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A bstrac t 

The nonstationary generalization of the G6del cosmological model, which represents the 
solution of Einstein's equations in the comoving system of reference, is derived, and some 
properties of the new model are investigated. 

w Introduction 

Modern astronomical observational data do not exclude the possibility of a 
Metagalaxy rotation as a whole. In this connection it seems reasonable to find 
and investigate cosmological models describing the rotating universe. One such 
model is the G6del cosmological model [ 1]. A great number of  articles have 
been devoted to the investigation of the G6del model (see e.g., [2-7] and refer- 
ences in them). Attempts to deduce the cosmological models, generalizing the 
G6del model, were made (see e.g., [8-10, 11] ). But such models for the perfect 
fluid without the energy flux were not obtained in those papers. This paper deals 
with the nonstationary generalization of the G6del cosmological model which 
represents the solution of Einstein's equations with the perfect fluid energy- 
momentum tensor in the comoving system of reference. 

In the general case, finding the solutions of  Einstein's equations describing the 
rotating universe is connected with great mathematical difficulties; therefore, 
one must make certain simplifying suppositions (e.g., the supposition of  space 
homogeneity). In [ 12], without using Einstein's equations, there were found all 
the nonstationary metrics with rotation satisfying the spatial homogeneity dif- 
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ferential criterion, which is a direct generalization of  the homogeneity criterion 
accepted in nonrelativistic physics, but taking into account the possible in- 
definiteness in the choice of  the time coordinate ( [13] ,  see also [14] ). The line 
element ds 2 of  one of  these metrics in the definite system of  reference is re- 
duced to the form 

2e= ae 2 I_ a~r~ doe\ 2] 
ar 3x ~ 

+ 2a(oe cos rt +/3 sin rt) dx 1 dx a + 2e(o~ sin rt - ~ cos rt) dx  = dx  3 
2 

_ b 2 dx 32 + A ( a  2 c o s 2 r t d x  I + 2 a e s i n 2 r t d x  l dx  2 -  e 2 c o s 2 r t d x  22) 

(1) 

Here 

~2 e (x l  , x  2) 
~x12 - k e ( x  1 ' x 2 ) ,  

2a2r--~ [b2(1 - A ~) - ~ ( 1  - A)  - ~ ( 1  + A ) I Q  
k =  - c2 

A ,  r, a, 13, a, b, co= const [A I < 1, 

b2(1 - A 2 )  -/32(1 - A ) -  a2(1 + A ) > 0  

2b 2 - c~ 2 - /32 > 0 ,  a ,b ,  co--/:O 

We shall show that this metric contains the nonstationary generalization of  
the G6del cosmological model and we shall investigate some properties of  this 
new model. 

w (2): The Nonstat ionary Generalization o f  the Ggdel CosmologicalModel  

When examining the problem of  compatibility of  the metric (1) with 
Einstein's equations, one can show that it is compatible with Einstein's equa- 
tions with the energy-momentum tensor of  the perfect or viscous fluid only 
when c~ =/3 = 0. When c~ = t3 = 0, Einstein's equations with the perfect fluid 
energy-momentum tensor 

+p_oo~ p__o .~ 
T uv= oo c 2 ] u u u v -  c 2 g 
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limit the metric (1) in the following way: 

xc  2 { + Po~ 
r 2 = co2132(1 - A 2) = - ~ -  kPoo c e]  

x o 0  - = - 2 A ,  = 0 

e = N l ( X 2 )  e -kxl  + N 2 ( x 2 ) e  kxl , k = a r x / 2  
C 

Here Poo is the matter  density in the comoving system of  reference, Po is 
pressure, u ~ is the four-dimensional velocity vector, x is Einstein's gravitational 

constant, A is the cosmological constant,  c is the fundamental  velocity, and N1, 
N2 are arbitrary functions o f x  2 ; Greek indices run over the values 0, 1 ,2 ,  3; 
Latin ones run only 1, 2, 3. 

The line element in the new model takes the form 

ds z = c 2 d t  2 + 2 X / 2 c ( - N 1  e -gxl + N2 e xx i ) d t  dx  2 - Cl 2 dx  12 

k x  1 2 2 
+ [ (Nle  -kxl  + N 2 e  ) - 8N1N2] dx 22 - b 2 dx  3 (2) 

+ 2A [a cos rt dx  1 + (N1 e -kxl  + N 2 e  kxl ) sin rt dx  2 ] 2 

- A [ a  2 dx  lz + ( N l e - k X l  + N 2 e k X t )  2 dx  ~ ]  

We shall further assume N1 = 0, N :  = No = const. After  the elementary 
transformations ax i _+ x 1, x / 2 N o x  2 ~ x 2, x/2-bx 3 _+ x3 the line element ds 2 
takes the form 

ds 2 = ds• + A ( X / ~  cos rt d x '  + sin rt exp [V~  (r/c) x 1 ] dx  2 }2 

- A {  dx l2  + I exp [2X/~ ( r / c ) x  I] dx  22 } (3) 

where r ~ = ~2(1 - A2),  IA1 < 1, ~2 2 is the square of  the angular velocity of  the 

comoving system of  reference; ~2 ~- and A are constants; 

ds 2 =c 2 d t  2 - dx  12 + �89 exp [ 2 x / ~ ( r / c ) x  1] dx  22 

+ 2c exp [ X / 2 ( r / c ) x  a] d t d x  2 - 1 dx 32 

is the line element in the G6del model [1].  
Now one can see that the metric (3) as well as the G6del metric describe 

space-time of  the rotating system of  reference which falls freely in each of  its 
point and which comoves with the perfect fluid. Space deformation takes place 
in such a way that the comoving space element volume does not change in the 
course of  time. The state equation ~(poo - Po / c2) = - 2 A in our model  takes 
the form of  the state equat ionxPo0 = - 2 A in the G6del model, when Po = 0. 
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When A = 0, Po = 0, our model  transforms into the G6del model. When the ro- 
tation vanishes (~22 = 0) in the new model, as well as in the G6del model, we 
come to the stationary universe with P00 = O, A - 0 (the empty  universe with 
A = 0, i.e., Minkovski's universe). 

