot be integrated 
in closed form except in special cases. This class contains the 
static spherically symmetric fields which have been considered ex- 
tensively [19-21], and their generalisations with either time-dep- 
endent pressure or planar or hyperbolic symmetry. The general case 
with ~ = ~(z,t) will be considered in section 6. 

Classes III and IV 

Since ~LC ~ 0, for C = 1,2, it follows that Via ~ 0. As the coord- 
inate vectors in equation (4.2) are eigenvectors of the spatial 
Ricci tensor Rpv, it follows that R3 C = 0, and from equation (2.7) 
that V~3,C = 0, i.e. 

(V l3e-6 )~C - 6 t3V ic  e-6 = O, (5 .1 )  

(6,3e-6)iC = O, (5 .2)  

where for simplicity we have written 

B 6 - 1 / 3 e - � 8 9  e = a -1 /3eY ,  e = a -1 /3eY3 ,  V = 

Integration of equations (5.1,2) yields 

-6  
BI3 e = h ( z , t ) ,  (s.3) 

-6 
V13e = h(z,t)V + ~(z,t), (5 .4)  

where h and s are arbitrary functions of integration. 

From equations (4.4,6) it follows that 

Y31 [eV:b] = a~ [cV, b] = O, for b,c = 1,2, 

and consequently from equation (5.I) that 

V, 3[LV,2 ] = Y3,3[1Y312 ] = O, 
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where the last index 3 is not included in the antisymmetrisation. 
On integrating the last equation it follows that Y3 = Y3(f (xl,x2), 
x3), and on making the coordinate transformations, &l = X = f(x I, 
x2), z = x 3, that Y3 = y3(X, z)" It is easily seen from equations 
(4.4,6) that 

V = V ( X , z , t ) ,  y = y ( X , z ) ,  a = a ( X , z , t ) ,  ~ = v ( X , z , t ) ,  

If the coordinate x2 = r is chosen so that the xl- and x2-1ines 
are orthogonal, the metric can be=written in the form 

G = e26(A2(Z,r 2 + B2(X,~)d~ 2) + e~6dz2 - V 2 d t  2 .  

Since  the  space i s  o f  type D i t  f o l l ows  t h a t  R ~  and consequen t ly  
V ~ , ,  w are p r o p o r t i o n a l  to  ~ v  f o r  ~,w = 1,2.  Hence 

A-3AI2VIt e-2B = O, 

(Vjle-26)i I - (A-IA~I + B-IB~I)VII e-26 -- O. 

Consequently, A,2= 0, and B = B(X)g(r By means of coordinate 
transformations of the form X = X(X), ~ = ~(r A(X) may be set 
equal to B(X), and on redefining 6 as B + logA, the metric becomes 

2~(X,z,t)(dX 2 e26(X,z,t)dz 2 G = e + d~ 2) + - V2(X,z,t)dt 2. (5.5) 

The equations RI I = R2 2 and vilnl = V~2,2 become, on integration, 

V41e -2~  = f ( z , t ) ,  ~ l  e ~ - 2 s  = g ( z , t ) ,  (5.6) 

where f and g are arbitrary functions of integration and f ~ 0, 
otherwise V~I = 0. It follows from equation (5.6) that 

e = m(z,t)V + k(z,t), (5.7) 

where m = g/f and k is a function of integration. 

If 6, Vi3, ~ and 6 are ~liminated from equation (5.1) with the 
aid of equations (4.3,4) and (5.3,4,7) it follows that 

W l V(2 3mm33 2m} 
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AS V, I # 0, it may be deduced that either 

121 

k = O, 3s - 2Zi3m - mi3 = O. 

or 

= O, m~3 = 2Z,3m, kl3 = 2Z13k. (5.8) 

In the former case it may be seen from equations (4.4,5,7) that 
Y3~C = P~C = 0, C = 1,2, and consequently such fields do not belong 
to classes III or IV, but to classes I or II. Hence equation (5.8) 
is valid. It follows from equations (5.3,4) that 613 = V-Ivy3, 
and hence V 2 = H(X,t)e26, or equivalently 

e-Y3-2Y = H(X,t)e -2Z(z,t). 

