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From a Lagrangian L = ( I / x ) ( - g ) m [ R / 2  + 12(o~RikR 'k+ flR2)] one obtains 
fourth-order field equations for the metrical tensor glk. Inserting a 3-flat 
Robertson Walker line element, the set of their vacuum solutions will be 
enumerated completely. The qualitative behavior, and especially the influence of 
the /Z-terms (which is possibly necessary for the renormalization of quantum 
gravity) in certain stages of evolution follow from a phase plane analysis. 
Depending on the sign of coupling, one obtains either exponentially increasing 
or oscillating solutions at late times as well as special solutions without an 
initial singularity. 

1. I N T R O D U C T I O N  

In the last decades field equations of higher than second order have raised 
some interest both in classical and quantum gravity. Here we want to dis- 
cuss field equations stemming from a Lagrangian with linear and quadratic 
terms in the Ricci tensor Rik, 

t _ -~ ( _ g )  1/2 L_~ ~_ l ( o~ Rik R 2 ik _]_ fl R2 ) ] ..~ tmat (l) 

where l is a coupling length, ct, fl are numerical constants of the order 1, 
and Lma t is the matter Lagrangian. Quadratic invariants have been 
introduced firstly by Weyl [1 ] and Bach [2] in the conformally invariant 
combination c~ + 3fl = 0 while attempting to unify classical gravitational 
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and electromagnetic interactions. Later such a sum (1) has been taken as 
gravitational theory with phenomenological matter modifying Einstein's 
theory at small distances (Buchdahl [-3], Pechlaner and Sexl [4], and 
Treder [5]). From this point of view especially the consequences for the 
gravitational collapse of massive bodies have been studied. 

Recently, such a sum (1) appeared quite naturally as the renormalized 
action of quantized matter field coupled to classical general relativity (de 
Witt [6], Stelle [7], and Fischetti and others [8]). The quadratic terms 
describe phenomenologically the vacuum polarization at the one-loop level. 
Consequently, it is of interest to compare cosmological solutions of the 
generalized action (1) with solutions of the general relativity theory. From 
inspection of the Lagrangian one expects deviations from solutions of 
Einstein's equations at regions of a large space-time curvature, ]Rukl] >1-2,  
i.e., near singularities. But the global behavior of solutions may be quite 
different, too. 

Variation of (1) with respect to the metric g,k yields the field equation 

Elk + I2(~Hik + ~Gik) = ~Tik where (2) 

Hik=2 [] Rik + gik [] R - -  2R;ik + 4Rilmk R i m -  gieRtm RIm 

Gik = 4gik [] R -- 4R,i k + 4R  Rik -- gi~R 2 

A semicolon means covariant differentiation, and D ( ' ) =  gik('):i~ is the 
wave operator. In general, the field equations are of fourth order in the 
metric, which results in a wide enlargement of the class of solutions. Up to 
now cosmological solutions have been studied only in special cases by 
approximation methods (Gurovich and Starobinsky I-9]), by numerical 
methods (Tomita and others [10]), and by power series expansion 
(Rusmaikin [11]), or one has selected special solutions as the de Sitter 
solution (Starobinsky [12, 13]) or Friedman's radiation cosmos (Macrae 
and Riegert [14]). Frenkel and Brecher [15] have discussed the horizon 
problem of Robertson-Walker metrics by means of an asymptotic expan- 
sion. Most papers restrict the discussion to the simpler case ~ = 0. 2 

Because of qualitatively new properties of higher-order differential 
equations it seems fashionable to obtain a complete classification of the 
solutions and their asymptotic behavior. To elucidate the physical meaning 
of the quadratic modifications in the Lagrangian we discuss as a first step 
the matter-free case and study the corresponding field equations for 
isotropic (and in an accompanying paper II axially symmetric anisotropic) 
Bianchi type-I models. 

2 Power series expansions of singularity-free cosmological models are discussed by Kerner 
[16], but there instead of R 2 an arbitrary function of the Ricci-scalar appears in the action. 
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Taking an ideal fluid as source one finds a further enlargement of the 
space of solutions. But already the vacuum case leads to interesting non- 
trivial results. In Section 2, we give a qualitative argument for the behavior 
of general Bianchi type-I solutions. Next, in Section 3 we explain the 
method of the phase plane analysis in the isotropic case and present the 
results in Sections 4 and 5 for the two signs of coupling e+3/~<>0 
separately. A comparison with Einstein's theory (e =/? = 0) and a short dis- 
cussion will be found in Section 6. 

