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Abstract. We consider SUq(2) covariant/~-matrices for the reducible 3 G 1 representation. There are three 
solutions to the Yang-Baxter equation. They coincide with the previously known R-matrices for SOq(3) 
and SOq(3, 1). Also, they are the three/~-matrices which can be constructed by using four different SUq(2) 
doublets. Only two of the three/~-matrices allow a differential structure on the reducible four-dimensional 
quantum space. 

Mathematics Subject Classifications (1991). 16W30, 81R05. 

1. I n t r o d u c t i o n  

From the universal R-matrix of the SUq(2) algebra, there follows an/~-matrix for the 
product  of any two irreducible representations of SUq(2). However, these/~-matrices 
do not allow a differential structure on the representation spaces with angular 

momentum two or higher. The reason is that in the decomposition of the/~-matrix 

into projectors on irreducible subspaces of the product space, all projectors enter 

with different eigenvalues. It is then not possible to build a differential structure 

based on this/~-matrix that would satisfy the Poincar~-Birkhoff-Witt  theorem. The 

situation is exactly the same if one tries to define creation and annihilation operators 
for particles with angular momentum two or larger. Thus, it is not possible to 

construct a Fock space based on the universal/~-matrix. 

There are, however,/~-matrices defined on reducible representations of SUq(2) that 

are SUq(2) covariant but do not decompose the same way as the SUq(2) generators 
do. If in the reduction of the product the same irreducible representation occurs 

several times, the generators and the /~-matrix mix them differently. Among these 
/~-matrices, there are candidates for a differential structure. The problem is that these 

reducible/~-matrices are not known in general. 
In this Letter, we give an example of such /~-matrices and construct them by a 

method that could be generalized to higher spin. The emphasis of this Letter, 
however, is a search for all possible/~-matrices for a given reducible representation 
- in our case a representation with one triplet and one singlet under SUq(2). 
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This Letter is organized as follows. In the next section, we discuss the notion of 
SUq(2) covariance and/~-matrices. After two simple examples of irreducible repre- 
sentations we solve the Yang-Baxter equation for the 3 • 1 representation and find 
exactly three classes of solutions. In the third section, comparison is made with the 
q-spinor approach and we find that the three classes of/~-matrices can be construc- 

ted from the q-spinors as well. In the final section, we discuss the suitability of these 
/q-matrices for a differential calculus. 

2. °k'q(SUq(2)) a n d  C o v a r i a n c e  

We begin by describing the algebra ~'q(SUq(2)). It is generated by the generators T +, 
T -  and T 3 which obey the relations 

q - i T +  T - _ q T - T  + 

q2T3T+ _ . q -  ZT+ T3 

q - 2 T 3  T -  _ q 2 T - T 3  

= T 3, 

= (q + q-1)T+ ' 

= - ( q  + q - 1 ) T - ,  

(2.1) 

where q is the deformation parameter. ~]/'q(aUq(2)) is a Hopf algebra and as such has 
a coproduct A. It essentially describes how the generators act on a tensor product 
of representation spaces. For  ~/q(SUq(2)), we have 

A(T +) = T + ® 1 + (1 - j~r3) 1/2 @ r +, 

A(T-)  = T -  ® 1 + (1 - ~r3) 1/2 @ T- ,  (2.2) 

A(T 3) = T 3@ 1 -1- (1 - ~ T  3)@ T 3. 

Here we define 2 = q - q-  1. This coproduct is a homomorphism of the algebra (2.1) 
and is coassociative. 

The representations of ~a(SUq(2)) are well known [1]. As in the classical case there 
is a Casimir operator with eigenvalues labeled by j, the total angular momentum. 
States within each representation have eigenvalues of T 3 labeled by m. The action 
of the generators on a state [j, m) is 

T + [ j , m }  = q - l x / [ j  + m + 1]q_2[j-- m]q2lj, m + 1}, 

T - l j ,  m )  = q x / [ J  + rn]q_2[j - m + 1]q2[j, m - 1), (2.3) 

r31j,  m) = q-  1 [2m]q_2 I J, m). 

