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Abstract 

An ansatz is given which reduces the equations of sourceless (n + p)-dimensional general rela- 
tivity to those of n-dimensional general relativity coupled to a repulsive O (p) scalar field. 
Regular solutions are obtained for (n = 2, p = 3), (n = 3, p = 2), and (n = 3, p = 4). All these 
solutions have the wormhole topology. 

w Introduction 

Models o f  four-dimensional general relativity with classical fields as sources 
do not in general admit regular asymptotically flat solutions. Some exceptional 
models [1-3] do admit such solutions, which share a spatial geometry with two 
symmetrical,  asymptotically fiat regions. The possibility of  a consistent particle 
interpretat ion of  such solutions has been previously discussed [3, 4]. 

These models also share a common aesthetic defect: they admit regular solu- 
tions only because scalar fields (repulsively coupled to gravity) are put there to 
that effect , jus t  as Higgs fields are added to gauge theories in order to break some 
symmetry.  It would therefore be gratifying to find "natural"  field-theoretical 
models which admit regular solutions. 

Such a solution has indeed been found in sourceless five-dimensional general 
relativity [5].  It is our purpose in the present paper to search for regular 
asymptotical ly fiat solutions to (n + p)-dimensional general relativity, the extra 
( p  - 1) dimensions being subsequently compactif ied so as to lead to a possible 
physical theory for the number of  space dimensions t7 = 3. 

In the second section of  this paper we propose an ansatz which reduces the 
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equations of  sourceless (n + p)-dimensional general relativity to those of  n-dimen- 
sional general relativity with a repulsive O(p)  scalar field as source. Regular solu- 
tions of  these equations are constructed for (n = 2, p = 3), (n = 3, p = 2), and 
(n = 3, p = 4) in the third section; they are all of the wormhole type. Our conclu- 
sions are stated in the last section. 

w The Ansatz 

We look for solutions to the Einstein equations in n (space) + p (time and 
inner) dimensions, which are invariant under translations in the p dimensions, 
and we choose coordinates x i (i = 1 . . . . .  n) and x a (a = n + 1 . . . .  , n + p) such 
that 

ds z = gab(X k) dx a dx b + gq(x k ) dx i dx j (1) 

In this case the elements of  the Ricci tensor are given by 

1 ca W v i  Rab=-21-viVigab + ~g [ igac gbd-  1VigabVigcct) 

Ria : 0 (2) 

Rii= Rii - �89 Vi(gaOVjgab ) + ~17 ig a~Vjga~ 

where Vi is the spatial covariant derivative, and Rii is the purely spatial Ricci 
tensor. Introducing for the cyclic coordinates x a the matrix notation 

G = (gab}, P = {Rab} (3) 

the nonzero elements of  the Ricci tensor may be rewritten as 

P = - I v i V i G  + �89 G -~ " V i G -  �88 Tr(O -1 " v i v )  
(4) 

Rii = Rii - �89 Tr( G-1 " Vi G) + 1 Tr(ViG-1 . ViG) 

Now we make the ansatz 

G 2 = 1 (5) 

which reduces equations (4) to 

P = - � 8 9  ViG) 
(6) 

Ri] =/~q + �88 Tr(ViG �9 V/G) 

enabling us to write the action for (n + p)-dimensional general relativity as 

S = - ~ ~dn+P x]gll/Z g~VR~v 

lfdPxfdnxl~ll/2g,SEK 1 )] - 2~ i/+ ~ Tr(ViG" ViG (7) 
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[~= det(gij)]. Thus, the solution of vacuum Einstein equations in (n + p) di- 
mensions has been reduced to that of the Einstein equations in n dimensions 
with a matrix source field G subject to the constraint (5). Note that this source 
field enters the action with the "wrong" sign (the corresponding energy density 
is negative); previous experience [ 1-3] therefore suggests that regular solutions 
to (7) will be of the wormhole type. 

Let us now specialize to a (n +p)-dimensional manifold with the signature 
(+ . . . . .  ). It then follows from (5) that the diagonal form of G is 

t + l  0 /  -1 
G O = 

0 -1 

(8) 

The general matrix G(x k) solution of (5)with the prescribed signature is ob- 
tained from (8) by an arbitrary rotation R(x k) with the result 

ga~ = 20aC~o - ~ab (9) 

where 4, varies on the (p - 1) sphere: 
4, 2=  1 ( l o )  

[A metric similar to (9) has been investigated, in a different context, by Williams 
and Zia [7].] The action (7) then reduces to that of an O(p) field 4, coupled re- 
pulsively to n-dimensional gravity: 

s = - l  f dPx f dnx[~'l/ZgO(Ki/ + 2gi4," g,4,) (11) 

The problem remains to solve the corresponding field equations with bound- 
ary conditions at spatial infinity which we now state: (B1) the spatial metric 
gq(x k) is asymptotically Euclidean with a negative signature; (B2) the matrix G 
is asymptotic to its diagonal form (8), which means that 4,(x k) is asymptotic to 
the constant vector 4,o = (1,0 . . . .  ,0). 