2. TRACE EQUATION 

A first simple estimate concerning the behavior of solutions follows 
from the trace of equation (2). If one chooses a synchronized time coor- 
dinate t, the volume expansion h can be defined by 

h = [In( _g) l /2] .  g = det gi~ (3) 

where the dot means differentiation with respect to t. Then, the trace of 
equation (2) gives for Bianchi type-I an oscillator equation for the Ricci 
scalar R: 

R '  + h R  - R / #  = 0 (4) 

where #=4(c~ + 3fl)/2. In the vacuum case it is homogeneous but it con- 
tains a nonlinear damping. For large classes of functions h(t)  comparison 
theorems for linear differential equations of second order (Swanson [17]) 
determine the global and asymptotic behavior. For # < 0, R( t )  oscillates 
around the general relativistic solution R = 0 with a damping R ~ 0 for 
t ~ oe (h > 0). If h( t )  becomes too large then R( t )  decays exponentially. 

# > 0 implies exponential behavior, i.e., unbounded growth of R( t )  in 
past or future. The following section demonstrates the essential correctness 
of this first estimate for 3-flat Robertson-Walker space-times. 

3. PHASE PLANE ANALYSIS 

In the homogeneous and isotropic case with fiat space slices, the 
metric depends on the scale factor a(t)  only, and is given by 

ds 2 = dt 2 - a2(t)(dXl 2 + dx2 2 + dx3 2 ) (5) 
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Here, the cosmological expansion is characterized by the Hubble parameter 
h = 3d/a, and the energy component of the field equation (2) simply reads 

#(2hh'-/~2 + 2h2/~) = h 2 (6) 

The remaining components of the field equation follow already from this 
one. In the following we consider expanding solutions (h > 0), i.e., we fix 
the time direction. As will be seen later, a transition from contraction to 
expansion is excluded by the field equations. 

The deciding question for prefering a modified Lagrangian (1) is 
whether the spatial contraction in the negative time direction can be stop- 
ped before reaching the cosmological singularity h ~ ~ .  This would 
require h = 0 at some finite h > 0, i.e., with equation (6) h'= hi2#. So only 
for # < 0 could one find a maximum of the expansion velocity which seems 
necessary to avoid the cosmological singularity. But on the other hand, the 
above conclusion from the trace equation (4) indicates oscillating solutions, 
i.e., a non-Friedman-like character for this sign of the coupling of the 
quadratic terms. It was just this behavior that caused the pessimism 
expressed in References 10 and 11 with respect to the fourth-order 
equations. 

Now equation (6) shall be investigated in detail. In all but the isolated 
points where/~ = 0, we may take h as a new independent variable, and one 
obtains 

&(h) h h 
dh = ~ + 2--~ - h  (7) 

Let us discuss equation (7) in the h-/~ phase plane which is covered by the 
trajectories /~(h). The only point where these trajectories may intersect is 
the singular point h =/~ = 0. 

The function h(t) can be reobtained from /~(h) via the inverted 
function 

t(h)= I h ~  dh (8) 

The inflection points of the function h(t) (h" = 0) are just the extrema of 
the curve/~(h). They are described by dl~/dh = 0, i.e., h = L/~I (2h - 1//~)-1/2, 
and exist for /~ > 1/2# only; cf. the dashed fine in Figures 1 and 2. The 
asymptotic behavior is /~= 1/2#+ 1/8#2h 2 and /~=2h 2 for h ~  ~ .  The 
dashed line together with the h axis separates phase space regions with 
increasing and decreasing phase trajectories /~(h). The slope dl~/dh of the 
curves/~(h) is indicated by future-directed arrows. 
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Fig. 1. Phase plane pattern Ior # > o. 

