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Abstract 

A class of regular, asymptotically flat solutions to the five-dimensional vacuum Einstein 
equations with a two-parameter Abelian isometry group is constructed, under the additional 
assumption of axial symmetry in three-dimensional space. The possibility of interpreting 
these multiwormhole solutions as multiparticle systems is discussed. 

w Introduction 

Sourceless five-dimensional general relativity is known to admit a variety o f  
spherically symmetric solutions with a two-parameter Abelian isometry group 
[1, 2].  Particularly interesting among these solutions are the regular wormhole 
solutions obtained by Chodos and Detweiler [2]. 

A simple ansatz which leads to such regular wormhole solutions to the equa- 
tions of  sourceless (n + p)-dimensional general relativity has been given in Refer- 
ence 3. This ansatz, which reduces the vacuum Einstein equations in (n + p) 
dimensions to the equations of  n-dimensional general relativity with a repulsive 
O(p) scalar field as source, has in particular been applied to construct multi- 
wormhole solutions of  five-dimensional general relativity in the case n = 2, p = 3, 
[3, 4] .  

In this paper we shall construct multiwormhole solutions in the physically 
more interesting case n = 3, p = 2, under the additional assumption of  axial 
symmetry. The ansatz, stated in the second section, enables us to reduce the 
five-dimensional axisymmetric Einstein equations to the three-dimensional 
axisymmetric Laplace equation. The properties of  the known spherically sym- 
metric regular wormhole solution in Weyl coordinates are studied in Section 3. 
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From this solution, multiwormhole axisymmetric solutions are constructed in 
Section 4. The case of coincident wormholes is studied in Section 5. Finally, the 
possibility of interpreting ouffsolutions as systems of elementary particles is 
discussed in the last section. 

w Local  Axial ly  S y m m e t r i c  Solut ions 

We assume that (n + p)-dimensional space-time (n space dimensions, p time 
and inner dimensions) admits a p-parameter Abelian isometry group (p >~ 2 ) ,  
and that coordinates x i (i = 1, �9 �9 �9  n) and x a (a = n + 1, �9 �9 �9  n + p)  can be 
found such that 

ds2 = gab (xtc) dxa  dxb  + g 6 ( x x )  d x i  dx  i (1) 

with the signature (+ . . . . .  ). 
Following Reference 3, we further assume that gab has the simple form 

gab = 2C/)aOb - 6ab (2) 

where the field ~bis constrained to vary on the (p - 1) sphere: 

6 5 = 1 ( 3 )  

This ansatz (which for n = 3 is a special case of the more general construction 
given in Reference 1), reduces the (n + p)-dimensional vacuum Einstein equations 
to the system 

Rij =-2Vi*" Vi~ (4) 

and 

V~Ve~+ (V~" V ;~)~-- o (5) 

(where Vi and Rii  are the spatial covariant derivative and spatial Ricci tensor). 
3 s . . . .  

Actually, this system may be redundant, as is often the case in general relatwlty, 
because of the Bianchi identities. Indeed, we prove in the Appendix the following 

Theorem. If  the number of linearly independent vectors Vi~is (p - 1) (which 
can only happen for n >I p - t), then equation (5) is a consequence of equations 
(4). 

Specializing now to n = 3, we make the additional assumption of axial 
symmetry, in which case the spatial metric can be written in the form 

dcr 2 - - g i l d x i  dx  j = e2k(dp  2 + dz 2) + W 2 d~o 2 (6) 

where k ( p ,  z)  and W(p,  z)  are the metric functions (we have, without loss of 
generality, chosen isotropic coordinates in the planes P, z). Assuming that the 
field ~ i s  also independent of the azimuthal angle ~o (in the case p ~> 3, this 
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assumption is probably too restrictive [3] ), the Einstein equations (4) for the 
mixed componentsR ,Rz of the Ricci tensor are identically satisfied, while 

3 ptp 3 ~p 
the remaining equations give 

R ~  -= We-2kA2 W = 0 

Rii - R q  - W -1ViV i W = -2Vi+" gi~b (7) 
3 

where the indices i , j  refer now to the two-space (p, z), R 6 is the Ricci tensor of 
2 

this two-space, and A 2 is the two-dimensional Euclidean Laplacian. 
Defining the complex coordinates 

= p + i z  (8)  

we note that equation (6) and the first of equations (7) are form invariant under 
con formal transformations ~--+ f(~'). 

