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ABSTRACT 

The formulation of gravitation theory in the light cone 
gauge is studied. After a brief discussion of Yang-Mills 
theory for purposes of illustration, tensor and scalar- 
tensor gravitation are investigated. We show that if 
the gauge conditions are properly chosen the constrained 
components of the metric tensor can be explicitly solved 
for by quadrature, so that the field theory can be re- 
formulated entirely in terms of the physical transverse 
fields. It is also shown that the light cone gauge is 
useful for finding wave solutions of classical field 
equations. Occasional reference is made to dual models, 
primarily to explain our motivation, but familiarity with 
them is not required for an understanding of this paper. 

w INTRODUCTION 

The study of gravitation in the light cone gauge is a useful 
exercise, in our opinion, for a number of reasons. First of all, 
the connections with the field theory of dual strings suggests 
that it might possess some surprising elegance and simplicity. 
Secondly, this simplicity could be useful for finding new exact 
solutions of the classical field equations. These possibilities 
are born out, at least to a certain extent, by the calculations 
presented in this paper. There are additional possible benefits 
of a light cone gauge formulation that are not pursued here. For 
one thing, since a light cone gauge formulation involves only phys- 
ical transverse fields, there is no need to use a Fadeev-Popov (or 
other) formalism for the elimination of spurious states from the 
internal lines of higher order quantum corrections to the theory. 

Work supported in part by the U.S. Atomic Energy Commission. 
Prepared under Contract AT(II-I)-68 for the San Francisco Opera- 
tions Office, U.S. Atomic Energy Commission. 

(~) 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No 
part o[ this publication may be reproduced, stored in a retrieval system, or transmitted, in any 
form or by any means, electronic, mechanical, photocopying, microfilming, recording or other- 
wise, without the written permission of the publisher. 



538 J. SCHEKK AND J.H. SCHWA RZ 

Also a light cone gauge formalism might be well-suited for studying 
high energy properties of amplitudes. 

We have been led to these investigations as an outgrowth of our 
work on dual models. Therefore we cannot resist saying a little 
bit about dual models and the motivations that got us to this point. 
Before doing so we wish to assure the reader that no knowledge of 
dual models is required to understand this paper. 

Dual string models embody deep connections with practically all 
previously known theoretical constructions. Einstein's theory of 
gravitation is no exception. The first clue that this might be 
the case is provided by the occurrence of a massless spin 2 part- 
icle in the Spectrum of states of closed strings. In a previous 
work [I] the on-mass-shell dual scattering amplitude for N of these 
'gravitons' was investigated. It was proved that in the tree ap- 
proximation these amplitudes precisely coincide on the mass shell 
with those given by the Einstein theory to leading order in the 
Regge slope parameter s T. A massless scalar particle is also pre- 
sent in the dual model spectrum. Furthermore, a massless antisym- 
metric tensor state also is present in the closed string spectrum 
in certain versions of the theory [2]. It was proved [3] that the 
rSle of this state could be interpreted classically as introducing 
torsion into the geometry of space-time. Torsion fields are not 
considered in this paper, even though it would be a relatively 
straightforward generalization to do so. 

During the past year, dual string models have been reformulated 
as (multilocal) second quantized field theories of strings [4]. 
This work has led to a number of important new insights. In part- 
icular, it has put the rules for determining the relative weights 
of diagrams required for unitarization on a firmer foundation. 
One curious feature of the field theory of strings is that it ap- 
pears to be essential to make a non-covariant choice of gauge. 
The choice that has been investigated so far is based on the use 
of a light cone gauge. It may also be possible to formulate the 
field theory of strings in a radiation gauge [5] at the price of 
some increase in complexity. 

The analysis of reference [I] establishing the connection be- 
tween closed strings and gravitation in the zero-slope limit was 
based on covariant rules for the dual amplitudes. If the small- 
slope expansion is applied to the string field theory, on the other 
hand, one should obtain the field theory of gravitons (and massless 
scalars) formulated in the light cone gauge. An intriguing aspect 
of this expansion is that the only interaction of closed strings 
with themselves is cubic. Therefore, if it is valid to apply this 
limit directly on the Lagrangian, one would obtain a formulation 
of scalar-tensor gravitation involving cubic couplings only. The 
conjecture that such an astounding simplification of the formula- 
tion of gravitation does occur in the light cone gauge has been 
put forward by Cremmer and Gervais [6]. 