In], is the q-number defined by [n]r = (r" - 1)/(r - 1). 
We will be interested in tensor products of these representation spaces. Consider 

two different sets of states [jl, ml }1 and ]J2, me }2. As in the classical case, their tensor 
product can be written as a sum of states with different total angular momentum: 

j l  --j2 

Ijl, m l } l  ® lj2, m2}2 = ~ C q ( j l , m l , j 2 , m z , J ) l J ,  ml -]- m2)12. (2.4) 
J=lJl  -J2l  
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The subscripts on the product state indicate the ordering of the underlying spaces. 
The form of the Clebsch-Gordan coefficients Cq is determined by requiring the 
coproduct (2.2) acting on the tensor product to be compatible with the representa- 
tion (2.3). Several explicit examples will be given in the following. 

The /~-matrix defines how the order of two different sets of states in a tensor 
product can be reversed. It is a set of numerical factors defining this action: 

[jl,rn~)1 ® [j2, m2)2 = l{(Jl'ml)(Jz'm2)(j~,mj)(j;,mi)lj~,m'2) a @ Ij[,rn'x)~, (2.5) 

where repeated indices are summed. On such an /q-matrix several properties are 
imposed. First, it should satisfy the quantum Yang-Baxter equation: 

i ~ 1 2 / ~ 2 3 / ~ 1 2  = R23RI2R23. (2.6) 

Here the subscripts indicate which of three spaces in a tensor product is acted on 
by the R-matrix. A consequence of this equation is that reordering of a product of 
three or more spaces is independent of the order in which adjacent spaces are 
swapped. 

Another feature of/~-matrices is that they can be decomposed into a sum of 
projectors: /~ = Zi2iPi. The projectors obey PiPj = 6ijPi and sum to the identity 
matrix: ~ --E~P~. It is useful to characterize /~-matrices by their eigenvalues and 
projector decomposition. This will be especially important for constructing a 
differential calculus, as will be discussed in Section 4. 

A final property of our/~-matrices is that they should be q/q(SUq(2)) covariant. 
One way of stating this is as follows. Product states may be arranged into states 
of definite quantum numbers J and M by inverting (2.4). Covariance of/~ means 
that when the corresponding product states are reordered according to (2.5), 
their quantum numbers are conserved and the relative normalizations within 
multiplets of a given J are preserved. When the underlying spaces are both 
irreducible the product multiplets all have different total angular momentum J. ¢ 

However, when an underlying space is reducible, there may be different multiplets 
with the same J, and in reordering these multiplets may mix. Labeling different 
multiplets with the same J as [J, M )  i, (2.5) may be rewritten in the product state 
basis: 

l J, M)~12 : / ~ l J ,  M)~I. (2.7) 

This is the most general form of a covariant/~-matrix. 
We may now construct covariant/~-matrices. For any two underlying representa- 

tions, the/~-matrix can be parameterized according to (2.7). The parameters are then 
determined by solving the Yang-Baxter equation. (Since the Yang-Baxter equation 
is purely cubic in/~, the overall normalization of/~ is not fixed.) The/~-matrix may 
then be analyzed to determine its projector decomposition. 

The first and simplest example we will consider is the case of two ~/q(SUq(2)) 
doublets. According to the rule 2 ® 2 -= 3 @ 1, their product will have a singlet and a 
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triplet. Using the coproduct and representation rules, the Clebsch-Gordan coeffi- 
cients for the singlet are found to be 

10,0512 q-1[½,_½51® 1 1 1 1 - h ,  ~)1 ® = [> ~)2 [½, -½52 (2.8) 

and for the triplet we have 

11, - 1512 = q - l l ½ ,  -½)1 ® 1½, -½)2, 
- 1 1 1 X  11,0512=(q2+1)  1/2 ([½, -½51®1½,½52 + q-  ~,~/1®1½,-½52), (2.9) 

I1, 1512 = q- l l½,½)l® 1~,~52.1 

(The overall normalizations have been chosen for convenience.) Following (2.7), we 
parameterize the/~-matrix: 

10,0512 = a10,0521, Ii, m512 = bll,  m)21. (2.10) 

In the classical limit q ---, 1, a -- - 1 and b = 1. Fixing the normalization by setting 
b = 1, we find two solutions to the Yang Baxter equation: 

a =  __q-2 or a - - _ _ q 2 .  (2.11) 

