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Abstract. Borcherds algebras represent a new class of Lie algebras which have almost all the properties 
that ordinary Kac-Moody algebras have, but the only major difference is that these generalized 
Kac-Moody algebras are allowed to have imaginary simple roots. The simplest nontrivial examples one 
can think of are those where one adds 'by hand' one imaginary simple root to an ordinary Kac-Moody 
algebra. We study the fundamental representation of this class of examples and prove that an irreducible 
module is given by the full tensor algebra over some integrable highest weight module of the underlying 
Kac-Moody algebra. We also comment on possible realizations of these Lie algebras in physics as 
symmetry algebras in quantum field theory. 

Mathematics Subject Classifications (1991). 17B65, 81R10. 

1. Introduction 

Studying the Lie algebra of physical states for the 26-dimensional bosonic string 
compactified on a torus, Borcherds discovered his celebrated fake Monster Lie 
algebra as the first generic example of a generalized Kac-Moody algebra (cf. [1, 2] 
or the review [3] for physicists). Up to this point, it was only known that the 
tachyonic groundstates give rise to an infinite rank Lie algebra L~ with a set of 
simple roots isometric to the Leech lattice and with certain bounds on the dimension 
of the root spaces coming from the 'no-ghost' theorem (cf. [4-7]). It was Borcherds' 
great achievement to observe that this upper bound can be satisfied by adding a 
certain set of photonic physical states as additional generators to the set of gene- 
rators for L~ [8]. Mathematically speaking, he adjoined a set of imaginary simple 
roots (where 'imaginary' means 'negative norm') to the set of real simple roots for 
the Kac-Moody algebra Loo. In the sequel Borcherds was able to axiomatize his 
ideas and he developed a theory of generalized Kac-Moody algebras in terms of 
generators and relations (cf. [9, 11]). 

To get a grasp of these new Lie algebras Slansky [12] investigated the Borcherds 
extensions of the Lie algebras su(2), ~n(3), and affine stt(2) by a single lightlike ( -  
norm zero) simple root. Computer calculations of the first few weight multiplicities 
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of the basic representations suggested that the latter might be written as the tensor 
algebra over some module for the underlying nonextended Kac-Moody algebras. In 
the following, we shall prove that this is true for any Kac-Moody algebra extended 
by an arbitrary imaginary, simple root. 

2. Definitions 

Let us begin with a review of the definition of Borcherds algebras. As already men- 
tioned, the original references on the subject are [2], [9] and [11]. 

DEFINITION 1. Let A --(aij) be a real symmetric n x n matrix satisfying the 
following properties: 

(i) either au = 2 or au ~< 0, 
(ii) alj <<. 0 if i ¢ j, 

(iii) aij e 77 if au = 2. 

Then the Borcherds  algebra (general ized K a c - M o o d y  algebra) associated to /1 is 
defined to be the Lie algebra fi(A) given by the following generators and relations: 

Generators:  E lemen t s  ei, f ~, hi for every i; 
Relations:  

(0) [hi, h j] = O, 

(1) Eel, f j ]  = 6ijhi, 

(2) [hi, ej] = aijej,  [hi, f j ]  = - a i j f j ,  
(3) eij.'= (ad el) 1 -a'Jej = O, f i j  .'= (ad f i )  1 - " ' i f ;  = 0 if aii = 2 and i ¢ j, 

(4) eij := [ei, e j]  = O, f i j  ,= [ f l ,  f j ]  = 0 if'all <~ O, a# ~ 0 and aij = O. 

The elements hi form a basis for an Abelian subalgebra of fi(/[), called its Cartan  

subalgebra g(A). ~(A) has a triangular decomposition 

~(A) = fi_ • g • ,~+, 

where ft_ (resp. fi+) is the algebra obtained by dividing the free algebra fi_ (fi+) 
generated by the f~ (ei) by the ideal r_ (r+) generated by the f ir  (eij). 

Note that if a ,  = 2 for all i, then ~(.#) is the same as the ordinary Kac-Moody 
algebra with symmetrized Caftan matrix A. In general, ~(A) has almost all the 
properties that ordinary Kac-Moody algebras have, and the only major difference 
is that generalized Kac-Moody algebras are allowed to have imaginary simple roots. 
In what follows, we will exclusively deal with the case of a Borcherds algebra with 
one imaginary simple root. 