The validity of applying the zero-slope limit directly to the 
Lagrangian of the dual string field theory is not obvious. The 
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dual model contains massive states that disappear at infinity in 
the limit. One could imagine that contributions to the amplitude 
arising from exchange of these states are non-vanishing in the 
limit, in which case it would be necessary to add higher order con- 
tact terms to the limting field theory to represent these effects. 
There is another example that is easier to study. Namely, for the 
case of open strings the limiting field theory is Yang-Mills theory 
[7]. This theory is obtained by applying the zero-slope limit di- 
rectly to the string Lagrangian. This may appear encouraging for 
the truth of the Cremmer-Gervais conjecture, but the case of closed 
strings is somewhat different and i~ is by no means clear that it 
should work in the same way. 

Since it is unclear whether the zero-slope limit of the closed 
string Lagrangian should yield scalar-tensor gravitation theory, 
we have chosen not to study that limit directly. (Also, it is tech- 
nically rather difficult to carry out). Instead, we start with ten- 
sor gravity or scalar-tensor gravity, formulated in the usual covar- 
iant and gauge symmetric manner, since we know (from the work of 
reference [I]) that this is the theory corresponding to the zero- 
slope limit of the dual model. Light cone gauge conditions are 
then imposed and properties of the resulting formulation of the 
theory are explored. 

In this paper formulas appropriate to four-dimensional space- 
time are used throughout, even though they could be easily general- 
ized to the arbitrary case. It should perhaps be remarked that 
even though the dual string models select a preferred 'critical' 
dimension (26 and i0 are the best known cases), the limiting field 
theories do not 'remember' this number. To put it another way, 
when the point-particle field theory is formulated for arbitrary 
dimension, there are no special features associated with the crit- 
ical dimension of the corresponding string field theory. 

In section 2 a brief discussion of Yang-Mills theory in the 
light cone gauge is presented. The purpose in doing this is to 
illustrate techniques in a context that is less mathematically cum- 
bersome than gravitation theory. In section 3 pure tensor gravity 
is formulated in the light cone gauge. It is shown that when the 
gauge conditions are chosen suitably it is possible to solve for 
the remaining constrained components of the metric tensor by quad- 
rature. The Lagrangian is then rewritten entirely in terms of the 
physical transverse components. In section 4 the light cone gauge 
is shown to be appropriate for finding exact wave solutions of the 
classical Einstein equations in empty space. A particular solution 
is presented as an illustration. Section S deals with scalar-tensor 
gravitation, since this is the theory that actually emerges from 
the dual models. 

w YANG-MILLS THEORY IN THE LIGHT CONE GAUGE 

The techniques required to express gravitation in the light cone 
gauge can be illustrated using the simple example of Yang-Mills 
theory [8]. This example is sufficiently non-trivial to be of some 
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interest in its own right, but the mathematics is substantially less 
complicated than in the case of gravitation. The Lagrangian for 
Yang-Mills theory is 

L = �88 [ GpwaG~ va (2.1) 
a 

where 

Gpv a = ~BWv a - ~Wp a + gfabcWpbw~ c, (2.2) 

g is the coupling constant, and fabe are the structure constants 
of a simple Lie algebra. For simplicity we will only discuss the 
algebra SU(2), which requires taking fabc = eabc" 

The Lagrange equations of motion are easily obtained in the 
usual way. One finds 

[]Wp a - ~p3.W a = geabc[Wvb3~w ~c - WpC~wwDb - 2wwb3~wz c] 

+ g2[wpawbwwb _ wpbw awvb]. (2.3) 

The light cone gauge is specified by the choice 

w+a = ~22 (WOa + w3a) O. (2.4) 

Such a choice is possible because of the gauge invariance of the 
Yang-Mills theory. Our metric conventions are such that a dot pro- 
duct of two vectors Ap and B~ is 