(There is also a solution for a which has the wrong classical limit.) When rewritten in 
the basis of (2.5), it is seen that these solutions correspond to the usual fi-matrix for 
~/[q(SUq(2)) and its inverse [-2]. For the former, the eigenvalues are 1 with multiplicity 
3 and - q - 2  with multiplicity 1 and the projector decomposition is 

t~ = Ps - q -  2 P A. (2.12) 

Here Ps is the q-deformed symmetrizer and PA is the q-deformed antisymmetrizer. 
For our next example, we will take two ~#q(SUq(2)) doublets. The product space 

will have three multiplets: 3 ® 3 = 5 G 3 ® 1. The singlet is 

10,0512 

= q211, 151 ® I1, -- 152 -- q [ 1 , 0 ) l ®  11,052 + [1, --151 ® I1,152 (2.13) 

and the triplet states are 

I1, - 1 5 1 2  = q-111,  -151 @ I1,052 --  q[1,051 ® I1, -152 ,  

11,0512 = 11,--151 ®11,152-- 11,151@11,--152 -- 211,051 ®11,052, (2.14) 

I1, 1512 = q - i l l ,  051 ® II, 152 - qll, 151 @ 11,052. 

the normalizations for the 5 are complicated and not important for our Since 
purposes, we give only the appropriate linear combinations: 

12, - -2512  OC q2 I1, - 151 @ I1, - 152, 

12, - 1 5 1 2  oc q a l l  , - 1 ) 1  ® [1 ,052 -t- q [1 ,051  @ 11, - - 1 ) 2  , 

[2,0}12 ocq4]l, - 151® 11, 1)2 + q(q2 + 1)11,0)1 @ 11,052 + I1,151 ® [1, --152, 

12, 1512 oc q - i l l ,  151 ® 11,052 -t- qll,  0) l  ® 11,152 , 

12, 2512 oC q -211 ,151  ®l l, 152. (2.15) 
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As in the previous case, the multiplets all have different d and the/~-matrix has the 
simple form 

10,0)12 = al0,0)21, Ii, m>12 = bll ,  m)2t,  12, m)12 = c12, m>21. (2.16) 

For  q--, 1, a = 1, b = - 1 ,  and c = 1. Normalizing so that c = 1 there are two 
solutions to the Yang-Baxter equation with parameter values 

a = q-6 a = q6, 

or (2. !7) 
b = _ q - 4  b = _q4. 

These solutions correspond to the usual/~-matrix for ~q(SOq(3)) and its inverse [2]. 
For  the former the eigenvalues are 1 with multiplicity 5, - q  4 with multiplicity 3 
and q-6 with multiplicity 1. The projector decomposition is 

I~ = Ps + q -6pT  -- q -4P  A, (2. t8) 

where the q-deformed projectors are the trace projector Pr ,  the traceless symmetrizer 
Ps and the antisymmetrizer PA. 

We now consider the interesting case of two 3 ® 1 reducible representations of 
~[q(SUq(2)). Their product has six multiplets according to the rule 

(3 ® 1) ®(3 • 1) = 5 r r  • 3 r r  G l r r  0 3st ® 3rs ® lss. 

The subscripts indicate whether the two spaces in the product are triplets or singlets. 
In the following we will append a corresponding superscript to the state kets. The TF 
multiplets have the same form as (2.13)-(2.15) and we write them as IJ, M> rr 12" 
There are three additional multiplets, a singlet: 

10,0) SS = 10,0>l @ t0,0>2 (2.19) 

and two triplets: 

I 1 , - l > s r = r 0 , 0 > x ® l l , - l > 2 ,  [ 1 , - 1 >  rsx2 = 11, - 1>~  ®10,0>2, 

I 1,0>s2 r = 10,0>1 ® 11,0>2, I1,0> rs = I1,0>~ ® ]0,0>2, (2.20) 

I1, l>sr  = 10,0>1 ® I1, 1>2, I1, l>rs  -- I1, l>x ® !0,0>2. 