It is clear that if we delete in A the row and the column corresponding to the 
imaginary root then the resulting submatrix A is a generalized Cartan matrix in the 
sense of Kac [13] with associated Kac-Moody algebra g(A). Recall the triangular 
decomposition 

g(A) = n_ O h @ n +  
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and the induced decomposition of the universal enveloping algebra: 

a(g(A)) : tt(n_) ® a(b) ® U(n+). 

An irreducible g(A)-module ~ is called integrable highest-weight module if 
there exists a dominant integral weight 2 E b* and a nonzero vector co e ~ .  such 
that 

h(co) = 2(h)o for h e b, 

rt+(co) = 0, 

u ( . _ ) ( c o )  = ~ .  

We denote by 3;(~~) the tensor algebra over o~x, 

~;(~) . '=  (~  ~ - -  ¢ ' 1  ® ~ ® ( ~  ® ~ ) ® ( g ~  ® ~-~ ® g 2  ®--. 
~.l=0 

Now we are ready to state our result. 

3. The Theorem 

THEOREM 1. Let ,4 = (aij), 0 ~ i, j <~ n, be a symmetric integer matrix satisfying the 
following properties: 

(i) aoo ~< 0, au = 2 for 1 <~ i <~ n, 
(ii) aq <% 0 if i # j. 

Let ~ be the integrable highest-weight module over the Kac-Moody  algebra g(A) 
associated to the Cartan matrix A = (aij), 1 <~ i, j <~ n, with highest weight 2 defined 
by 2(hl):= -aol ,  1 <~ i <~ n, and highest-weight vector co. Then the tensor algebra ?£(Yz) 
over ~ is ~(,2t)-module isomorphic to the highest-weight module L(A) ,A(h i )= 
6io, 0 <~ i <~ n of 6(d). 

Proof. We define an action of the generators of 6(,4) on the tensor algebra ~;(Y~) 
as follows. Our convention for indices will be that i, j, k run from 1 to n unless 
otherwise stated! 

The Kac-Moody generators el, hi, f i  act trivially on the 'vacuum' vector 1 and as 
highest weight representation on o~. We extend this action to the tensor algebra 
Z(~-x) by Leibnitz' rule. 

The generator ho acts diagonal: 

ho(1) .'= 1, 

h o ( o )  :=  (1 - aoo)co, 

ho(fkq~)'= -- aokfkCp + fkho(@ for ~o ~ N~, 

ho(O ® q~):= ho(~) @ q? + 4) ® ho(W) - qb ® for O, • e ~:(Y~). 

(1) 

(2) 

(3) 

(4) 
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The ' imaginary '  genera tor  fo  adjoins one tensor  factor of the highest weight vector  
co, i . e . ,  

fo(W) ,= co ® UP for UP ~ Z ( ~ ) .  (5) 

For  eo, we put  

eo(1) := 0, (6) 

while for the definition on ~ ,  n ~> 1, we observe that  ~ {  = l[(rt_)(co ® ~ -  1), so 
that  it is sufficient to require, inductively, 

eo(f , (up))  ==f,(eo(up)), (7) 

eo(co ® UP).'= ho(up) + co ® eo(up), (8) 

for UP e ~ , n  ~> 0. 

Hav ing  defined, the act ion of the generators  on the tensor a lgebra we will now 

check that  2;(Y;.) carries the claimed ~(A)-module structure. First  we note that  h0 

and  the hi's are defined to act d iagonal  on the tensor algebra. Hence, the h's 

c o m m u t e  with each other. Secondly, all c o m m u t a t i o n  relations invo lv ing  only 

K a c - M o o d y  generators  ei, h l , f l  are valid by assumption.  Next,  we have a look at 
those c o m m u t a t i o n  relat ions which are more  or less trivial since they can be checked 
immedia te ly  on the whole tensor algebra,  

(eofo  - foeo)(up)  = eo(co ® UP) - co ® eo(up) = ho(up),. 

(eof l  - f ieo)(up) = O, 

(e i fo  - foei)(up) = ei(co ® UP) - co @ ei(up) = O, 

(ho fo  - foho)(up)  = ho(co ® up) _ co ® ho(up) 

= ( h o  - 1 ) (co )  @ UP 

= - aoofo(up) ,  

( h J o  - fohi)(up)  = hi(co ® UP) - co ® h~(UP) 

= hi(co) ® UP 

= - aolfo(up).  