w The Closed Timelike Curves in the New Cosmological Model 

As is known, one of  the interesting properties o f  the G6del cosmological 
model  is the presence o f  the closed timelike curves [ 1-3 ] .  This fact was taken 
as a base for the idea o f  "traveling into the past"  in the G6del model. It is in- 
teresting to find out whether the nonstat ionary generalization of  the G6del 
cosmological model  also contains closed timelike curves. 

After defining 

OCt= Z O, %/r20"xl ---Z 1, OX 2 = Z  2, OX 3 = Z  3, O = F/C 

the metric (3) takes the form 

ds2=~-i dz~ +eZldz2)  2 -  (dza2+e2Zldz22+dz3 ) 

+A(coszO dz  I + sinzOeZl dz2) ~ A - ~ ( d z  12 + e  2zl dz 22 

We shall show that  our model  also contains closed timelike curves. For 
this we introduce new coordinates r, p, 0, ~ (cf. [ 1, 2] ): 

(0 z~ i,)  tan + - -  = e -~  tan 0 

1 
e z = e  p c o s / 0 + e  - p s i n  2 0  

z2 e zl = (e p - e -~ sin 0 cos 0 

Z 3 

O 

It is evident that  a change o f  0 by  ~, with no change in ~-, p, 7/, will leave all 
the condit ions undisturbed; therefore, we may regard 0 as ranging, not  over the 
real numbers, but  over the interval with the length o f  zr. Thus, - oo < r < % 
0 ~< O < 0% 0 ~< 0 ~< 7r, while 0 = 0 is identified with 0 = zr. 
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After the cumbersome computa t ions ,  the line d e m e n t  ds 2 in terms of  the 
new coordinates  takes the form 

where 

ds2 = ~-~ {dr2 - ( l @ -  Atz2) dpZ + 2ApS dp dO 

+ IA6: + (ep/2 _ e_p/2) 4 _ 1 2 + A  (e p - e-p)21 dO 2 

1 2 + 2(e ~ - e-~ 2 dO dr - -~dr/ 

(e p cos 2 0 - e -p sin 2 0) cos z ~ + sin 20 sin z ~ 

P -  e ~  2 0 + e  - p s i n  s 0  

(e ~ - e - ~  [(e p cos 2 0 - e -p sin 2 0) sin z ~ - sin 20 cos z ~ ] 
0-= 

e ~  2 0 + e  - ~  s 0  

We can show that/1,  6 satisfy the inequali t ies I/~[ ~< 1, 16[~< e o -  e -p.  For  

every 0 = ro > fo, where 

3 -  ]A I + 212(1 - ]A[)] 1/2 
ro = l n  

I + ] A ]  

the inequal i ty  

A62 + ( e r O / 2  _ e-tO~2)4 _ 1 +A (erO _ e-tO)2 > 0 
2 

takes place, consequent ly ,  the closed curves, defined by the condi t ions  p = ro = 

const,  r = ro = const ,  r /=  r/o = const,  are t imelike everywhere. Thus, the new 
model  also conta ins  the closed t imelike curves. But  in our  model ,  in constrast 

with the G6del  model ,  these closed curves are no t  circles, as the distance of  R 
of  the points  o f  the closed t imelike curves from the point  o f  O(p = O, r = to, 
r /=  r/o) depends on  the angular coordinate  0: 

R =R(0) = % L_A_ A xl/2 
o 

Since 

I + A  I + [ A  I 1- ] A [ < ~ _ _ _ A l a 2 < ~ _ _ _ _  
2 2 2 
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then R satisfies the inequality 

T\--T-? <R<r~ 
In order to estimate the value o f  R, we assume A = 0, Po = 0 (the G6del 

model). Then R = ro /a~ /~  and the closed timelike curves are the circles. The 
radius of  the first circle insignificantly exceeds the value o f R o  = (1/ox/~-) in 
(3 + 2X/'2-). (The circumference with the radiusRo is a closed isotropic curve). 
As in the G6del model o = r/c = O~Poo/2) I/2 = (RE) -1 , then Ro = (RE/X /~ )  in 
(3 + 2X/~), where R E is the Einstein stationary universe radius. When P0o = 
10- 31 g/cm 3 ' R o ~ 10 2 s cm. Thus, the minimum radius o f the closed timelike 
curves in the G6del model is excessively great, i.e., of  the order of  the Einstein 
stationary universe radius. Consequently, for "travel into the past" the astro- 
naut should have traveled around the whole universe. 

Finally, we state that the new model is the most complete generalization 
of  the G5del cosmological model in the space class satisfying the spatial homo- 
geneity differential criterion, when Einstein's equations with the perfect or 
viscous fluid energy-momentum tensor are taken. In fact, the analysis of  the 
problem of compatibility of  the rotating metrics, which satisfy the spatial homo- 
geneity differential criterion (shown in [ 12] ), with Einstein's equations shows 
that only the metric (2) contains the G6del cosmological model as some particu- 
lar case. Therefore, the solutions of  Einstein's equations with a perfect or viscous 
fluid energy-momentum tensor, which generalize the G5del cosmological model 
more completely than our model, are to be searched for in the class of  spaces 
not satisfying the spatial homogeneity differential criterion. 
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