We may thus choose our (P, z) coordinates such that 

W = O (9) 

This choice reduces our metric (6) to the Weyl canonical form [5]. Then the 
Einstein equations (7) for the components Rij give 

~)p/,: = - p  [ ( ,3 ,06)  2 - ( ,3 , ,6 )  2 ] 

8=k = -p2~p  ~ " ~z d# 

& k  = (ap4,) 2 + (a~6)  2 (10)  

while equation (5) reduces to the flat-space non-linear Laplace equation 

Aa4~+ [(Op4~) = + (az~)2]& = 0 (1 1) 

where ,Sa is the three-dimensional Euclidean Laplacian. It can be checked that 
the last of equations (10) is a consequence of the other two and of equation 
(11). Furthermore, the first two equations (10) may be combined into the com- 
plex equation 

a~k = - 2p(a~4,) z (12) 

The similarity of equations (11) and (12) to the four-dimensional static 
axisymmetric vacuum Einstein equations [5] is obvious ]notice, however, the 
minus sign in (12)]. The strategy to solve this system is simply, first to solve 
equation (I 1) for a real field4~ independent of the azimuthal coordinate ~0, then 
to integrate equation (12) for k. 

In the case of five-dimensional general relativity, p = 2, and we may parame- 
trize the vector field ~b by an angle r/(complementary to the angle r/used in Ref- 
erence 3) such that 

~4 = cos r/, ~b s = sin r/ (13) 
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Then equation (11) reduces to the flat-space Laplace equation 

A3~= 0 (14) 

while equation (12) gives 

(15) 

Every local axisymmetric solution of the linear equation (14) thus yields a 
local solution to the vacuum Einstein equations in five dimensions. The global 
solutions we are interested in must be (1) asymptotically flat and (2) regular. 
Asymptotic flatness means (if we take x 4 as the time coordinate) 

r/(~) = nrr (n E IN) 
(16) 

t ( = )  = 0 

(If the three-dimensional space of metric gi] has more than one end point, then 
we expect these boundary conditions to be satisfied, with possibly different 
values for n, at each end point.) The general axially symmetric solution of 
equations (14) and (15) with boundary conditions (16) is given in spherical 
coordinates (r, 0) by [5] 

~7 = nrr + 2 alr- l - lp l (c~ O) 
l=0 

k = Y" a l a m  
l , m = o  

(l + 1)(m + 1)r_t_m_ 2 (pip m _ pl+lPm+a ) 
l + m + 2  

(17) 

[where the Pt = Pt (cos 0) are the Legendre polynomials]. 
The condition of regularity is much more stringent. Indeed, the associated 

problem in four dimensions is known [6] to admit no regular solution other 
than flat space. However, in our case the minus sign in equation (15) is respon- 
sible for the existence of regular wormhole solutions. 

Instead of attacking frontally the problem of finding regular solutions, our 
strategy shall be to start from the known spherically symmetric wormhole solu- 
tion of our problem [3], and exploit the linearity of equation (14) to construct 
multiwormhole solutions as linear superpositions of one-wormhole solutions. 

w The One-Wormhole Solution 

The spherically symmetric solution of the three-dimensional equations 

R3 i j = - 2 O i ~ O j  ~" I (18) 
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with the boundary conditions (16) is given in isotropic coordinates X i (i = 1, 

2, 3) by [3] 

--- + - 2 S )  dX2  

(19) 
71 = 2 arc tan 2(~o: ) 

(R = rX], Po is an arbitrary constant, and we have chosen n = +1 for the end 
point R = oo). 