Finally we check the remaining four types of commuta to r s :  

(ho f i  - f i h o ) ( 1 )  = - f i ( 1 )  = 0 = - aoi f i (1) ,  

( h o f  l - f l ho)(~0) = - aol f l (o, 

(hof l  - f lho) (¢)  ® UP) = ho( f , (O)  ® UP + ¢b ® f i ( u p ) ) -  

- f i(ho(¢)) ® UP + • ® ho(up) - • ® UP) 

= (ho f l  - f i h o ) ( O )  ® UP + • ® (ho f i  - f i h o ) ( u p )  

= - aol f i (¢)  ® UP) by induction, 
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( h o e i -  eiho)(1) = 0 = aoiei(1), 

(hoei - eiho)(co) = 0 = aoiei(co), 

(hoei - eiho)(fk~p) = ho(C~ikhi(~o) + fkei(cp)) - e i ( - -aok  fk~O + fkho(q))) 

= aok(eifk --fkei)(~O) + f k ( h o e i -  eiho)(CP) 

= aOk6ikhi(rp) + aoifkei(qo) by i n d u c t i v n  

= aoiei(fkcp), 

(hoei - eiho)(OP ® ~ )  = ho(ei(OP) ® ~ + op ® ei (~))  - 

- e~(ho(Op) ® ud + Op ® ho(~?) - cb ® ~ )  

= (hoei - eiho)(~) ® • + ~ ® (hoel - eiho)(Ut') 

= aoiei(O ® ~ )  by induc t ion ,  
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(hieo - eohi)(1) = 0 = aioeo(1), 

(hieo - eohi)(co) = hi( l )  + aoieo(co) = aoA = aioeo(co), 

(hieo - eohi)(fkq)) = 0 = aioeo(fkq~), 

(hieo --  eohl)(co ® ud) = hi(ho('P) + co ® eo(~F)) - eo(hi(co) @ • + co @ hi(Ud)) 

= aolho(~)  + co ® (hieo - eoh i ) (~ )  + (hiho - hohi) (~)  

= aioeo(co ® ~?), 

(hieo - eohl)(fk~o ® g?) = h i ( -  eo(qO ® f k ( ~ ) )  + fk(eo(q~ ® ~ ) ) )  -- 

-- eo(hi(fa~,o) ® ~ + f ~ o  ® hi(Ud)) 

= - hi(eo(~O ® f k ( ~ ) ) )  + hi(fk(eo(,:P ® ~ ) ) )  --  

-- a~keo(~O ® fk(Ur')) + alk fk(eo(O ® ~ ) )  + 

+ eo(hi(cp) ® f k ( ~ ) )  -- fk(eo(hi(~)  ® ~ ) )  + 

+ eo((P ® fk(hi(Ud))) - fk(eO(qO ® hi(U))) 

= (eohi - hleo)(~o ® f k ( ~ ) )  + 

+ fk((hieo -- eohi)(cp ® ~ ) )  

= a i o ( -  eo(q~ ®fk("I')) +f~(eo(~O ® ~I'))) by i n d u c t i o n  

= aioeo(fkcp ® ~ ) ,  

(hoeo - eoho)(1) = 0 = aooeo(1), 

(hoeo - eoho)(co) = ho(1) - (1 - aoo)eo(co) = a o o l  =aooeo(co),  

(hoeo - eoho)(fk~o) = O -= aooeo(fk~o), 

(hoeo - eoho)(co ® ~ )  = ho(ho(~) + co @ eo(~))  - e o ( -  aooco @ • + co ® ho(~))  

= aooho(Ud) + co ® (hoeo - eoho) (~ )  

= aooeo(co ® ff~) by induc t ion ,  
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(hoeo - eoho)(fkqo ® "P) = ho( -  eo(~p ®fk(up)) + fa(eo((P ® UP))) -- 

- eo(ho(fkq)) ® UP +fkqo ® ho(UP) - G O  ® UP) 

= - ho(eo(~O ®fk(R'))) + ho(fk(eo(~O ® UP))) -- 

-- aokeo(cp @ fk(UP)) + aok fk(eo(q) ® UP)) + 

+ e o ( h o ( 9 ) ® f k ( u d ) ) -  fk(eo(ho(~#)® UP)) + 

+ eo(~O @ fdho(up))) -fk(eo(~o N ho(up))) + 

+ eo(~O ® fk(up)) - fk(eo(~O ® UP)) 

= (eoho - hoeo)(Cp ® fk(up)) + 

+ fk((hoeo -- eoho)(qo ® UP)) 

= a o o ( -  eo((# ®fk(up))  +fk(eO(~O ® UP))) by induction 

= aooeo(fk~o ® up), 

for all qo e @4 and qo, UP e 2 ; ( ~ ) .  
N o w  we shall prove that Z(~z )  is indeed isomorphic to L(A) as a 6(d)-module.  