The ansatz (1) and (9), together with the boundary condition (B2), has 
broken down the original Gn+ p invariance (invariance under general coordinate 
transformations in (n + p) dimensions) of the theory to G n X SL1 X SLp_ 1 . To 
make contact with the physical world, one should further break down the SLp_ 1 
symmetry of the solutions (if not already broken) by compactifying, ~ la Kaluza- 
Klein, each of the extra (p - 1) dimensions. 

w Regular So&tions 

( a )  n = 2 ,  p = 3 .  F o r  n = 2 ,  the model defined by 

-~ij = -20/4,- aj4, (4,2 = 1) (12) 
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has no nontrivial solutions for p = 2. Therefore we take p = 3, which gives the 
two-dimensional 0 ( 3 )  nonlinear o model coupled repulsively to gravity. All the 
regular solutions have already been constructed in the case of an attractive 
coupling [8], and we repeat the construction in the present case. 

We may always choose a system of isotropic coordinates x i such that 

gii = -e2U~i/ (13) 

With those coordinates, equations (12) give 

Rij  = - Au3i i  = - 23i r 3 j ~  (14) 

(A being the ordinary Laplacian). Going over to complex fields ~ and complex 
coordinates z defined by 

2~  X 1 + i x  z = z  (15) 
04 + i(Ps = 1 + 1~ I - - - - - - - .7 ,  

equations (14) may be rewritten as 

3~* Oqj 
0 = -  

Oz Oz 

with 

3z~z * -  2 F  + ~z* J 

(16) 

which has the general solution 

e= u _ ( 1  + I~1~) 4 
[f(r 2 (20) 

where f i s  an analytic function of 6. 
We now enforce the boundary conditions. The boundary condition (B2) is 

satisfied by ~(~)  = oo [the other possibility ~(oo) = 0 is equivalent to this, mod- 
ulo the transformation ~ -+ 1/~*, which leaves (15) invariant], which means 

1 
F ( ~ )  = (1 + Iq~12) 2 (17)  

The first of equations (16) means that ~ is either an analytic function ofz  or 
of z*: 

= q;(z) or ~ : ~(z*) (18) 

In either case the second of equations (16) reduces to 

32u 
3~3@* - 2F(~)  (19) 
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that ~ is a polynomial 

=Pk(z)  or r  (21) 

The boundary condition (B 1) then implies that f cannot be constant, and so 
has at least one zero $o- The antecedents Zo of  ~o = r are necessarily end 
points @oints at infinity) of  the spatial sections x a = const., because the differ- 
ential proper distance to Zo varies as 

d l z  - zol 
d l  = e U d l z  - Zo[ ~ const. [z - Zo[ - - - - - - ~  (22) 

where q is the order of  the zero z0. 
So the spatial sections of  our solution have at least two end points (z = % 

and z = Zo), and thus have the wormhole topology. The boundary conditions 
(BI)  and (B2) at z = oo should then be supplemented by boundary conditions 
at the other end points. An interesting condition is that our solution remain in- 
variant under rotations in the (x 4, x 5) subspace, i.e., phase transformations 

-+ ~ e  ic~, which is equivalent to the boundary condition (B3); 

$o = 0 (23) 

Conditions (B 1) and (B3) give f ( ~ )  = ~4, so that 

e 2u = + (24) 

(One could, instead of  (B 1), enforce symmetrical spatial boundary conditions 
for the two end-points ~ = o~ and ~ = 0; this possibility is explored elsewhere 
[9] .) 

The solution given by (21) and (24) has k spatial end-points other than 
z = ~,  and so is a k wormhole. The simplest solution is the 1 wormhole 

= Xz or ~ = Xz* (25) 

which is spherically symmetric (other spherically symmetric solutions are given 
by ~ = X z  k or Xz*k). 

(b) n = 3, p = 2. For n = 3, our ansatz (7) is just a special case of  the more 
general Dobiasch-Maison construction [6]. In the case p = 2, ~ varies on the cir- 
cle, so that we may choose the parametrization 

~b 4 = sin r?, ~bs = cos r? (26) 

which leads to the equations of  three-dimensional general relativity coupled re- 
pulsively to a massless scalar field: 

R i j  = - 2~i'2~j72 (27) 
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The spherically symmetric asymptotically flat solution with the boundary condi- 
tion r~(~) = 7r/2 [10, 11], which may be parametrized as 

-gq dxi  dx i = P-----~-~ [dr12 + cos 2 r/(dO 2 + sin 2 0 d~02)] 
cos 4 r/ 

/ ' -cos 2rl sin 2r? "~ (28) 
G k / 

sin 2r/ cos 2 r / /  

is found to correspond to a special case of the previously known wormhole solu- 
tion of five-dimensional general relativity [5]. This special case (in the notation 
of  [5] ,a l  =a2 = �89 X = 0 ,B  2 = -pg/4) is singled out by the fact that it is invari- 
ant under the symmetry r/-+ -rl, x s -+ - x  s, which exchanges the two end points 
r~ = +hi2. 

