
In conclusion, we note that the above analysis makes it possible so to vary the parame- 
ters of the process as to modify its characteristics in the required direction~ 
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MODEL OF ALUMINUM AGGLOMERATION DURING THE COMBUSTION OF A 

COMPOSITE PROPELLANT 

V. G. Grigor'ev, K. P. Kutsenogii, 
and V. E. Zarko 

A distinctive characteristic of the combustion of heterogeneous metal-containing composi- 
tions is agglomeration, i.e., the enlargement of the metal particles due to coalescence as the 
combustion wave passes through the condensed material, as a result of which the size of the 
particles leaving the combustion surface is much greater than that of the starting metal parti -.~ 
cles [i, 2]. In spite of much research, we still lack an experimentally confirmed mechanism 
of aluminum a~glomeration application to the combustion of ammonium perchlorate-based com- 
posite propellants [2]. 

In [3], on the basis of the experimental data. it is suggested that the agglomeration of 
aluminum involves the coalescence of the metal particles within cells between the oxidizer 
grains, leading to the formation of agglomerations with dimensions determined by the size of 
the cells and their aluminum content. The possibility of agglomeration as a result of the ac- 
cumulation of metal particles in closed "pockets" between the oxidizer particles was previous- 
ly suggested in [4], but no quantitative data on the size of the agglomerations were given. 
The literature does not contain any systematic quantitative data on the effect of the packing 
structure of the dispersed components on the size of the agglomerations formed during combus- 
tion. This led to the experimental investigation of the dependence of aluminum a~glomeration 
on the particle size and concentration of the components in the mixture [3] and the ambient 
pressure [5]. The object of the present study is to give a theoretical foundation to tbe ex- 
perimental results obtained, on the basis of a statistical examination of the packing of the 
dispersed components of the composition, 

From a study of thin sections it was established [5] that at a relatively low volume ox- 
idizer content the composite propellant may be regarded as a random packing consisting of 
hard particles (oxidizer and metal) and a continuous matrix. Since the ammonium perchlorate 
(AP) particles are much bigger than the aluminum particles, accumulations of metal particles, 
randomly dispersed in the matrix and in mutual contact, are formed in the spaces between ox,- 
idizer grains. For the compositions considered in [5] (Table i) the cells containing the metal 
"clusters" are generally closed (bounded by AP particles). Figure 1 shows a thin section ob~ 
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TABLE i. 

No. of 
composi- 
tion 

Characteristics of the Compositions Investigated [5] 

No. of 
PAP ~AP compo- ~AI ~AP pm tl sition gal ~AP 

0,37 
0,37 
0,37 
0,37 
0,37 
0,37 

50 
75 

110 
200 
280 
360 

0,12 
0,12 
0.12 
o;t2 
0,12 
0,12 

0,4 
0,3 
0,25 
038 
0,i6 
0,i6 

7 0,12 0,37 
8 0,t7 0,37 

0,27 0,33 
i0 0,27 0,33 
i i  0,27 0,33 
i2 0,27 0,33 

D.Ap 
pm ' VAp 

220 0,70 
280 0,16 
75 0,30 

i i 0  0,25 
200 0,i8 
220 0,70 

% 
Remark. 8, volume fraction; D, mean particle diameter; and V, 
coefficient of variation of the particle-size distribution, 

tained from a composition with BAI = 0.12, BAP = 0,37 and DAp = ii0 ~m, It should be kept in 
mind that in a three-dimensional packing each cell is also bounded in a direction perpendicu- 

lar to the plane of the figure. 

As a result of the considerable difference in geometric scale between the hard compo- 
nents, it is possible to study the packing of the particles successively, i.e., in studying 
the distribution of the AP particles we can lump the metal particles with the continuous 
phase, since owing to their smallness and low concentration the metal particles should not 
affect the packing of the much larger oxidizer grains. The next step is to consider the me- 
tal/matrix system and find the packing characteristics of the aluminum particles. According 

to [3], in the first step it is necessary to determine the size of the cells between oxidizer 
particles, and in the second the distribution of the metal particles, since contact between 
the particles is a necessary condition of agglomeration during the passage of the combustion 
wave. 

Let us consider a two-phase metal/matrix system. For simplicity, we assume that the me- 
tal particles are monodisperse and spherical in shape. Then, the basic criterion determining 
the arrangement of the particles in the packing will be the coordination number Nc, i.e., 
the average number of contacts per particle. The N c of ordered packings is given by the geome- 
try and can easily be determined [6]. In [7] it was shown that such symmetrical packings may 

be regarded as particular cases of more general irregular arrangements. If as the initial 
coordination of the spherical particles in a random packing we take the coordination of the 
particles about some selected particle, then we will obtain the same coordination about any 
other particle within the first coordination sphere, These new coordination spheres will 

include the particle selected as the initial particle (located in the center of the sphere), 

likewise the outer particles of the first coordination sphere and, finally, the outer parti- 
cles of the second coordination sphere. As a result there is formed an aggregation of ever- 
increasing size [7]. The only condition that must be satisfied by such azgregations is that 
for any point within the aggregation there exists some finite number of neighbors not greater 

tban 14 [7]. 