A.B = A~B ~ = AeB_ + A-B+ - AiB i. (2.5) 

An index i, j, k, or z is understood to run over the two transverse 
directions, and the summation convention is used. Setting p = + in 
equation (2.3) and using equation (2.4), one obtains 

~+2w_a = ~+~iWi a + geabeWih~+wi c. (2.6) 

This may be regarded as a constraint equation determining W- a in 
terms of the transverse components wia. Equation (2.6) may be 
formally integrated to read 

3i i 
w-a = %~+ wia + gSabc --3+2 [wia3+wic]" (2.7) 
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The use of the operator 1/9+ deserves a few words of explanation. 
It is an indefinite integral and as such has the usual integration 
constant ambiguity. A particular choice of boundary conditions 
that is frequently made is described by the formula 

1___ f ( x +  ) : �89 c ( x  + - y + ) f ( y + ) d y  +, (2.8) 
9+ --co 

at least if this integral exists. In the context of formulating 
Feynman rules for calculating amplitudes, it is clear that the in- 
tegration constant issue only arises for lines with the momentum 
component p+ = 0. When calculating tree diagrams one can always 
choose a frame for which no line, external or internal, has such a 
momentum. In the case of loops, however, one cannot circumvent 
the fact that the integrated internal lines can have p+ = 0. Loop 
calculations are beyond the scope of this paper, so we will not 
consider the matter any further at this time. 

If we consider the transverse components of equation (2.3) and 
use equation (2.7) to eliminate w_a we find the equation of motion 

[]wia = 2g~abc{Wjbgjwi c ~J wjbg+wic + I } - 9+ ~+ [giwjb~+wJ c] 

+ g2{29+Wi b i 9+---~ [wjag+wj b - wjbg+wj a] 

i wiawjbwjb) + 2wib ~+ [wjag+wj b] - (2.9) 

The Lagrangian that gives this equation of motion may be obtained 
by substituting equations (2.4,6) into equation (2.1). When this 
is done, and a certain number of total derivatives are dropped, 
one finds 

i 
= - �89 a + 2geab c ~+ wia~iwjb~+wj c 

+ g2{�88 _ ! [wiag+wi b] i } 9+ 7+ [wjbg+wJ a] " (2.io) 

One can verify directly that equation (2.10) does in fact lead to 
equation (2.9). The reason that substitution of the constraint 
and gauge condition equations-directly into the Lagrangian is valid 
can be understood by noting that equation (2.10) and equation (2.1) 
both give rise to the same Hamiltonian. This is easily proved by 
calculating the canonical momenta in each case. 

The Lagrangian in equation (2.10) is the light cone gauge ex- 
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pression based entirely on the physical transverse fields. The 
price one pays for achieving this is a lack of manifest covariance 
and locality. 

w SPIN 2 GRAVITY IN THE LIGHT CONE GAUGE 

In this section an analysis similar to that of the last section 
is applied to Einstein's theory of the self-interacting spin 2 
field [9]. The Lagrangian for this theory is 

1 E,~, ( 3 . i )  
~ = i - E ~  

and the covariant equations of motion are 

RN v = ~pr~pO - ~pFpvO + s163 _ Fpv~rzOp = 0,  ( 3 . 2 )  

where we follow the standard notation in which 

(s. 3) 

R = gPvRV~, (3.4) 

and gzv is the inverse of the metric tensor g~v- This theory has 
coordinate transformations as its gauge group. The number of in- 
dependent gauge functions is the same as the number of dimensions 
of space-time. Thus four relations may be imposed on 2Z~ to con- 
stitute a choice of gauge. 