Now there can be mixing among the two singlets and among the three triplets. We 
parameterize the/~-matrix as 

10,0> ss = a~[0,0> ss + azl0,0>2r~ r, 

10, 0> r2r = b, 10, 0> ss + b210, 0> r r ,  

l 1, m>lr2 r = c, ll ,m> r r  + c2ll, m>Sl r + c31 1, m>21 ,rs 
(2.21) 

II, m> sT = d~ll, m)~T + d2[1, m)Sr  + d311, m>z~TS, 

II, m> Ts = e~ll, m>TT + ez11, m>ST21 + e3ll, m)zaTS, 

I2, m)~ r f  = /12 ,  m>2 fT. 
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In the limit 

q--*l, al =b2  =d3  =e2  = f = ! ,  cl = - 1  

and the rest of the parameters vanish. 
Solving the Yang-Baxter equation, we find exactly three classes of solutions, each 

class having an/~-matrix and its inverse. Each of the three solutions corresponds to a 
known /~-matrix. So we learn that the known /~-matrices are the only possible 
q/q(SUq(2)) covariant/~-matrices. The parameter values for these solutions are listed 
in the Appendix. Here we will discuss the general features of the solutions. 

The first solution is quite simple. Only the parameters which do not vanish 
classically are nonzero, and there is no mixing of multiplets. When written in the 
basis of (2.5) the 16 x 16 matrix is found to be block diagonal. There is a 9 x 9 block 
which is precisely the/~-matrix for SOq(3) from the previous example. The rest of the 
/~-matrix involves product states with an underlying singlet 10, 0)1 or 10, 0)2. The 
parameters for these terms (a~,d3 and e2) are undetermined and may be any 
functions of q with the correct limit for q ---r 1. 

The second and third solutions should be discussed together since they are 
different linear combinations of the same projectors. The second solution has some 
mixing of multiplets, between the I I, m) r r  multiplet and either the [1, m) sr 
multiplet or the I1, m )  rs multiptet. The parameters a2 and bl are always zero. For 
the third solution all parameters are nonvanishing and there is maximal mixing 
between all multiplets with the same J. For both solutions there is a free par- 
ameter, but it may be absorbed in the relative normalization between the underly- 
ing singlet and triplet. When written in the basis of (2.5), it is found that these are 
the/~-matrices as constructed for the q-Lorentz group, where a triplet and a singlet 
were combined into a four-vector* I-3, 4]. The second solution has eigenvatues 1, 
_q2 and _ q - 2  with multiplicities 10, 3 and 3, respectively. The third solution has 
eigenvalues 1, q-4 and _ q - 2  with multiplicities 9, 1 and 6. Since each of these 
matrices has three distinct eigenvalues three projectors may be extracted from each 
of them. However, taken together we have four projectors. Again there is a trace 
projector Pr  and a traceless symmetrizer Ps.  Here, however, the antisymmetrizer 
splits into selfdual and anti-selfdual projectors P_+. The projector decomposition 
for the second solution is 

I~ = P r  + Ps  - q 2 p _  _ q - 2 p +  (2.22) 

and for the third solution is 

= Ps  + q - 4 P r  - q-2p+ _ q - 2 p _ .  (2.23) 

As noted in I-3, 4], these two /~-matrices and their inverses are the only linear 
combinations of these projectors consistent with the algebra of q-Minkowski 
coordinates. 

*The second solution corresponds t o  1~ I and the third solution corresponds to/~n in [3, 4]. 
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3. q-Deformed Coordinates 
In this section, we will consider q-deformed coordinates as examples of the represen- 
tation spaces discussed in the previous section. We will show how the/~-matrices for 
the 3 • 1 representation can be constructed from spinor coordinates corresponding 
to the doublet of q/q(SUq(2)). 

Consider coordinates X i corresponding to some representation ] j ,m)l  and a 
second copy J~i corresponding to a second space ]j, rn)2. Dropping the tensor 
product notation, (2.5) may be written as 

X ~  j = k/~ v ~)ZkX ~, (3.1) 

where k is an arbitrary normalization. Since /~ satisfies the Yang-Baxter equation 
any product of the coordinates may be reordered and the result is independent of the 
order in which adjacent coordinates are swapped. 