This solution, a special case (al = a2 = I/2, X = 0, B 2 = -p2o/4) of the class 
IH regular solutions of Chodos and Detweiler [2], is such that the combined 
inversion 

x i _ + _  P Z X i  
4R 2 

x4 -+ x4 (20) 

X s - - ->-X  s 

is an isometry of our five-dimensional space-time. This shows, in particular, that 
the three-dimensional space of metric da~ consists of two asymptotically flat 
sheets connected by the spherical neck R -- po/2. 

To go over to the Weyl form of the metric (19), we first introduce cylindri- 
cal coordinates P, Z, ~0 such that 

d X  2 =dp2 + d Z  2 +p2 dtp2 (21) 

and the complex coordinates 

X = P + iZ (22) 

which are such that I XI = R. The Weyl coordinates and metric of our manifold 
are then given by 

Re~'(X) = (1+ P ~  
4R 2] 

(23) 

+ 4R ~] - -~X 

The solution of the first of these equations is given by the Joukovski func- 
tion [7] 

1 
~ '=2- (  2X+p~2X] (24) 
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For ~ = const, this function maps both the exterior and the interior o f  the circle 
R = po/2 into the exterior of  the segment 

C=(z=O, -Po<~P<<-Po, ~o =const} (25) 

The inverse function 

X = 1 [~. + (~.2 _ pg),12] ( 2 6 )  

is therefore bivalued, and the ~" plane must be considered as a two-sheeted Rie- 
mann surface with the cut C. Therefore, our three-dimensional wormhole is 
represented in Weyl coordinates as a two-sheeted three-dimensional Riemann 
manifold, the two sheets being connected along the disk 

D = {z = 0, p ~< Po] (27) 

The function rh ,  given in terms of • by (19), is also bivalued. To continue it 
analytically through the cut C, we note that under the three-dimensional isometry 
[corresponding to (20)] 

po ~ 
x - *  , ~0-+ ~o + ~r (28 )  

4X 

which exchanges the two ~'-Riemann sheets, the function r h is changed to 
Or - rh). Therefore the two determinations rh _+ of  the function ~h are related by 

rh+ + rh-  = zr (29) 

The second equation (23) gives the metric function kl  in terms o f x  as 

kl = l~ ( R + p~ ~ - X- p~4X (30) 

which is a uniform function of ~" because of  the isometry (28). This function is 
singular on the "branch circle" (z = 0, p = Po), in the vicinity of  which it be- 
haves as 

ka ~ - log 1 (31) 
g'~po 

This apparent singularity of  the Weyl metric is characteristic of  the wormhole 
structure. 

Thus we have a regular, asymptotically flat, spherically symmetric worm- 
hole solution ( rh ,  k l )  to the system (14), (15). As pointed out in Reference 3, 
this solution is also a five-dimensional metrical kink [8, 9] .  Following five- 
dimensional light cones from one end point to the other, we see that a future 
oriented light cone at the end point r/= 7r tumbles gradually over, becomes 
oriented along the x s axis on the neck ~ = lr/2, and continues tumbling over 
until it is past oriented at the other end point r/= O. More generally, the kink 
number may be defined, for any (n + p)-dimensional metric for which gab has 
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the form (2), as the number of zeros of ~b4 [9]. Thus, the solution (71, kl) is a 
one-kink. 

w Multiwormhole Solutions 

The system (14), (15) is invariant under the two-parameter group of con- 
tinuous point transformations preserving axial symmetry: 

P --> X-1 P (32) 
z --, X-1(z  - a )  

(X E IR+, a E IR). These transformations, applied to the solution (~h, kt), yield 
a continuous family of solutions (rh (a, X), k~(a, X)) which we may interpret as 
wormholes of radius XPo centered at the point z = a of the z axis. 

The linear superposition of n such functions rh is obviously again a solution 
of (14). We first restrict ourselves to addition, obtaining a function 

n 
~ln = ~ 7h(ai, )ti) (33) 

i=1 

which is an axially symmetric solution of equation (14) together with the first 
boundary condition (16). The function r~n is a uniform function in the ~" plane 
with the n cuts 

C i = {z = ai, -XiPo <- P <~ XiPo) (34) 

From this function, the function kn solution of equation (15) with the second 
boundary condition (16) is obtained by a line integral. 

