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Abstract 

Using static spherically symmetric space-times with associated 3-spaces obtained as hyper- 
surfaces t = const as 3-spheroidal, a class of physically viable relativistic models for spherical 
distributions of uniformly charged dust in equilibrium is obtained. The charged analog of 
Schwarzschild interior solution given by Cooperstock and de la Cruz follows as a particular 
case of this class. 

w Introduction 

The problem of determination of exact solutions of coupled Einstein-Max- 
well equations for static spherical distributions of charged matter has attracted 
wide attention. These distributions constitute possible sources for a Reissner- 
Nordstr6m metric which uniquely describes the exterior field of  a spherically 
symmetric charged distribution of matter. Bonnor [1, 2] has shown that for 
spherical distributions of uniformly charged dust in equilibrium, the absolute 
value of charge density must be equal to the matter density and given an explicit 
solution of Einstein-Maxwell equations. De and Raychaudhari [3] have shown 
that the equality of the magnitudes of charge density and matter density is a 
direct consequence of Einstein-Maxwell equations. Cooperstock and de la Cruz 
[4] have studied relativistic spherical charged distributions of  perfect fluids in 
equilibrium and obtained an explicit solution of coupled Einstein-Maxwell equa- 
tions in the interior of  a sphere containing uniformly charged dust in equilibrium, 
assumming a constant nongravitational energy density. Cooperstock and de la 
Cruz's solution is a generalization of Schwarzschfld interior solution, with matter 
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density decreasing outward. Bonnor and Wickramsuriya [5] have obtained a 
static interior dust metric with matter density increasing outward. 

In this paper, a class of exact solutions of the coupled Einstein-Maxwell 
equations for static spherical distributions of uniformly charged dust is obtained 
assuming a peculiar geometry for the associated 3-space of the distributions. It 
is found that Cooperstock and de la Cruz's solution also belongs to the class as a 
particular case. The relativistic space-time associated with Schwarzschfld's interior 
metric representing the gravitational field within a sphere of homogeneous per- 
fect fluid at rest has its physical 3-space, i.e., hypersurface t = const, in the form 
of a 3-sphere, the radius R of which is related with the matter density. Vaidya 
and Tikekar [6] have shown that the space-times which have the associated 3- 
spaces obtained as hypersurfaces t = const, 3-spheroids can be used to develop 
exact relativistic models of superdense stars in which the collapse under gravita- 
tional attraction is countered by repulsive fluid pressure. Following the same 
approach here, it is shown that these space-times can also be used to develop 
models describing the field in the interior of spherical distributions of matter in 
the form of dust, whose collapse under gravitational attraction is countered by 
the repulsive Coulombian electric field due to the presence of charge. 

In the following section, the metric for the space-time with hypersurfaces 
t = const, as 3-spheroids is obtained. The Einstein-Maxwell equations for static 
charged fluid distributions are developed in Section 3. The field equations are 
integrated for charged dust distributions and a new class of exact solutions is 
obtained in Section 4. The matching of the solutions on the boundary with a 
Reissner-Nordstr6m metric and other relevant features of  the class of solutions 
are discussed in the concluding section. 

w Geometrical  Considerations 

A 3-spheroid immersed in the four-dimensional Euclidean space with metric, 

d ~  2 = d x  2 + d y  2 + d z  2 + d w  2 

will have the "Cartesian" equation 

X 2 + y2 + 22 w 2 
R 2  + --~-  = 1 

The sections w = const of the 3-spheroid are concentric spheres, while sec- 
tions x = const,y = const, or z = const, represent systems of confocal ellipsoids. 
The parametrization 

x = R sin X sin c~ cos/3 

y = R sin ~ sin a sin/3 

z = R sin X cos a 

w =  b cosX 
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of the 3-spheroid gives 

d ~  ~ = (R  2 cos s x + b  z sin / X) dX 2 + R  2 sin 2 X(da  2 +sin s a d f l  2) (1) 

as the metric on the 3-spheroid. The introduction o f  the space variable 

r = R sin X 

transforms the metric (1) to 

1 - K(r 2/R 2 )  
dE s -  ~ - - ~  dr 2 +r2(da 2 +sin 2ad/3  2) (2a) 

where 

b 2 
K = 1 - R- 5 (2b) 

