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Abstract  

We study nonviscous and viscous fluids in Bianchi types II, VIII, and IX space-tLrnes under 
the restriction that the ratio of shear to expansion be constant. 

w Introduct ion 

The roles played by the viscosity and the consequent dissipative mechanism 
in cosmology have been discussed by some authors [1-4]. The heat represented 
by the large entropy per baryon in the microwave background provides a useful 
clue to the early universe, and a possible explanation for this huge entropy per 
baryon is that it was generated by physical dissipative processes acting at the 
beginning of evolution. These dissipative processes may indeed be responsible 
for the smoothing out of initial anisotropies [5]. Misner [1] suggested that 
neutrino viscosity acting in the early era might have considerably reduced the 
present anisotropy of the blackbody radiation during the process of evolution. 
While Belinsky and Khalatnikov [4] presented some general characteristics of 
anisotropic cosmological models in the presence of viscosity and Murphy [3] 
attempted to construct a homogeneous isotropic model introducing the second 
viscosity coefficient in the energy-momentum tensor of the fluid content, we 
have investigated the cosmological solutions in Einstein's theory for Bianchi 
type II, VIII, and IX space-times, which are spatially homogeneous but aniso- 
tropic in motion. We consider the matter content to be either a perfect fluid 
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without viscosity or an imperfect one associated with first and second viscosity 
coefficients. There are some other perfect fluid solutions in the literature [6-8], 
while no exact solutions for these space-times with viscous fluid source are 
known, nor have their properties being studied. 

In this work there are attempts to find solutions under certain geometric 
restrictions such as a2/O ~ = D 2 = const [6] and also some simple relationships 
between the viscosity coefficients and the energy density. Small values of D will, 
however, make shear prominant only when the expansion or contraction is very 
large. Subject to the above restrictions we obtain a nonlinear differential equa- 
tion in terms of one metric coefficient. Once it is solved the others can be deter- 
mined without difficulty. The simplifying assumptions made in the following 
sections on the geometry of space-time and also in the viscosity coefficients are 
not always quite realistic, although they are useful in the construction of some 
approximate models and their study. 

w The Field Equations 

The line elements for homogeneous anisotropic Bianchi types II (5 = 0), 
VIII (5 = - 1), and IX (5 = +1) in a locally rotating system (2) are given by 

ds 2 = - d t  2 + S 2 d x  2 + R 2 [dy 2 + f 2 ( y ) d z 2 ]  - S 2 h ( y ) [ 2 d x  - h ( y ) d z l  dz (1) 

where R = R( t ) ,  S = S( t ) ,  and 

f ( y )  = , h ( y )  = I -  �89 y for 5 = 

[_sinh y_] 1...- cosh y 

We build cosmological models in those space-times with a viscous fluid having 
the energy-momentum tensor [5] given by 

Tij  = (P  + P)Vi  v] + Pg i i  - ~sUi] 

= p - - (2) 
Vi Oi = - l 

Ui] = Vi; ] + O]; i + oioau];a "t" v]oavi;a 

where p is the matter density, p the pressure, v i the four-velocity, and 17 b and ~?s 
are the bulk and shear viscosity coefficients. In homogeneous cosmological mod- 
els these quantities are only time dependent. Choosing a comoving coordinate 
frame where v ~ = 55, the nonvanishing components of Einstein's field equations, 

Cii = R~i - �89 g i jR  = - k r i  s (3) 



219 SPATIALLY HOMOGENEOUS COSMOLOGICAL MODELS 

with (1) and (2) are 

k ~  k 2 + ~  1 s 2 
2 R S----+ R = 4 Ra - kp (4) 

- + - +  - k i p  - (s)  
S R S R  

2 ~ +  R2 4R 4 =-k /3- r/s~ (6) 

where the dot stands for differentiation with respect to time. 
We have a system of three independent equations (4)-(6) and six unknown 

functions, namely, R, S, P, P, %,  and r/s. Hence, we can assume three appropri- 
ate relations between these variables in order to obtain solutions of the system 
of equations, which we do so by considering 

r / b  = O~bp, r/s = asp (7) 

0 2 
- D 2 (8) 

& 

where a~, as, and D are constants, a 2 and t9 2 indicate shear and expansion, 
respectively. One of the above relations, (7), was used by Murphy [3] in some 
ideal situations of the fluid content. The asymptotic forms of the viscosity coef- 
ficients for small and large values of the energy density for some simple cases 
were discussed by Belinsky and Khalatnikov. These could be expressed approxi- 
mately in terms of power functions of the energy density such as r/b = al, P rn and 
r/s = asp n. For small values of p, m and r/are large, and in the extreme case are 
equal to 1, whereas for large values of p the exponents are small. For simplifica- 
tion, following Murphy we consider m = 1 and also n = 1. The dependence of the 
viscosity coefficients on the energy density would be more complicated in reality 
and our task of obtaining solutions would be more difficult. The shear a and the 
expansion 19 are given explicitly by 

c r2 =ai /  el~ (9) 

where, ai/= v(i;/) + �89 (Vi;avav/ + V/;a vavi) - �89 19(gi/ + viv/) 