(c) n = 3, p = 4. The reduced model is that of an 0(4)  ("chiral") field 
coupled repulsively to three-dimensional general relativity. We search for a spher- 
ically symmetric (both in physical space and inner space) solution, and so choose 
the parametrization: 

gij(X) = -e2U(r)6ii 

Xi (29) 
~b4(x) = sin r/(r), 04+i(x) = cos ~?(r) - -  

r 

(the possibility of such a spherically symmetric "hedgehog" solution has been 
overlooked in [6]). The reduced Einstein equations are then 

r [a,i  2 1 ~{ = 2e-2U -2 cos 2 r/(60._ Qii)+k~r)  Qi]] (30) 

where 
XtX ] 

Qii  = r z (31) 

Going over to standard spherical coordinates, such that 

-gij dxi dxJ = dP--~2 yZ(p) + P2( do2 + sin2 0 d~02) (32) 

and using the relation between Cartesian and spherical components of the Ricci 
tensor 

R~ =R~Qij + R~ - Qij) (33) 

we rewrite equations (30) as 

_ 2y dy _- 2 y 2 L d f f  
pdp \G) 

(34) 
~o=_ Y dy 1 2 

P do 02 (1 - y 2 )  = P-2 c o s  2 ~/ 
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with the boundary conditions 

y (~)  = 1, r/(~) = ~ (35) 
2 

The system (34), (35) is equivalent to the following system: 

{dy)  
iN} +y =l+zcos2r/ 

dr/_ l dy 
P 

dp y dr/ 

y/Tr 

(36) 

These equations are invariant under the symmetry r/-~ -r/, so that we may choose 

dy 
> 0 (37) 

dr/ 

for r/-+ 7r/2. It follows from the second of equations (36) that r/is an.increasing 
function ofp. Then, ifrh is the highest zero ofy'(r/), 

v(r/) < 1 (38) 

for rh < r /<  7r/2. The first of equations (36) then shows that, as long as y(r/) > 0, 
y'(r/) > 0, so that rh < r/o, where r/o is the highest zero ofy(r/). 

Consequently y2 < 1 for r />  r/o, so that we may replace the first of equa- 
tions (36) by the inequality 

(assuming r/o > -~/2), which may be integrated to give 

yKx/T_[s inr / -  ( 1 - ~ 2 2 )  1 (40) 

It follows that y (r/) has a zero for 

r/o > arcsin (1 - T/-~) m 0.297 (41) 

The behavior of the metric functions in the vicinity of r/o is found from equa- 
tions (36) to be 

y ~ ~3(r/- %) (~ = (1 + 2 cos 2 %)1/2) 

(42) 

so that our solution has a minimum radius no (which is of course an arbitrary 
constant). When r/continues to decrease past r/o, P increases to infinity again 
(a maximum of p would necessitate, from the second of equations (36), another 
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zero of  y ;  but this can only happen i fy  first goes through a minimum y( rh )  
which, if p is an analytic function of  7, can only occur for p ~ oo). 

Thus, our solution to seven-dimensional general relativity again has the worm- 
hole topology. As in case (a), the boundary conditions (B1) and (B2) are not ful- 
filled at the "other" end point 71, because 771 ~-~r /2  [if71 = -7r/2, a reasoning 
similar to the above would lead to 70 < -0.297, which contradicts (41)], and so 

y ( rh )  = (1 + 2 cos z 7x) 1/2 3> 1 (43) 

Again as in case (a), one could replace these boundary conditions by the sym- 
metrical (but unphysical) condition 70 = 0. 

w Conclusion 

Our ansatz has enabled us to obtain in several instances regular solutions of  
(n + p)-dimensional general relativity which have a rich structure, in terms of  
symmetry as well as of  topology. Besides being spatial wormholes, our solutions 
are also metrical kinks [7, 12, 13]. The p • p matrix G is everywhere regular and 
has signature (+ . . . . .  ). However, the ansatz (9) shows that go0 (-=gn+l ,n+l) is 
not positive definite, but goes from +1 at the North pole of  the p sphere ~b 2 = 1 
to - 1 at the equator and back to + 1 at the South pole. The 1-wormhole solution 
of  (b) is thus also a 1-kink, while the k-wormholes of  (a) are also k-kinks [the 
wormhole solution of  (c) is not strictly speaking a kink, because the end point 
71 corresponds not to the South pole, but to a parallel]. 

A drawback of our method is that the extra dimensions must be compacti- 
fled toroidally so that the inner symmetry of the solutions is (in the case p > 2) 
lost. It would be interesting to generalize our ansatz to take into account the 
possibility of  spontaneous (spherical) compactification. 
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