For K < 1, the metric (2) is regular and positive definite at all points r < R. In 
tlhe case K = 1 the spheroidal 3-space degenerates into flat 3-space and in the 
case K = 0, it becomes spherical. In the Schwarzschild coordinates, the space- 
time metric 

ds ~ = - d N  2 + eV( r) dt  2 

1 - K(r 2/R2 ) 
= -  1 - ( rS /RU)  dra - r2(da2 + sin2 ~ dfl2) + eVff) dt2 (3) 

has its associated 3-space obtained as hypersurface t = const a spheroidal 3-space. 
The metric (3) with K = 0 and 

e v(r) = [A +B(1 - rS/RS) 1/2 ] s 

is the metric of  the Schwarzschild interior solution. 

w Einstein-Maxwell Equations 

We will develop Einstein-Maxwell field equations for static, spherically 
symmetric distributions of  matter in the form of  a charged perfect fluid with 
the metric (3) as the space-time metric associated with the distribution. For a 
perfect fluid with charge, the energy-momentum tensor is 

/c" 1 1 (-Fi]F l+~FmnFmn~') ( 4 )  r [  = ( p  + p )u i  uk  - p6~ + - ~  

Here p, p,  and u i denote, respectively, the matter density, fluid pressure, and the 
unit timelike four-velocity field o f  the fluid. Fie are the components o f  electro- 
magnetic field tensor satisfying Maxwell's equations, 

Fix,j + Fxj, i + F/i, k = 0 (4a) 
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8x ] [Fq(-g) 112 ] = 47r(-g) 1/2 ,1 i (4b) 

The four-current vector (for fluids with null conductivity) is 

j i  = au i (5) 

where a denotes the charge density. Since the field is static 

U i = (0, O, O, e -v12) (6) 

For spherical charged perfect fluid distributions under consideration Max- 
well's equation (4b) gives 

eVl2 [1 - K(r21R2)]l/2 for rl - K(r21R2).]V2 
F41 - r 2 L 1 - (r~/R 2) J 4 7 r ~  L-~ - ~ 1  m (7) 

as the only surviving independent component of the electromagnetic field tensor 
Fi l �9 

We write 
-F41F 41 = E: (8) 

where E(r) can be interpreted as the electric field intensity. Equations (7) and 
(8) provide a relation between the charge density a and E(r) as 

1 / 1  - r 2 ~-1/2 r2 ~11 ~ 

Subsequently, 

q(r) = 47r - K - ~ )  or 2 dr (10) 

represents the total charge contained within the sphere of coordinate radius r. 
The Einstein-Maxwell equations give 

{ 1 - K  v '(1 r_O} (1 r2.~ -1 . . . . .  K (lla) 87rT1 x - 8rrp + E 2 /~2- r ~ - ]  

{'2 v'2 V'} (1 r~-~2)( r 2 ~-1 8rrT~ =-87rp- E 2 =- + - - +  - 1-  K 
4 ~ ~ - ]  

- K ) r ' [ 2  11 (1 r2\-2 + (1 R2 + - K-~T ) (l lb) 

8~T~ -- 8~T7 "r:)( 
8rrT4 4=8rrp+E: = 3( - ) 1 _ _ ~ 5  l_K~_5_) (1 lc) 
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]'he equation (1 lc) determines the nongravitational energy density at every 
point of the space for specified choice of K and R. 
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w Solution o f  Field Equations 

Cooperstock and de la Cruz obtained the analog of the Schwarzschild interior 
solution for the particular case of charged dust, p = 0, by assuming for the dust 
sphere a constant nongravitational energy density at every point of space. The 
expression (11 c) assigns a constant value 3/R 2 to 81rT44 at every point of the 
space with K = 0. 