19 = 4 (lO) 

which become with metric (1) 

1 a2 = (sS--" - 1 0 ) 2  + 2 (RR---" - -~ 19) = (11) 

19 = 2 - -+  -- (12) 
R S 
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Substituting relations (11) and (12) into (8) we obtain 

- X  
S R 

(13) 

1 [2 ( 1  + D:2) + "V/-6-D] (14) 
X = 2/3 - D 2 

Integrating equation (13) we obtain S = CR ~ and absorbing the integration con- 
stant C into S or R we can write 

S= R a (15) 

Now subtracting equation (6) from (5) and considering equations (4), (7), and 
(15) we obtain 

(16) 

where 
OL 8 al = 2 a s ( 2 x + l ) ,  a4 = - -  
2 

5 
a2 = X+ 1, as = - -  (17) 

X - 1  

1 
aa= X- 1' a6 2as8 

The expansion given by (12) can be written with (15) as 

O = ( X + 2 ) ~  (18) 

which transforms (16) into 

(~ + b l &  + 02 + (b2 + baO)R 2x-4 + (b4 + bsO)R -a = 0 (19) 

where 

2as(2X + 1) X+ 2 
bl = (X+2)  2 ' b4 = X- 1 

X+2 
b2 - bs = 2~s8 

X - I '  
(20) 

1 
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Equations (4) and (5) or (6) with (15) and (16) allow us to write 

(R)~ 8 1R2~_ 4 k,o--(2X+l) (21) 

kiO = 2%(2X + 1)(X+ 2) +(2X+ 1) \~2-~/R---g 

k 8 c~ s " + 1  1)R2X_ 4 
+ 2as(X + 2 ) ( R - ) ~ - - - 2 - ( X  + 2 ) ( R )  R~x-4 + ( ~ - 1  (22) 

The equation (16) above is a highly nonlinear differential equation involving 
only R as a function of time. Once it is solved for R one can easily determine 
S from (15) and the metric is known. 

w Nonviscous and Viscous Cosmological Models 

Raychaudhuri's equation (9) is given by 

O;ivi=ai;i + 2oo 2 - 202 - �89 + Rijviv j 

where a i is the acceleration vector, which vanishes for geodesic motion, co 2 is the 
rotation, o 2, the shear, and O, the expansion. So in a comoving coordinate sys- 
tem (v i = 8io) this equation reduces to 

(~=_2o2_ �89174 +Rqviv j 

The Ha.wking-Penrose energy condition (10) is that Rqviv ] ~ O. Hence in such 
a case | < 0 and there can be only a maximum and no minimum for the expan- 
sion and from (2) we obtain that 

Ri]viv]= _ k ( P 2 3 P  s O ) = _ k ( p  +3P2 23%| 

Now we make some general observations about the properties of the expressions 
obtained so far. 

(i) When O = 0, we have from (21) 

1 R2K_ 4 (23) 
kp = R2 4 

So for 8 = 0 and 6 = - 1, i.e., for Bianchi types II and VIII models, p < 0 at turn- 
ing points. Hence the models which have turning points matter density are not 
positive throughout their life cycle. 

(ii) In (19) and (22) it is clear that the terms associated with shear viscosity 
contain odd powers of (R/R), so that when the sign of time-rate changes the 
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relevant terms changes their signatures. It means that expanding and contracting 
models do have different time behaviors due to the presence of shear viscosity. A 
bulk viscosity term does not have such influence and is contained only within/5. 

(iii) The matter density (21) does not explicitly depend on the viscosity 
term except implicitly through the metric, whereas the pressure term (22) is 
modified explicitly due to viscosity. 

Bianehi Type IINonviscous Case. In Bianchi type II (6 = 0) for nonviscous 
fluid (a s = ab = 0) equation (16) reduces to 

/~R + a2/~ 2 + a3 R2~-2 = 0 (24) 

which after the first integration reduces to 

/~ = +R-(X+~)[-2X(~ - x)R 4x +C1] 1/2 for )~:PO (25) 

where Ca is an integration constant. In view of (25) we obtain the matter density 
(21) and the pressure (22) given by 

k0 = -X ) R2a-4 + C1(2X + 1)R -~-x-4 (26) 

2 X + l  1 X + I I  
t R 2~'-4 + Cx(2X + 1)R -2~'-4 (27) 

k/~= ~2X--~- 2 X) 4 X 

There is no turning point (/~ 4= 0) only in the case 0 < X < 1 and C1 > 0. In this 
case as R -+ 0,/~ -+ -R-(X§ a) C1 so that I/~[ ~ oo and p and p both increase to 
infinitely large values. 