Since the left-hand side of this equation is independent of t it 
~ 

can be deduced that e z = C(t)e z(z). Consequently the metric (4.2) 
admits a conformal Killing vector and is therefore static. All 
the functions in equation (5.5) may be made independent of t and 
the analysis of [13] applied to obtain the following solutions. 

Class III 

G = (n + mx)-2{F-idx 2 + Fdr 2 + dz 2 - x2dt2}, 

with 

F = F ( x )  = b + c ( n 2 1 o g x  + 2mnx + �89 
where x > 0, m = • and n, b, and c are constants. 
energy-density, and the invariant a are given by 

The pressure, 

2p = cx-2(n + mx)3(n - mx) + 2m(m - 2n)F, 
X 

2~ = cx-2(n + mx)3(n + 3mx) - 6m2F, 

1 a = - -~ ncx-2(n + mx)3. 

If nc = 0, the space-time is conformally flat. If nc # O, it admits 
a complete three-dimensional Abelian isometry group. 

Class IV 

G = n-2(z)<F-ldx 2 + Fd~ 2 + dz 2 - x2dt2}, 

with F = F(x) = am 2 + blogx + c, and n = Asin/aaz, Az, Asinh (-/~a)z, 
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for a > O, =0, <0, respectively, and where a, b, c and A are con- 
stants. The pressure, energy-density and e are given by 

2p = 6A2I(a) + bn2x -2, 2~ = - 6A2I(a) + bn2x -2, 

1 a = - ~ bn2x -2, 

where I(a) = i, [a[, for a = 0, a # 0, respectively. 
isometry group is two-dimensional and Abelian. 

The comple te  

w CLASSES IB AND II 

We recall that the space-time possesses spherical, planar, or 
hyperbolic symmetry and that for class IB ~ = ~(t), whereas for 
class II U = ~(z,t), with ~t3 # 0. On equating the left-hand sides 
of equations (4.11,12) and integrating, it can he seen that 

Z2Rzz - 2 z 2 R - 1 R z  2 + zR  z + kR + b ( z )  = O, 

where b is an arbitrary function of integration, or equivalently, 
writing y = R -1, 

2 2 
z Yzz + Z y z  - k y  = b ( z ) y  (6.1)  

From the field equations (4.13,14) it is easily seen that 

Uz = U.3 = 2b'(z)R-3 (6.2)  

2 = -~ b ( z ) R  -3  (6.4)  

V = 3 (eR) - IR  ' .  (6.4)  

If b = O, the space-time is conformally flat and equation (6.1) is 
easily integrated to give 

y = A ( t ) z  - 1  + B ( t ) z ,  f o r  

y = A ( t )  + B ( t ) l o g z ,  f o r  

y = A ( t ) c o s l o g z  + B ( t ) s i n l o g z ,  f o r  

k = +l, 

k = 0, 

k = -l, 

where A ( t )  and B ( t )  a r e  a b i t r a r y  f u n c t i o n s  o f  i n t e g r a t i o n .  
e n e r g y - d e n s i t y  i s  g iven  by the  e q u a t i o n s  

_ 1 ~ e2 ( t )  = i 2 A B ,  -3B 2, -3 (A 2 + B 2 ) ,  

(6.5) 

The 
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for k = +i, 0, -i, respectively. These solutions are special cases 
of those obtained in section 3, but those with k = 0 and k = -I are 
expressed in a different coordinate system. The spherically sym- 
metric solutions (i.e. k = +i) have been used by a number of authors 
[9,22,23] to investigate the motion of spheres of uniform density. 