Charged dust spheres in equilibrium belong to the interior Papapetrou- 
Majumdar [7, 8] class and their metrics can be expressed in the form 

ds 2 =-U2(dx  ~ + dy 2 +dz 2) + U -2 dt 2 (12) 

where U= U(x ,y , z ) .  The metric (3) can be reduGed to the form (12) if 

l + ~ - l r v ' = ( 1  -K~T)r2\I/2( 1 - - ~ T ]  r2~-112 (13) 

The equation (13) is found to have solutions given by 

,, = B2  [ . [  [1 - K(r=IR =)1 ' /= + v " R  [1 - (r=lR)] ~12 }x/Y]= 
e {[1 - K(r2/R2)] 112 + [1 - (r=lR=)]I/=} Z ' 0 < K <  1 t 

(14) 

K~<0 
eV = B2 exp (-2(-K) 1/2 tan -1 {K(r2/R 2 - 1)/[1 - K(r2/R2)] )1/2) 

( { 1  - K(r21R2)]'I2 + ( 1  - r~lR~)'#} 2 

(15) 

where B is the arbitrary constant of integration. The expressions for e v are reg- 
ular and positive at all points r < R, and therefore metric (3) with e v as given by 
(14) or (15) is well behaved metric. The matter density and the square of the 
electric field intensity are found to be 

2 [ (1 - r2 /R2)  112 ( 1 - r 2 / R  2) } 2 1 - K  

8r rp=~-  1 - [ 1 - _ ~ ~ / 2  - [~ 2-)c(r---~) ] +R2 [1 -K(r2/R2)] ~ (16) 

and 
_ r21R2)ll 2 2 

1 {1- [ 1 ( ~ 2 ~ i / 2 1  (17) E 2 = ~ -  

respectively. The electric charge density determined from (9) and (17) yields 

a = ---n (18) 

in accordance with the De-Raychaudari requirement. 
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w Discussion 

The expressions (16) and (17) for matter density and electric field intensity 
E, show that in the limit r ~ 0, one obtains at the center of  the distribution 

3(1 - K) 
8rrPo - R~ (19a) 

and 

Eo = 0 (19b) 

implying regularity of  the distribution at the center. Further, (19a) imposes the 
condition that K < 1 for the matter density at the center P0 > 0. Matter density 
and the square of  the electric field intensity are positive for K < 1 at all points 
r 2 < R2 of  the space, throughout the configuration. 

We consider a situation wherein the spherical charge dust distribution ex- 
tends to a finite radius a < R. The interior metric (3) with e v as given by (14) 
and (15) should then match with the exterior Reissner-Nordstr5m metric 

1 q 2 y 1  ds 2 = -  _ 2_ram+ dr 2 _ r2(da2 + sinZ a d132) 
r 7 ]  

across the radius r = a of  the distribution. Here m andq ,  respectively, denote the 
total mass and the total charge of  the dust sphere. The appropriate boundary 
conditions 

C ~  = - - K -~ i - )  = 1 - a a s (21) 

determine the constants B and m as 

B 2-  l_a~/R 2 { {_[l_K(a2/R2__))]i__12_ ,(___~l_a2/R2),12} ,~2 
I ~- ~ a )  ~,{[ I -  K(a2/R2)] V2 + X/~(1- a2/R2)'l'-----~2ixl~/ 

0 ~ < K < I  (22a) 

B2 _ 1 - a2/R 2 
1 -  K(a2/R 2) { [1 - K(a2/R2)]  1/2 + (1 - a2/R2) l /2}  ~ 

{ [ K ( a 2 / R 2 - 1 ) l q 2 1  
�9 exp 2 ( - K ) t / a t a n  -1 I_I_K(a,/R2) j / '  0<K (22b) 
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and 

1 1 - K a 3 q2 
m = -- ~- - -  (23) 

2 1 - K(a2/R 2) R 2 2a 

where the total charge q(a) is obtained from (10) by setting r = a. 
For specified values of  geometric parameter K, the expression (19) deter- 

mines the constant R 2 in terms of  P0, the matter density at the center of  the 
configuration. Subsequently the total mass of  the dust sphere at radius a is given 
by (23). The solution contains K, a geometric parameter which can be used to 
generate different solutions by assigning values to it such that K < 1. The matter 
density o f  charged dust spheres with K ~< 0 decreases radially outward. Numerical 
methods indicate that for charged dust spheres with 0 ~<K ~< 0.05 the matter 
density decreases radially outward, whereas for spheres with 0.05 < K < 1, it 
increases outward. The charged analog of  Schwarzschild interior solution given 
by Cooperstock and de la Cruz is obtained by assigning K = 0. 

Hence the space-time metric (3) with its hypersurfaces t = const as 3-spher- 
oids gives physically viable models of  charged dust spheres in equilibrium, acting 
as the interior sources for Reissner-Nordstr6m metric. 
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