In a similar way we look for tile regions where the trajectories/~(h) are 
convex and concave, respectively. To this end we differentiate equation (7), 

d2]~ - 3  1 /~ h ~- h 2 
d-~=--2--+ 2#/~ 4h 2 4p2/~ 3 + 2#/~ 2 (9) 

and solve the equation d2[~/dh2= O, which describes the inflection points of 
the function/~(h). This dash-dot line together with the h axis separates the 
regions with convex and concave functions /~(h); cf. Figures 1 and 2. 
Equation (9) is biquadratic in h and can be solved explicitly. Now the dif- 
ferent signs of # lead to quite different results and we shall discuss them 
separately. 
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Fig. 2. Phase plane pattern for/~ < 0. 



Bianchi Type-I Vacuum Solutions. I 775 

4. T H E  CASE It > 0 

The zeros of equation (9) are the following: For/~ > 1/2/, one has 

h =/}(Z/J- 1 /# ) -m{3# /~-  1 + [#h(9#h-4)]'/2} ~/2 (10) 

and for/~ < 0 the two solutions 

h= - h ( - 2 / ~ +  1/#)-1/2{-3#/~+ 1 + [ - # / ~ ( - 9 # / ~ + 4 ) ] i / 2 }  v2 (11) 

Other solutions do not exist. The asymptotic behavior is 

h = hi(3#) m, h = 1/2# + 1/8#2h 2, h = -hi(3#) 1/2 

and/~ = - 6 h  2 for h ~ ~ ;  and h = -h/~f~ for h ~ 0 ;  cf. the dash~zlot line in 
Figure 1. 

After this analysis the inspection of the h-/~ phase plane shows the 
existence of two open regions containing one-parameter families of phase 
trajectories. The boundary between them consists of two special solutions. 

First.we note that for/~ = 0, h ~ 0, equation (7) is singular. One finds 
from (6) h = hi2# > 0, and h(t) has simply a regular local minimum. Local 
maxima do not exist for h > 0, therefore this minimum is a global one. 

If this minimum h0 runs from ho > 0 up to ~ we obtain the first one- 
parameter family of solutions; they fill some open region G of the h-/~ 
plane. G lies fully beyond the line/~ = 1/# and above the curve/~ = - h  2. Its 
boundary dG consists of the point h =/~ = 0 and two smooth curves starting 
from the origin with slopes + 1/,,f~. They represent two special solution 
/l+(h) and h_(h) (cf. Figure 1) for they are envelopes of a family of 
solutions of the first-order differential equation (7). 

Near h = 0 they have the expansion 

I~ + = +_h/w/- ~ -  h2/2 +_ ~ h3/24 + O(h 4) (12) 

If one takes initial conditions outside G ca c3G one obtains the second class 
of solutions. They go through the singular point at the origin and can be 
parametrized by the second time derivative h=lima_+o(l~.dl~/dh) at this 
point. A continuous ]," > 0 forbids a change of the sign of h. The asymptotic 
behavior of the phase trajectories follows from a comparison of the slopes 
of the curves which separate increasing and decreasing, concave and con- 
vex regions as well as slopes of curves/~ = -a2h 2 (a = const) with dl~/dh as 
given by equation (7). For accelerated expansion /~>0, it follows h--+ oo 
and /~-+ 1/2#. For retarded expansion /~ <0,  one finds ]~/h 2---+ -2 /3  as 
h--+ oo. Now we turn to the h(t) picture. All but the special solution /~+ 
start with retarded expansion. With the exception of the special solution/~_ 
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all trajectories reach the line h = 0  for some time to and undergo 
accelerated expansion thereafter. Besides/~ +, the asymptotic behavior of all 
solutions for decreasing times is given by 

/~ = ( -  2/3)h 2, h = 3/2t, a = aox//-t (13) 

i.e., they start from a big bang singularity with the expansion law of Fried- 
man's radiation cosmos. For the special solution/~+ one finds 

1~ = h/w/-~, h = exp(t/~/-~), a = a0 exp[exp(t/~/-~)] (14) 

It starts from a finite a=ao and R = 0  at t =  _oo.3 For increasing time 
t ~ ~ the asymptotic expansion law of all solutions except/~_ again con- 
tains the coupling constant/z. It holds that 

h = 1/2/t, h = t/2#, a = ao exp(t2/12#) (15) 

Hence a(t) expands faster than exponentially, and R ~ - ~ .  The special 
so lu t ion /~  expands to a maximal value a = a0 and R ( t ) ~  0: 

l~=-h/v/-~,  h=exp( - t /~ / -~ ) ,  and a = a o e x p [ - e x p ( - t / ~ / ~ ) ]  (16) 

as t ~ .  