The light cone gauge is specified by three conditions analagous 
to equation (2.4) 

g++ = g+i = o. (3.5) 

This leaves one gauge condition still to be chosen. A simple 
choice for the remaining condition would be to set g+- = i. This 
choice does prove useful in the next section. However, for present 
purposes it is not the most convenient one because it results in 
unpleasant integral equations for the remaining constrained compon- 
ents of g~v" To see this we set 

gij = e~ij, (3.6) 

detYij  = l ,  (3.7) 

g+_ = e r (3.8) 
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These equations simply serve to def ine  the var iab les  ~, ~, and Y i j "  
Using equations (3.5-8), the relation R++ = 0 now takes the form 

28+r - 29+2~ - (~+~)2 + �89 j = 0, (3.9) 

where yij is defined to be the inverse of Yij. This equation can 
be solved explicitly for ~ by quadrature if we choose as the last 
gauge condition 

r = �89 (3.10) 

This choice allows equation (3.9) to be integrated (in analogy with 
equation (2.7)) to give 

l l " " 

- 4 8+2 [9+YZ39+YiJ ]" (3.11) 

Our purpose in these manipulations is to express the Lagrangian 
entirely in terms of two fields, corresponding to the physical de- 
grees of freedom of a graviton. The matrix Yij has the correct 
number of components since it is unimodular and symmetric. It may 
be parametrized in the form 

icos  sin l[e  o]icos0-sin~ 
Yij = - 

-sin@ cos@ 0 e -p sin@ cos@ 

coshp + sinhpcos2@ -sinhpsin2@ ] 
(3.12) 

J 
J 

-sinhpsin2e coshp - sinhpcos2@ 

Then p and @ may be regarded as the two independent fields. 

The remaining components of gV~ that need to be related to Yij 
are g__ and g-i. It is equivalent, and somewhat more convenient, 
to derive formulas for g++ and g+Z. g__ and g-i can then be infer- 
red using the relations 

e 3 2y �9 g-i = - ~I ijg +], (3.is) 

g__ = e-@yijg_ig_ j - e~g ++, (3.14) 

which follow from equations (3.6-8,10) and the fact that g~is the 
inverse of g~v. Constraint equations determining g+i are obtained 
from R+i = 0. Remarkably, these equations also can be solved by 
quadrature to yield 
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~+L 8+ ~ 8+Yk~SjYk% + 8~(TkZS+YJk) 

The Constraint equation for @++ is determined similarly from R+_ = O. 
Once again quadratures are possible giving the result 

@++ = - e-~ 7+ e29Yijg+(g+ig+J) + ~ egg+igi9 

7 
+ (~+gYij + 2~+Yij)e2~@+i@ +j 

+ e-~/2 ~i+[le~/2yijsj@ 

+ e3@/2( 3 ~_~+~g+i + ~+g+J. + y i j~+Yjkg+k) ]  

1 "" } + e -~12 ~,[e9(~+9~_9 + 3~+9_9 - ~ BeYij~_yZ])] . (3.16) 

At this point it is possible to obtain the equations of motion 
for Yij by taking Rij = 0 and using the equations obtained above 
to eliminate the other variables. However, it is quicker and more 
concise to make the substitutions directly in the Lagrangian so as 
to obtain an expression analogous to equation (2.10). This proced- 
ure is valid for the same reasons as in the Yang-Mills case --per- 
forming the eliminations on the Lagrangian turns out to be equival- 
ent to performing them on the Hamiltonian. The mathematics is cum- 
bersome, but not as terrible as one might expect. In particular, 
the dependence on g++ and g__ drops out without having to make ex- 
plicit use of equation (3.16). Dropping some total derivatives 
one obtains the final result 

eg/2r ij 3 = tY ~i~j~ - ~ yiJ~i~j~ + yik~iYJ%9jYk% 

1 " " 

- ~-yiJ~iyk~jYk%} + er - ~+yi]9_Yij} 

i i Rj e-3~/2y i j  -~+R i -~+ , (s.17) 

where 
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R i = �89 + 3i$~+$ - 3~+~i$} + 8k(eSyjk3+Yij). (3.18) 

Requiring the action formed from this Lagrangian to be stationary 
with respect to variations of the fields @ and p defined in equa- 
tion (3.12) gives equations of motion involving these fields only. 
Clearly, the equations that would be obtained in this way are 
rather complicated. 

While equation (3.17) is undeniably rather formidable, and per- 
haps not very suitable for explicit calculations of complicated 
Feynman graphs, we would like to make the point that it might have 
been much worse. Given the complexity of the formulas implied by 
Rpv = 0, we find it remarkable that there is a gauge in which the 
unphysical field components can be explicitly related to the phys- 
ical ones by quadrature, rather than by intractable integral equa- 
tions. 