Now from (26) and (27) we have 

k(p + 3/5) - 2(X + 1) R2x_4 + 4(2X + 1)CAR -(2x+4) (28) 
X 

Throughout the history from R very small to R very large (p + 3/5) >~ 0. Hawking- 
Penrose energy condition is not violated during the evolution of the model from 
zero proper volume to infinitely large proper volume. Since (2X + 1)/[2X(1 - 
X)] > 1/4 for 0 < X < 1, we get O decreasing from infinitely large to vanishingly 
small values as the model expands. 

Cases different from 0 < X ~ 1 and C1 > 0 lead to unphysical situations. 
Bianchi Type II Viscous Case. Owing to the difficulty in obtaining the gen- 

eral solution of the differential equation (16) for the Bianchi type II (8 = 0) 
viscous model as ~ 0, a~ 4 = 0, we restrict ourselves to make the analysis mainly 
of the particular case X = 2. For this case (19) becomes 

- 5 a s  0 3 - 0 2 O= T - 0 - 4  (29) 
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and the expansion rate is given by 0 = 4t}/R. From (21) and (22) for 6 = 0 and 
X = 2, the matter density and the pressure become 

s _ 4 

11 
k/5 = 40 a s + 5 - 2 a s + - -  (31) 

4 

Writing (30) and (31) in terms of  expansion scalars we obtain 

kp = �88 ( �88  - 1) (32) 

and 

kp = -~ %| + s 02 _ (as~2) O + Tll (33) 

From (29) we see that | = 0 corresponds to O = - 4, which indicates that there is 
a maximum fo rR ,  there being no minimum when O < 0 and IOI = R/x /5 ,  p = 0 
and (~ = - (02 + 4), which is less than zero. | decreases subsequently and be- 
comes more and more negative until [| ~ ~ so that the density increases mono- 
tonically to an infinitely large value. In the reverse picture we do not get the 
model exploding from the infinitely large value for./). This is mainly, because 
p -+ ~ corresponds to O ~ ~,  which in turn yields O ~ O a, so that O > 0 and 
O increases further. 

The Hawking-Penrose energy conditions (9) demand Riiviv ] ~ 0, which 
again as has been shown earlier, yields the condition 

-Ri ivivi  = k ( p + 3~ ) 2 - rlsO >~ 0 

This again putting expressions for p and/3 reduces to the condition 

k asO(a�88 |  - 1 ) + (  s O a + 4 ) = 4 ) + l ~ |  

Therefore at O = 0 or at O = = 4/5 the energy condition is satisfied and so long as 
,> �9 0 2  p ,  0 that is > 4/5 it is satisfied at every stage of  expansion | > O. On the 

other hand for a contracting model | < 0 the energy condition is satisfied only 
when -(as~2 ) [01 (4 s- 02 - 1) + (~ 02 + 4) i> 0 and it is violated when tO[ be- 
comes large. 

We consider now the situation where the model expands in course of  time 
that is | > O: When @ -- 2/X/~- the energy density vanishes and 0 < O. But for 
| -+ oo we have (~ > O, since 0 ~ 03 as discussed previously. In between these 
two instants there must be an instant when 0 = O. From (29) this corresponds 
to the vanishing of  higher time derivatives also, so that one has a steady state 
situation (cf. Murphy [3] ) with �88 02 > 1 that is, with energy density positive. 
Later if 0 decreases the expansion rate monotonically approaches zero with the 
density vanishing at 0 = 2/x/5 .  
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w Conclusions 

We can now summarize the previous results obtained for Bianchi type II uni- 
verses with perfect or viscous fluids. 

For perfect fluid distributions there are situations where the model explodes 
from the initial singularity of infinitely large energy density and zero proper 
volume and monotonically expands towards vanishingly small density. For an 
expanding model the Hawking-Penrose energy condition is not violated at any 
stage. 

The behavior is in general difficult to study for a viscous fluid. In a simple case 
k = 2 the model either collapses or expands monotonically, there being no oscil- 
lation possible. For a contracting model with positive energy density (P > 0) the 
rate of contraction increases in the course of time and the energy density in- 
creases indefinitely. The energy condition of Hawking-Penrose is not satisfied at 
all stages of collapse. The behavior is different for an expanding model due to 
the presence of viscosity. There is a steady state for a finite magnitude of energy 
density depending on the magnitude of the shear viscosity coefficient, which 
when perturbed may expand monotonically as a consequence towards lower 
energy density states. 
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