The simplest example of such coordinates is the quantum plane, or quantum 
spinors. The spinors x ~, a = t, 2 are a q/q(SUq(2)) doublet with the assignment 

x 1 = ] ½ , - ½ }  and x 2=q-1[~,~}.1 1 

With a second copy y~ the appropriate/~-matrix for (3.1) is the/~-matrix constructed 
using (2.10), (2.11) and using this coordinate identification: (qO0 ) 

0 2 1 (3.2) 
R~P~ = 0 1 0 " 

0 0 0 

As in the previous section, these two copies of the quantum plane may be combined 
into a four-dimensional 3 • 1 reducible representation of ~//q(SU.(2)). We will denote 
these bispinors by X ~, 1 ~< i ~< 4. 

For two copies of the 3 G 1 X ~ and )7 ~ we will need four copies of the quantum 
spinor plane: x ", y~, u ~ and v ~. Following (3.1), we choose the following normalization 
and ordering: 

x y  = q -  1 l~yx ,  y u  = q -  l l~uy,  

x u  = q -  1 l~ux ,  y v  = q -  1 l~vy,  (3.3) 

x v  = q -  1 l~vx ,  uv  = q - 1 t~1)U, 

where we have suppressed indices. Then there are three distinct ways to group the 
spinors into two 3 • l's: 

C a s e I :  X = x y ,  X = u v ,  

C a s e  II: X = xv ,  J~ = yu ,  (3.4) 

C a s e I I I :  X = x u ,  X = y v .  
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A direct calculation shows that these case I, II, and III lead to the first, second, and 
third solutions, respectively, from the previous section. Replacing q-1/~ by q/~-1 in 

(3.3) gives the inverse solutions. From the previous section, we know that these three 
constructed/~-matrices are unique assuming ~//q(SUq(2)) covariance. In this section, 
we showed that these/~-matrices may be constructed from the basic/~-matrix (3.2). 
Note that we have constructed/~-matrices which cannot be expressed in terms of the 
generators of ~#q(SUq(2)), as is the case for the universal/q-matrix. The method of 
construction followed here could be generalized to higher-dimensional representa- 
tions. Similar results have been obtained in [5] from a different approach. 

4. Differential Calculus 

In this section we will consider a differential calculus on the quantum spaces 
discussed in the previous section. It will be seen that there are constraints on the 
projector decomposition of the/~-matrix used to formulate the calculus. 

Equation (3.1) gives the algebra between coordinates from two different copies of 
the quantum space. However, we have not specified the algebra among coordinates 
from the same copy. Suppose there is a set of q-deformed projectors on the space, 
symmetrizers S/ and antisymmetrizers Ai, which sum to the identity matrix 
"fl = EiSi + ElAn. Since the coordinates are classically commuting objects, we require 
the product of two coordinates to be annihilated by the antisymmetrizers. Suppress- 
ing indices, we write 

A~XX = 0. (4.1) 

This must be true for all of the antisymmetrizers. 
We now establish a differential calculus on this space by introducing derivatives ~3~ 

acting on the coordinates. This action is 

Oi X j  = •i + cJki lXlOk • (4.2) 

Here C is some linear combination of the projectors C = Eia~S~ + Z~ct~A~. If we 
apply a derivative to (4.1) and use (4.2) to move the derivative to the right, we get 
constraints on the eigenvalues for the antisymmetrizers: 

OAiXX = A~(~ + C)X + cubic terms (4.3) 
= (1 + c~i)AiX + ... 

where in the last step we used A~Aj = J~A~ and A~Sj = 0. Since the left-hand side 
vanishes for consistency we see that ai = - 1 .  This must be true for all of the 
projectors, so we find 

C = Z a i S i -  •Ai .  (4.4) 
i i 

In order to have a consistent differential calculus, the matrix C in (4.2) must have all 
the antisymmetrizers with eigenvalue - 1 .  
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In [-6, 7] the differential calculus has been developed with an exterior derivative 

d = ~it?i, where ~ = d X  ~ are the differentials of the coordinates. When all three 

objects X ~, Oi and ~ are considered together consistency requires that C satisfy the 
Yang-Baxter equation. Thus, for a differential calculus C must be an/~-matrix with 
all antisymmetrizers having eigenvalue - 1 .  