Is this solution regular? A necessary condition for this is the regularity con- 
dition of the Weyl metric: 

lim k n = 0 (35) 
,o--*0 

To check that this condition is satisfied, we compute the behavior of the func- 
tion ~Tn in the vicinity of the z axis (for z 4= 0): 

p'-~0 i = i  

and deduce from equations (10) the behavior of the function kn: 

kn ~ const_[ff-k XiPo _32P~ 2 2 + ~ -  a.~2 + 0 ( 0  4) 
p-+o i= 1 ?ti Po 

(37) 

and the constant is equal to zero because of the boundary condition (16). 
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The function k n itself is obviously regular everywhere except on the branch 
circles (z = ai, p = XiPo). In the vicinity of  such a circle, 

0~r/n �89 [(~ iai)2 z 2 -1/2 - - Xi Po ] (38) 

and therefore, from (15), 

(~-  iai)2 1 k n ~ -  log -~O-~ - +O(1)~k l (a i ,  Xi)+O(1) (39) 

which is the same behavior as that (31) of  the one-wormhole solution. We are 
thus led to consider the disks 

Di= {z=ai, P<~XiPo} (40) 

as wormholes connecting one Riemann sheet with one or more other Riemann 
sheets. 

How many sheets does this three-dimensional manifold have? This question 
is answered by the study of  the analytical continuation of  the function r/n. First 
let us show that two sheets cannot be connected directly by more than one 
wormhole. 

Assume that two sheets A and B are connected by at least two wormholes 
D i and D i, and let us follow the function ~n, defined inA as 

r/n = r/i+(1) + ' ' "  + r/i+(/) + ' ' "  + r/l+(/) + ' "  + rh+(n) (41) 

[the symbol (i) stands here for the couple (ai, hi)] through wormhole D i into B 
[where the determination of r/1 (i) is ~l-( i)  = zr - r/x+(/)], then back through 
wormhole D] [changing the determination of r h (]) to r / i-(])  = 7r - ~11+(])] to 
A. The sum r/n has now the determination 

r/n = 2rr + r/i+(1) + . . . .  r/l+(i) + . . . .  rh+(]) + " "  + r/i+(n) (42) 

which contradicts (41). 
Now, let us try to build a model of  our three-dimensional manifold as a 

system of  boxes, standing for different sheets, each of  which is connected by n 
lines (wormholes) to n different other boxes. Each box is labeled by the corre- 
sponding signature of  the function r/n [each + or - denotes the determination of  
one of the functions r/ ,( i)] .  Our model space is IR n, and the lines corresponding 
to a wormhole D i are always parallel to the basis vector ei (Figure 1). It is ob- 
vious from the figure that the solution of  our problem of  analytical continuation 
is an n-dimensional hypercube. 

In any given sheet, the metric function kn is related to the function r/n by 
equation (15), the integration constant being fixed by analytical continuation 
through any one of  the disks. The behavior of  kn in the vicinity of  the z, axis is 
given by equation (37), where the sum is replaced by an algebraic sum (with 
signs depending on the signature of  r/n), and the constant is found, by sheet-to- 
sheet analytical continuation through the centers o f  the disks, to be equal to 
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[ 

L 

= '1 ~a = 2_ ~ = 3 

F i g .  1. M o d e l s  o f  m u l t i s h e e t e d  s p a c e s .  

zero. Thus the regularity condition (35) is satisfied in all the sheets. The func- 
tion k n itself is obviously regular in any given sheet, except on the branch 
circles. This ensures that the given sheet has g" = ~ as its sole end point. It 
follows from the asymptotic behavior 

- ( p -  q)2 Po 2 P 
2 r 2 ~-2 (43) 

[where r = I~'1, and p and q are the numbers of  + and - determinations o f  r h (i)] 
that ~" = ~ is a regular point o f  k n. The value k n (~)  is then found, from the 
regularity condition (35) applied for z = ~ ,  to be zero, in accordance with the 
boundary condition (16). 