The fields of class I are characterised by the condition b(z) = 
b # 0, where b is a constant. The integral of equation (6.1) is 

y = (2b)-l{~ p(B(t)+ logz) - I}, (6.6) 

where p is the Weierstrassian elliptic function with invariants g2 
and g3 given by [24] 

1 - ~2 + ~ k3) '  g2 =-~" k2, g3 = (2C(t)b2 i 

and where B(t) and C(t) are arbitrary functions of integration. 

1 82 The density is given by V = ~ (t) - 3C(t), and the mass function 

[26] by m = (b/3) �9 m~3/6. Since m z = �89 it follows that b/3 
may be interpreted as a point-mass at B = 0. 

The elliptic function reduces to an elementary function in cer- 
tain special circumstances. For k = +i and C = 0, 

y = 6b-lBz(1 - 8z) -2, 

and for k = i and C = -(362) -1, 

(6.7) 

y = (2b)-l{l + 3tan2(�89 (6.8) 

where 8 = 6(t) is an arbitrary function of integration. For k = 0 
and C = 0, equation (6.6) becomes 

y = 6b-l(B _ logz) -2, ( 6 , 9 )  

whereas for k = -i and C = 0, 

3 b-lsec2(�89 
Y = E 

and for k = -i and 0 = (352) -I, 

(6.10) 

y = b-l(l + 4Bz + B2z2)(l - Bz) -2. (6.1i) 

These metrics are not regular at z = 0 nor z = ~, and for this 
reason they have usually been ruled out on physical grounds. How- 
ever, the solution could represent an annular region, z I < z < z2, 
surrounding a core with a different density distribution. 
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Space-times of class II are characterised by the condition b'(z) 
# 0. As both the metric and the left-hand side of equation (6.1) 
are invariant under the coordinate transformations ~ = az • where 
a is a constant, fields with b = f(z) and b = f(az • are equiva- 
lent. If the transformations 

v ~ I(zu2)-ldz, = u'  x = • ( 6 . 1 2 )  

are made, equa t i on  (6.1) becomes 

Vxx = A(x)v 2, (6.13) 

where A ( x )  = b ( z ) u  5 and u i s  a s o l u t i o n  of  the  l i n e a r  equa t ion  

2 
Z Uzz + ZU z - kU = 0. 

If A(x) is a constant (= 3A/2) the general integral of equation 
(6.13) is 

[~ )k /3  (A2C( t) ) k / 6 x )  ' v = + ( ~ ( t )  + �89 (6.14) 

where B and C are arbitrary functions of integration and the invar- 
iants g2 and g3 are given by g2 = 0, g3 = -4. If C = 0, v may be 
written in terms of elementary functions, i.e. 

! -2 
v = (B(t) - �89 . (6.15) 

From equation (6.12) for k = i, it follows that u = az + bz-l, x = 
• 2 + b) -I, for a # 0, or x = �89 2 , for a = O. Three 
distinct solutions of equation (6.1) with k = I, corresponding to 
b = 3Az5/2, (3A/2)(z + z-l)-5, (3A/2)(z - z-l)-5, may be obtained 
from equation (6.14) or (6.15) by means of the substitutions above 
with a = 0, b = I; a = I, b = i; and a = I b = -i, respectively. 
The solution corresponding to b = 3Az5/2 and C = 0 has previously 
been found by Faulkes [26]. Solutions corresponding to k = 0, b = 
(3A/2)(logz) -5, and k = -i, b = (3A/2)(coslogz) -5, may be obtained 
in a similar manner by means of the substitutions u = logz, x = 
(logz)-l, and u = coslogz, x = tanlogz, respectively. 