We may now apply these considerations to the /~-matrices for the 3 • 1 rep- 
resentation. For  the first solution the undetermined parameters may be chosen 
so that the antisymmetrizers all have eigenvalue _ q - 4 ,  the value for the SOq(3) 
part of the matrix. Then C = q4/~ is suitable for a differential calculus. Looking 
at (2.23), we see that the third solution can also be used to construct a differ- 
ential calculus with C = q2/~. This was the matrix used for the q-Poincar6 

algebra in [-3]. Finally, we see in (2.22) that the antisymmetrizers P+ enter the 
/~-matrix with different eigenvalues. This/~-matrix cannot be used for a differential 

calculus. 

Appendix 
In this appendix, we list the parameter values for solutions of the Yang-Baxter 
equation for the /~-matrix parameterized in (2.21). Recall that the Yang-Baxter 
equation does not fix the normalization of/~. We fix the normalization by choosing 
f = 1, the value obtained for all of the constructed/~-matrices. 

The first solution is quite simple, with no mixing of different multiplets. We 

have 

b2 = q - 6 ,  Cl = _ q - 4 .  (A.1) 

The parameters al ,  d 3 and e2 are undetermined. They may be any functions of q 
taking the value 1 in the limit q --* 1. (For the/~-matrix constructed in Section 3 we 
had at = da = e2 = q-2.) The rest of the parameters vanish. For  the inverse solution 
we find 

b2 = q6, c l  = _ q 4 .  (A.2) 

Again, the parameters al ,  d3 and e2 are undetermined and may be any appropriate 
functions of q. (For the constructed/q-matrix we had al = d3 = e2 = q2.) Again the 
rest of the parameters vanish. 

For  the second solution we find 

al = 1, a2 = 0, 

bl = 0, b2 = 1, 

C 1 = - -  1 - - 2  2, C 2 = 0, 

dl = 2r -1, d2 = 0, 

C3 = __(q2 + q - 2 ) ) ~ r  ' 

d3 = 1 + ,~2 

(A.3) 

el = 0, e 2 =  1, e 3 = 0  
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a n d  for the inverse  s o l u t i o n  

a I = 1, a 2 = O, 

b 1 = O, b E -- 1, 

cl  = - 1  - 2 2 , c2 = _ ( q 2  + q -  g)2r, c3 = 0, (A.4) 

d l = 0 ,  d 2 = O ,  d 3 = l ,  

el  = 2 r - 1 ,  ez = 1 + 22, e 3 = O. 

Here  r is a free p a r a m e t e r  which  m a y  be a b s o r b e d  in  the re la t ive  n o r m a l i z a t i o n  of the 

u n d e r l y i n g  s inglet  a n d  triplet .  Th e  c o n s t r u c t e d / ~ - m a t r i c e s  are recovered  for r = 1. 

The  th i rd  s o l u t i o n  is m o r e  compl ica ted ,  wi th  n o  p a r a m e t e r s  van ish ing .  F o r  

conven ience ,  we def ine the c o m m o n  factor  r / =  (q2 + 1)-1. T h e n  we have  

al  = tl(q a + q -2 ) ,  aa = - - r l q - 2 2 r  - z ,  

bl  = t/(q -3  - q3)r2, b 2 : t/(q - 4  -1- 1), 

cl  = r / ( -q)~ --  2q-2) ,  C2 = __q(q2 + q-Z),~r ' 

d l  = tl2r - 1 ,  d2 = tlq2, d3 -- t/(q 2 + q-E),  

el  = t/Ar - a ,  e2 = q(q2 + q-2) ,  e3 = rlqL 

The  inverse  s o l u t i o n  has  p a r a m e t e r s  

a l =  

bl  = 

C 1 

dl  = 

e I = 

Again ,  r is 

C3 : __~(q2 q _ q - 2 ) 2 r ,  

(A.5) 

r/(q 4 + 1), 

r/(q 7 --  q)r 2, 

rl(q2 --  2q4), 

~lq2~.r- 1, 

r lq22r-  1, 

a 2 : r/q 2 2 r -  2, 

b2 = q(q6 d- q2), 

c 2 : - r/(q 4 -t- 1)2r, c3 = -/ . /(q4 q_ 1)2r, 

d 2 --= - q q 2 ,  d 3 -- t/(q 4 -q- 1), 

e2 = r/(q 4 + 1), e3 = -~/q2.  

(A.6) 

a free p a r a m e t e r  a n d  the c o n s t r u c t e d / ~ - m a t r i c e s  are recovered  for r = 1. 
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