Thus, a global, regular solution of  equations (14)-(16) is the analytical con- 
tinuation of  the solution (~n, kn) to a three-dimensional manifold consisting of  
2 n asymptotically flat sheets interconnected by 2 n- in wormholes. It is now 
obvious that, had we replaced at the beginning of  our construction the sum (33) 
by an algebraic sum, with plus and minus signs, we would have obtained the 
same global solution after analytical continuation. 

Inserting the function r~ n in the metrical ansatz (2), we obtain from (r~n, kn) 
a global, regular solution to the five-dimensional Einstein equations. This solu- 
tion is asymptotically flat at each of  the 2 n spatial end points. The highest value 
of  r/n (at the end point + + �9 �9 �9 +) is nTr, and its lowest value (at the end point 
. . . . . .  ) is nrr - nrr = 0. Thus, our solution is a n-kink. Indeed, the method we 
have followed to construct a multikink from a one-kink is precisely that suggested 
in Section 2 of  Reference 9. Our equation (2) means that the gab (xk )  metric is 
obtained from the Minkowski r~a ~ by an Euclidean p-dimensional rotation which 
depends on x k [3].  Thus r~(x k) is a rotation angle, and equation (33) simply 
means that the multikink metric is obtained by a product o f  such rotations. 

Finally, the five-dimensional space-time that we have constructed is globally 
invariant under the isometry [which generalizes (20)] 

(~', ~o, x 4 , x s) ~ (~', ~ + rr, x 4 , - x  s) (44) 
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between opposite sheets (sheets represented, in model space, by opposite ver- 
tices of the n-cube). This follows from the fact that equations (14) and (15) are 
invariant under the transformation (44), which replaces r~ by -~7, and thus re- 
verses the boundary conditions for ~7 (Fig. 1). 

w Coincident Wormholes 

In the preceding section, it was assumed that the disks which represent our 
wormholes in x space do not coincide. What happens if they do? 

The solution for n coincident disks of radii Po is (rln, kn)  = (nrh, n 2 k l ) .  
This solution is best written in X coordinates, related to ~" coordinates by (24), 
a s  

~n = 2n arc t a n ( 2 R )  
\Po I 

(45) 
O~ ~ 2 R 2 + p~/4 _~:~(n'-') d~. ] 

do2n = (1 + 4R 2] E(-IX - ~ - p - ~ )  (dp2+dZ2)+P:  

( x=P+ iZ ,  R = Ixl). 
For n >~ 2, the two-dimensional X manifolds have four end points, X = 

(rl = nrr), X = 0 (77 = 0), X = +-Po/2 (rl = mr~2). In the case n = 2, this result admits 
a simple interpretation: the four-wormhole structure of Figure 1 (a toms with 
four points removed) has coalesced into a sphere with four points removed. 

The three-dimensional metric (45) is regular, and characterizes a manifold 
with the two end points R = ,,~ and R = 0, and a circle at infinity P = po/2, Z = 0. 
Such a non-simply-connected topology may support a nonvanishing magnetic 
dipole field (the circle at infinity acting as a current loop). This magnetic field 
might appear upon quantization of the Einstein equations against the back- 
ground of our classical solution, the metric coefficients gus (# = 1, �9 �9 �9 4) being 
related, in the four-dimensional Jordan-Thiry interpretation of five-dimensional 
general relativity [6], to the components of the electromagnetic vector potential 
Au by 

flA~ = gu.~5 (46) 
gss 

The quantum excitations of our solution would then be characterized by a clas- 
sical.electric charge, because of the asymptotic behavior 

2npo 
13Ao = - tan (2~n) (47) 

R-+~  R 

and a quantum magnetic dipole moment. 
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Going back to Weyl coordinates, we may again linearly superpose such func- 
tions nr/i to construct new solutions to equations (14), (15). However, the inter- 
pretation of such solutions will be complicated by the fact that the branch circles 
(z = ai, p = Xip o ) are also circles at infinity. 

w Discuss ion 

Starting from a special case of the spherically symmetric wormhole solution 
to the Einstein equations in five dimensions, we have constructed axially sym- 
metric solutions to these equations corresponding to systems of n wormholes 
centered on different points of the z axis. We have also studied other axially 
symmetric solutions corresponding to n coincident wormholes. 