It is an unstable solution which describes the typical behavior of 
solutions in the past. For small deviations there result solutions which go 
over into the region of accelerated expansion and behave like the 
singularity-free stable solution/~+ for large times for t ~ ~ .  

5. THE CASE ltt< 0 

The zeros of equation (9) are of a similar type like those of equations 
(10) and (11). The asymptotic behavior is 

/ ~ = - 6 h  2 and /~=1/2/~+1/8#2h 2 for h ~  

Cf. Figure 2 for details. All phase trajectories from the region/~ < 1/2# go 
with positive curvature Jr" through the singular point h =/~ = 0 and form 
thereafter distorted circles in the region h >0 ,  /~ > 1/2#. In the case of 
negative coupling, # < 0, we have at the intersections with the axis h = 0, 
local maxima (h'= h/21~ < 0). 

Now similar to the case of positive # we construct a special solution/~s 
by a limiting process. Let us consider all phase trajectories which start with 

3 The Ricci scalar is given by R = -2 /~ -4h2 /3 .  
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different curvature h'> 0 from the singular point h =/~ = 0 into the future 
direction. They cover some open region G of phase space, and its lower 
boundary (observe that G does not intersect the line/~ = 1/2#), 0G, gives 
the special solution/is(h). For h ~ oe we have/is ~ 1/2# (cf. the heavy line 
in Figure2). Let us note that /~s is a stable solution. The asymptotic 
behavior of phase trajectories outside G u S G  is given by h ~ Go and 
/~/h2~ -2 /3  as in Section 2.1. 

For the discussion of the phase trajectories inside G it is useful to 
define an auxiliary function H = / i 2 / h -  hi#. Then equation (5) can be trans- 
formed to 

/ : /= - 2 h  2 (17) 

i.e., H(t) is monotonically decreasing. For h > 0 we have H~> 2 I/i[( __#)1/2. 
With equation (17) we find H(t) --+ 0 and therefore h,/~ --+ 0 as t --, Go. Each 
phase trajectory spirals inward to the origin and cuts the h axis an infinite 
number of times. It follows that the space of solutions is the one-dimen- 
sional sphere S I = R / Z  (here R denotes the real numbers and Z the 
integers). The monotonic function H(t) gives the decreasing of amplitudes 
of these spirals. 

Now let us turn to the h(t) picture. The asymptotic behavior for 
decreasing times of all solutions but /~, is given by Friedman's radiation 
cosmos. The special curve/is has 

/~ = 1/2#, h = t/2#, a = a o exp(t2/12#) (18) 

i.e., the scale factor goes to zero for t - -+-0% and only in this limit 
R ( t ) ~ - o e .  Such a faster-than-exponential increase is denoted by 
Starobinsky [133 as a quasi-de Sitter stage which resembles the properties 
of an inflationary universe./is is the only singularity-free solution for # < 0. 
For t--+ oo, h(t) oscillates, but a(t) increases monotonously because h = 0  
holds only at singular points. 

Now we are interested in the averaged behavior of a(t) as t-+ oo. To 
this end we choose the time scale such that # = -1 .  For some solution h(t) 
we denote by hn = h(G) its nth local maximum. In Figure 3 the behavior of 
this solution is plotted for t~ ~< t~< t,+ 1 (bold line). At t= t,, H = h ,  holds, 
and therefore hn+l<~H<<.h, for this time interval. The curve /~(h) is 
situated between the circles H = h, and H = hA + 1 (dashed line in Figure 3 ). 
Now we define oa by t ,<~gn<tn+l  and /~(0,)=0. With equation (8) we 
obtain t~ +1-~9~ <z c, 0 n -  tn > ~ and after a short calculation, 

tn+l--tn--+2~ as n --+ oo (19) 
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Fig. 3. Asymptotic oscillations for/z < 0, undetermined units. 