It is also possible to obtain solutions of equation (6.13) cor- 
responding to other forms of the function A(x) by applying a trans- 
formation of the form (6.12) to equation (6.1) with b(z) = constant. 
In this way the following solutions of equation (6.13) are obtained: 

V = ( 2 b e 3 ) - l ( 1  + c 2 x 2 ) � 8 9  + t a n - l ( c x ) )  - 1} 

(6.16) 

A(x) = bc5/2(i + c2x2) -5/2, 
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where 

1 
and 

g2 - 12' 
1 

g3 = - ~ (2c(t )b2c5 - -3); 

! I i 
= ~[2x(1 - 2ctbx)]2{~ p(B(t) + ~ ]og(x -1 - 2ab)) - 1}, 

A(x) = A(2x)-5/2(1 - 2abx) -5/2, 

(6.17) 

where 

1 
g2 = 1--{' and 

1 
g3 = - 7~ (2c(t)A2 + ~)" 

Four special cases arise where the elliptic function in equation 
(6.16) or (6.17) degenerates into an elementary function. These 
cases correspond to equations (6.7,8,10,11). 

From equation (6.16), with the aid of the substitutions u = az 
+ bz -l, x = (2a)-l(az 2 + b) -l, and u = I, x = logz, it is possible 
to obtain the solutions of equation (6.1) corresponding to k = I, 
b(z) = bc5/2zS{(az 2 + b) 2 + e2} -5/2, and k = 0, b(z) be5/2(l + 
c21og2z)-5/2, respectively. 

Similarly, from equation (6.17) by means of the substitutions, 
u = az + bz -I, x = (2a)-l(az 2 + b)-l; u = I, x = logz; u = logz, 
x = (logz)-l; andu= coslogz, x = tanlogz; the solutions of equa- 
tion (6.1) corresponding to k = I, b(z) = A(I - abz2)-5/2; k = O, 
b(z) = 2-5/2A(logz)-5/2(l - 2ablogz)-5/2; k = O, b(z) = 2-5/2A(logz 
- 2ab)-5/2; and k = -i, b(z) = A(2sinlogz)-5/2(coslogz - 2absin 
logz)-5/2; respectively can be obtained. If C = 0, in equation 
(6.17) it may be deduced from equation (6.7) that 

! -2 
v = 6aBA-1(l - 2abx){a - B(�89 -l - ab) 2} . 

If the substitutions x = (2z2) -1, and u = z, are made, the solution 
of equation (6.1) with k = i, b(z) = Az5(z 2 - ab) -5/2, namely 

y = 6aB(Az)-l(z 2 - ab)(a - @(z 2 - ab)�89 -2 

is obtained. This solution was found by Nariai [27]. As far as 
the author is aware, all solutions in this section have not prev- 
iously been obtained, except where it is explicitly stated to the 
contrary. 

w SUMMARY 

All solutions of Einstein equations representing a degenerate 
shear-free and twist-free flow of a perfect fluid have been found 
and are displayed in the Table. The type D solutions all admit at 
least one space-like Killing vector field. In general the conform- 
ally flat solutions admit no Killing vector fields. 

The expanding flows of class IB are the uniform density spheri- 
cally symmetrical shear-free flows considered by Thompson and 
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Whitrow [9] and their analogues with planar and hyperbolic symmetry. 
Those in class II are their generalisations with non-uniform dens- 
sity. The rigid flows of class IB are the interior Schwarzschild 
solution and its analogues with a point mass at the centre and a 
time-dependent pressure. Such solutions could represent a motion- 
less annular region onto which matter is accreting and which sur- 
rounds a core of a different density. The rigid flows of class II 
are generalisations of those of class IB with variable density. 

Class IA fields are Einstein spaces and are the direct product 
of two two-dimensional spaces of constant curvature. Classes IC 
and ID are generalisations of the vacuum B and C metrics of [14] 
and as  far as I am aware no physical interpretation is known for 
even the vacuum metrics. Classes Ill and IV have no analogue in 
the vacuum case. Class Ill solutions possess cylindrical symmetry. 
Class IV have axial symmetry but are unrealistic physically since 

P > V. 

In column two of the table E, R or S signify that the flow is 
expanding, rigid or static, respectively. In columns six and seven 
the dimensions of the isometry and isotropy groups are given and 
the S and T in column seven denote whether the isotropy group has 
a space-like or time-like trajectory, respectively. 
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