These solutions are characterized by a kink number n. If  we consider the 1- 
kink solution as a possible classical model of a charged elementary particle [2], 
then our multikink solutions might be interpreted as multiparticle systems. 

Such an interpretation is hampered by the fact that, according to our con- 
struction of Section 4, the three-space corresponding to a n-kink solution has a 
number of end points which grows exponentially with n. How can we define 
electric charge in such a space? According to equation (47), applied to a system 
of n distinct wormholes of identical radius, the total charge of the system, mea- 
sured in units of the elementary charge, may take any of the values n, n - 2, 
�9 �9 � 9  depending on the end point where we measure it! 1 

A possible way out of this difficulty is to modify the global three-space 
topology by identifying end points for which the values of ~7 are equal. For 
instance, in the case n = 2, we identify the end points of sheets (+ - )  and (- + ), 
thereby replacing in effect those end points by a wormhole which connects the 
two sheets (Figure 2). Such a procedure, which may be generalized to arbitrary 
n, leaves a three-space with only the two end points (+ + �9 �9 �9 +) and ( . . . . . .  ) 
(such a topology is consistent with that obtained in Section 5 in the case of 
coincident wormholes). In this three-space, the total electric charge is defined up 
to a sign, which leads us to interpret the isometry (44) which exchanges the two 
end points as charge conjugation. It has been previously emphasized [11, 12] 
that such a globally two-sided geometry may be perfectly consistent with macro- 
scopic observation by observers which are themselves multiparticle systems of 
the same kind; this interpretation has been shown to be viable in the case of 
quantum-mechanical scattering in a model two-sided geometry [12] provided 
that the wave functions associated with neutral test particles are odd under 
charge conjugation. 

Another problem with the particle interpretation of our solution is their 

1 The difficulty in defining charge in non-simply-connected space-time manifolds is discussed 
in detail in Reference 10. 
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X3 [ ]  

Fig. 2. Removing extra end points. 

masslessness. The mass of any static solution of the five-dimensional Einstein 
equations with the ansatz (2), (13) may be obtained from the asymptotic be- 
havior of the 44 component of the projected metric tensor [6] 

g44 = g44 g4Zs_ I (48) 
gss cos (2r/) 

The asymptotic behavior of r/which follows from (19) gives 

M = 0 (49) 

for all our solutions. This defect shall be remedied in the following paper [ 13]. 
As far as multikink systems are concerned, there should be nothing special 

about axial symmetry, and so it would be desirable to find a construction of 
nonaxisymmetric multikink solutions to our ansatz. The situation recalls that of 
four-dimensional Euclidean Yang-Mills theory, in which multi-instanton solu- 
tions were first found by Witten [14], under the restriction of axial symmetry; 
this restriction was almost immediately removed by the more general 't Hooft 
ansatz (for a review, see reference [15] ). Perhaps our multi-wormhole solutions 
can be similarly generalized. 
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Appendix 

The Bianchi identities derived from the Einstein equations (4) give 

Vi~" Vj VJc/,= o (A1) 
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On the other hand, the gradient of  equation (3) gives 

Vi~"  tb = 0 (A2) 

Let q ~< n be the number of  linearly independent  vectors Vich(i = 1, �9 �9 �9 , n). 

From (A2) these vectors are orthogonal to the p-component  vector field r 
so that q ~ < p -  1. I f q  = p -  1 ~<n, then it follows from (A1) that 

V / V / ~  = X#~ (A3) 

from which, taking into account the divergence of  (A2),  follows equation (5). 
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