Further,  from equat ion (17) one has dH/dh= -2/~. Integrat ing this over 
one circle we find 

= [o  ] 
h. - h. +1 ft=+, fI(t) dt = 2 f I~(h) dh + l~(h) dh 

tn hn ~ 
(20) 

Hence, the quanti ty (h. - h. + 1)/2 lies between the surface areas of the cir- 
cles H =  hn and H =  hn+l.  Therefore 

(h.+l)2 < h . - h . + l  < 2  (hn) (2i) 

F r o m  this relation it follows h. ~ O, and h. + 1/hn ---+ 1 as n ~ ~ .  All sequen- 
ces (h=)n fulfilling relation (21) and hl < 2 / ~  have the same behavior  for 
n ~ ~ .  Therefore we choose as representative series 

h. = 2/~n 

which gives h.  - h .  + 1 = zth. h.  + 1/2. 

(22) 
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From series (22) we obtain 

a ( t n + l ) = a ( t n ) e x p  h ( t ) d t / 3  (23) 
I_ tn 

~ a( tn) exp(2/3n). 
This relation describes the averaged behavior of the scale factor at late 

times, and it is that of Friedman's dust cosmos 

a( t ) = a o t 2/3 (24) 

It should be noted that only the sign and not the absolute value of/~ is 
important for this behavior. 

6. DISCUSSION 

For isotropic metrics all modifications depend on the combination of 
parameters c~ + 3/~ r 0. The discussion of the trace equation shows that the 
evolution equation for the volume expansion is changed strongly. A phase 
plane analysis expressing acceleration as a function of expansion velocity 
yields a complete classification of solutions and their qualitative behavior. 
Afterward the dynamical behavior of the metric can be reobtained by series 
expansion to any desired precision. 

As a first important result we have obtained that the sign of the expan- 
sion velocity cannot change, i.e., expanding solutions remain expanding. 
The vacuum field equations forbid an avoidance of the cosmological 
singularity by a bouncing at a certain minimal value of the scale factor. 
Really, all but one special solution starts with an initial singularity of the 
same type as Friedman's radiation cosmos in general relativity. 

For # =4(e  + 3/~)> 0 all solutions expand with constant acceleration 
for t ~ ~ which leads to a faster-than-exponential increase of the scale fac- 
tor according to equation (15) and an asymptotically divergent Ricci 
scalar. On the other hand if g < 0, all solutions oscillate around an average 
behavior a ~ l 2/3 for t ~ oe. That means the quadratic modifications in the 
Lagrangian (or in other words the vacuum polarization of quantum fields) 
mimic solutions of general relativity with ordinary matter. The behavior of 
the asymptote (15) was already mentioned in [11], and approximate 
expressions for the oscillating behavior of the scale factor for # < 0 are 
given in [9]. For the interpretation as nonlinear oscillations around a 
power law according to Friedman's dust cosmos compare also [13]. These 
oscillations are damped and the scale factor grows monotonically. 
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Besides the one-parameter classes of solutions special solutions exist 
which start in the infinite past with a finite (# > 0) or zero (# < 0) initial 
value of the scale factor. The asymptotic expression for the metric of these 
solutions contains the coupling length, i.e., only by the combined action of 
the Einstein-Hilbert and quadratic Lagrangian can we obtain such 
singularity-free cosmological models. We would like to point out here that 
some authors (see, e.g., [11]) prefer the choice ~ , f l>0  for having a 
minimal and not only stationary action. To be more general we did not 
follow this restriction in our discussion. 

The chosen presentation of the material shows the power and the 
importance of the analytical phase-space analysis for such highly nonlinear 
differential equations. Numerical computations have been performed only 
to obtain some specific integral curves for illustrations. The complete 
enumeration of types of solutions gives the global behavior of solutions 
known previously only in asymptotic regions as well as an embedding of 
special solutions in the general class and a discussion of their stability. 
From linearizations around solutions of general relativity the claim results 
that the fourth-order terms become important only near the initial 
singularity. On the contrary, the Bianchi type-I solutions considered here 
show that the global behavior of the cosmological expansion is strongly 
modified, too. 
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