Denote the highest-weight vector of L(A) by VA. Define a map v: ll(fi-)VA -+ 3;(~-~) by 

v ( f ,  . . . .  f i , va )  := f i  . . . .  fi,(1), 

where i, ..,i, e {0,..., n}, and linearity. To prove that v reduces to a well-defined 
~(d)-module homomorphism v': 11(fi_)VA --+ Z(ffa), one has to check that the action 
of elements of r_ on 3;(@4) vanishes, i.e. that the Serre relations are valid. For 
J;.j, i , j  = 1 ...n, this is part of the definition. To check the remaining ones, observe 
that 

((ad f3mfo)('P)= fPco ® UP, 

so that for i = 1.. .n 

rio(Y) = f~  +~(%o ® up = 0 

because of lemma 10.1 of [13]. According to [9] (see also [10]), the irreducible 
module L(A) is obtained from the Verma module M(A) by dividing out the subspace 
generated by the primitive vectors f l + A ( h % A , i  = 1...n. Because of f/l+A(h0(l)= 
fi(1) = 0, V' reduces further to a map v": L(2)--+ 3;(.~). v" is injective because the 
kernel of v" would be a proper submodule of L(2), and surjective because 3 ; (~)  is 
spanned by vectors of the form 

ul(o ® ... ® u,co = v ( u l ( f o ) . . . u , ( f o ) V A ) ,  

where 

Ul  = Fnl(i)...F,k(o(i), F,j(o ~ g(A), 

ui( fo)  = [F,,(O, [. . .  IF,k(,,(0, fo]  .-.]]. 

We observe that the theorem is not altered if we replace aoo by any nonpositive 
real number or A(ho) by any positive real number. 



REPRESENTATION OF BORCHERDS ALGEBRAS 333 

4. Outlook 

According to a conjecture of Ginsparg [12], the special class of Borcherds algebras 
considered in the theorem might play a role in second quantization of a single 
particle theory. In this interpretation, we regard the module ~-~ from above as 
one-particle Fock space so that Z ( ~ )  comprises all multiparticle states. In other 
words, within a single irreducible representation of the Borcherds algebra we 
encounter all possible multiparticle excitations. Thus, the 'imaginary' generators fo 
and eo act as particle creation and particle annihilation operators, respectively, 
whereas the vector 1 indeed deserves the name 'true vacuum' in contrast to the 
'ground state' (~ ~ Y~. 

Applying this idea to string theory one should think about the underlying 
Kac-Moody algebra g(A) as spectrum generating algebra for the physical states of 
the bosonic string. Consequently, the tensor algebra Z(~z) would be intimately 
related to a string field theory. Note that in the special case of an underlying affine 
Lie algebra g(A) we would end up with a string field theory on the group manifold 
associated to g(A) (cf. [14]). 

It is clear that the emergence of Borcherds algebras in quantum field theory is just 
a naive speculation since up to now at least one important point in dealing with 
particles is missing. The tensor algebra Z(~z) carries no symmetry or antisymmetry 
constraints at all, which means that the concept of statistics is absent. At present, 
work is in progress to ctarify how symmetrization of Z ( ~ )  can be implemented into 
fi(/{) algebraically via additional relations. 

In view of these possible realizations of Borcherds algebras in physics, we shall 
finish with the useful construction of a 'number operator' which counts the number 
of fo's (number of particles/strings) occurring in the expression for a homogeneous 
state vector qs e Z(~,~). We are looking for an element N in the Caftan subalgebra 
~(/i) satisfying 

N(LI ') "= n~t ' V~' ~ Y~, n/> 1, 

or, equivalently, 

[U, fj~]L-fjofj for 0 ~<j~< n. 

The ansatz N = Z~'=o N~h~ yields the following system of linear equations for the 
rational coefficients N~: 

~ aijNi - 6~o for0~<j~<n.  
i=o 

I f / i  is invertible we obtain a unique solution for the number operator N. Note, 
however, that the eigenvalues of N give us the number of fo's shifted by No since 
we have N(I) = Nol instead of N(1) = 0. This annoying constant may be removed 
by defining the 'renormalized' number operator N ..= N -- No. 
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Note added in proof. The  referee has i n fo rmed  us tha t  ou r  t h e o r e m  can  also be 

p roved  by  us ing  the  cha rac te r  f o rmu l a  for h ighes t -weight  m o d u l e s  a n d  the resul ts  of  

the thesis by  E. Juris ich.  