In principle, the Lagrangian of equation (3.17) could be the 
starting point for quantizing gravity in the light cone gauge. 
One would have to prove explicitly the Lorentz invariance of the 
S matrix. Although it seems likely that such a proof could be ob- 
tained, we have not attempted to construct it because of the tech- 
nical difficulties associated with normal ordering, in particular. 

w EXACT CLASSICAL WAVE SOLUTION OF THE EINSTEIN EQUATIONS 

It is of some physical interest to find exact classical solu- 
tions of the empty space Einstein equations (3.2). Some examples 
of wave solutions are known, but they only begin to scratch the 
surface of the class of all possible solutions [10]. It seems to 
us that the light cone gauge should be well suited for investigat- 
ing the possibilities because the restriction, 

8+gpv = 0, (4.1) 

corresponding to waves travelling in the positive z direction, 
tends to eliminate a large number of terms from the equations of 
motion when used in conjunction with equation (3.5). We will set 
up the appropriate equations in this section, and only look very 
superficially for particular solutions. 

For the present purpose it is convenient to maintain equation 
(3.5) and the definition of equations (3.6,7), but to replace equa- 
tions (3.8,10) by the gauge condition 

g+_ = i. ( 4 . 2 )  

Given these choices and equation (4.1) one finds that the con- 
dition Re+ = R+i = R+_ = 0 are trivially satisfied. The equations 
Rij = 0 take the form 
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Yij~Z(~k~Y k~) - �89 - ~{Yk~(~iYjk + ~jTik - ~kYik )} 

+ YkZymn~s - ~kYnj) = 0. (4.3) 

Equation (4.3) may be regarded as three simultaneous equations for 
the unknown functions p, @, and ~ defined in equations (3.6,12). 
Once a solution of these equations is known, gi- may be found by 
solving the equation that arises from R i_ = 0, 

~i~_r - e-~j(e~yjk~_Yik ) - �89163 ( 4 .4 )  

- 8j{e-gyjk(~i@k- - ~k@i-)} + e-~yjkyZm~jYiZ(~m@k- - ~k@m-) = O. 

Given a solution of this equation as well, the final step is to 
determine g-- from the equation corresponding to R__ = 0, 

28-2r + ( 8 - ~ )  2 - �89 - e-r - 8j@--)] (4 .5 )  

+ e-2r163 - 9igZ-) = O. 

The equations (4.2-4) for the metric tensor are much simpler 
than they would be without the restriction to the light cone gauge 
and x+-independent functions. They could be studied in a system- 
atic fashion to obtain large classes of solutions. However, this 
is far afield from our original purposes in this matter, so we will 
merely illustrate the possibilities with a simple example. Specif- 
ically, we consider p = 0 = 0, corresponding to Yij = -6ij. In 
this case equation (4.3) reduces to the requirement that ~ is har- 
monic in the transverse variables 

V 2 r  - )  = O. (4 .6 )  

Equations (4.4,5) become 

and  

~i~_~ + 8j{e-~(~igj_ - ~jgi_)} = O, 

2~_29 + (~_r + e-9(28iS_gi_ _ V2@__) 

( 4 .7 )  

-2r i_ + r - 8idj-) = O, ( 4 . 8 )  

respectively. A further simplification is achieved by assuming 



LIGHT CONE GAUGE GRAVITATION 

~-~ = 0. We then find the solution: 

gij = - e~(x)~ij, 

547 

( 4 . 9 a )  

gi- = 3 i ~ ( x , x - ) ,  ( 4 . 9 b )  

g__ = 2 ~ - # ( x , x - )  + X ( X , X - ) ,  ( 4 . 9 c )  

where  

V2~ = V2X = 0. (4.10) 

The arbitrary function ~ may be eliminated by making a change of 
coordinate system of the type 

y+  = x + + r  

T h e r e f o r e  ou r  s o l u t i o n  can be w r i t t e n  i n  t h e  form 

(4.11) 

ds 2 = 2dx+dx - + x d x - d x -  - e ~ d x ' d x .  (4 .12)  

T h i s  i s  a modes t  g e n e r a l i z a t i o n  o f  a s o l u t i o n  found  by  P e r e s  [ 1 2 ] ,  
which  c o r r e s p o n d s  t o  t h e  s p e c i a l  c a s e  ~ = 0. 

w : SCALAR-TENSOR GRAVITATION 

In reference [1] it was shown that the small-slope expansion of 
dual models does not give the ordinary gravitation theory discussed 
in the preceding sections, but scalar-tensor theory instead. The 
Lagrangian may be written in the form 

Regarding the experimental status of the scalar field we may note 
the following. Stringent limits exist on the possible couplings 
of a massless scalar field to ordinary matter. If a refinement of 
the theory gives mass to the scalar it is 'safe'. Alternatively, 
one could imagine a circumstance in which the scalar field did not 
couple directly to matter at all, in which case it would only re- 
present a modification of the ordinary Einstein theory at the loop 
level. In the field theory described by equation (5.1)loops are 
problematical because it is not renormalizable [12]. However, 
dual models with a small (but non-zero) slope probably are renorm- 
alizable. In using a dual model for a unified theory of weak, 
electromagnetic, and gravitational interactions along the lines 
suggested in reference [2], one expects loops to represent correc- 
tions at most of order a, the fine structure constant. 

g~ and ~ may be unified into a single field by choosing as 
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part of the choice of gauge 

r ~ ~- i. (s.2) 

One may also alter the form of the resulting Lagrangian by a field 
redefinition of the type 

~,~ = gBg~v. (5.3) 

The result of these substitutions is a Lagrangian of the form 

I 

Z = g-~d(z  1 - �89 2 + c~ 3 + rig4) , (5.4)  

where e and d are arbitrary parameters and 

~i = gPX~pg~g~v, (5.5a) 

~2 = gPX3pg~v3~g~ , (5.5b) 

~3 = g~w(gPXg~gpX)(g~T3Vg~T), (5.5c) 

~4 = 3xgPX(g~T3pgoT)" (5.5d) 

This Lagrangian represents scalar-tensor theory because the gauge 
invariance has been reduced from arbitrary coordinate transforma- 
tions, characteristic of a pure tensor theory, to those of unit 
Jacobian (provided e and d do not satisfy a certain relation). A 
convenient choice that appears most akin to the covariant rules 
for the corresponding dual model is to take o = d = 0. Then 

z32 

= g~r~hPF~pX, (5.6) 

The equations of motion resulting from the Lagrangian in equa- 
tion (5.6) may be written compactly as 

~ p r ~  p = F~xPF~p ~. (5.7) 

An alternative way of obtaining these equations of motion is to 
start from 

~,  = g~ (F~hPrvp  x - 3pF~vP), (S.8) 



LIGHT CONE GAUGE GRAVITATION 549 

treating gVW and F~vP as independent fields. In this case varia- 
tion with respect to g~ gives equation (5.7), whereas variation 
with respect to FVw9 gives 

3pg Nw + gNhFhpv + g~hFhpN = 0, (5.9) 

which is just the usual statement that gVV has vanishing covariant 
derivative. 

We have explored the possibilities for restricting the Lagrang- 
ian of equation (5.6) to the light cone gauge. Manipulations ana- 
logous to those of section 3 can be carried out. Suffice it to 
say that the formulas are of complexity comparable to that in the 
pure spin 2 case. Our motivation for repeating these tedious cal- 
culations was to check the Cremmer-Gervais conjecture that scalar- 
tensor gravitation in the light cone gauge can be formulated with 
a cubic interaction term only. The fact that the formula we obtain 
is not in this form does not in itself constitute a disproof. How- 
ever, we have considered the possibilities for redefining fields-- 
even in non-local ways --and have just about convinced ourselves 
that no such transformation can eliminate all the quartic and high- 
er order interactions. As mentioned in the introduction, this 
means that the zero-slope limit of the closed-string theory cannot 
be found by applying the limit directly to the Lagrangian. One 
needs to include additional contact terms to represent the effects 
of exchanging massive states that are not present in the limiting 
spectrum. 
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