The coordination number serves [8] as a special parameter of the radial distribution 
function f(R) which is [7] the probability of finding particles of a random ensemble at a 
distance R from the center of a given particle. It is not yet possible to calculate the radial 
distribution function theoretically for any heterogeneous system, Only for statistical mix- 
tures modeled by means of Poisson packings is it possible to calculate this function for the 
case of monodisperse spheres [8]. 

The compositions considered in [5] are characterized by relatively low metal contents 
and correspondingly small values of N c. With such mixtures, for determining N c it is possible 
to use a relation [9] derived on the assumption that the number of contacts is distributed ac- 
cording to Poisson's law 

N o =  - 8 1.  (t  - ~), ( 1 )  

w h e r e  B = BA1/($A1 + B m) = BA1/(  1 - -  BAp) i s  t h e  v o l u m e  f r a c t i o n  o f  a l u m i n u m  p a r t i c l e s  i n  t h e  
s y s t e m ,  BA1, Bm , BA P a r e  t h e  v o l u m e  c o n t e n t s  o f  t h e  c o m p o n e n t s ;  t h e  v o l u m e  f r a c t i o n s  o f  t h e  
h e t e r o g e n e o u s  c o m p o n e n t s  (AP and A1) ~ i  a r e  r e l a t e d  w i t h  t h e  p a r t i c l e  c o n c e n t r a t i o n s  (number  
o f  p a r t i c l e s  p e r  u n i t  vo lume  N i )  by  t h e  o b v i o u s  e x p r e s s i o n s  B i = (~/6)D$.N i ~D i a r e  t h e  p a r t i -  
c l e  d i a m e t e r s ) .  I n  v i e w  o f  t h e  m o n o d i s p e r s i t y  o f  t h e  p a r t i c l e s ,  N c (1 )  d o e s  n o t  d e p e n d  on 

,i. gives N c 1 7 for their size. Calculation of the average number of contacts from Eq. ' ~ = 
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Fig. 1 

compositions 1-7, N c = 2,5 for composition 8, and N c = 4.1 for compositions 9-12. Clearly, 
as the volume fraction of the particles decreases, so do the number of contacts per parti- 
cle and the probability of the structure being connected, i.e., the probability that between 
any two particles in a two-phase system there exists a continuous (from particle to particle) 

path. 

In [i0] a critical estimate was obtained for the minimum number of contacts N * = 2 for 
C j 

which the structure can still be considered completely connected�9 At N cmin < Nc < Nca the 
possibility of one or more continuous chains of particles extending from one edge of the 
composition to the other is preserved. At N c < N cmin the probability of the existence of 
infinitely extended particle chains is close to zero. The relation between N cmin and the 
connectivity criterion Nc* takes the form [i0] 

N c m i n  = [1 -- l (0)1N$, (2) 

where f(O) is the fraction of particles not having contacts with other particles. For a Pois- 
son particle contact probability distribution we have f(O) = 0.2 and N cmin = 1,6. Thus, in 
the compositions investigated the aluminum particles are connected, and the necessary condi- 
tion of agglomeration (contact) is satisfied. 

The specimen may also be regarded as a metal/matrix system into which AP particles have 
been randomly introduced. For a random packing the cells differ with respect to both shape 
and size even when the particles are monodisperse spheres. Accordingly, the cell size dis- 
tribution can be obtained only by statistical methods [Ii]. In accordance with the princi- 
ples of stereology [12], the volume of a cell of arbitrary shape enclosed between AP parti- 
cles can be found as the volume of the equivalent sphere with diameter equal to the mean free 

distance ~ (between particle surfaces) 

= 4(1 - -  ~ A P ) / S A P '  ( 3 )  

where SAp is the specific surface of the oxidizer powder (total particle surface per unit 
�9 (S = 6/D ~ relation (3) takes volume) For a system of monodisperse spherical particles , AP AP" 

the form 

~- = ( 2 / 3 ) ( t  - -  [~ A p ) D A P .  (4 )  

Knowing I we can find the expected size of the agglomerations for a known cell metal 
content 

D c a l  )ll/a ( 5 )  agg = [[~al/(i -~ [~ AP [ =  A (]3 AP ' ~AI) D A P ,  

w h e r e  A = ( 2 / 3 )  [13 ( 1  - -  8 ) 2  1 / 3  . A AP ] xs the proportionality factor introduced in [5]. In Fig. 2 
the agglomeration ~iameters calculated from (3)-(5) are compared with the experimental values 
for the compositions investigated in [5]�9 The axis of abscissas corresponds to the experi- 
mental values obtained in [5] for the volume-average diameters of the agglomerations Bexp -agg, 

aLtd the ordinate axis to the values of D cal. The 20% relative error limits are also indica- agg 
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ted. Clearly, there is good agreement between the experimental and calculated values for 

most of the investigated compositions on the pressure interval 1-40 atm, 

A study of Fig. 2 leads to a number of conclusions. Firstly, a discrepancy between D eal 
and D exp is observed only for compositions with a low volume fraction of metal containing agg 

very ~rse (>300 ~m) oxidizer. The fact that the values of D~ are lower than the theoret- 
ical estimate is easy to explain if account is taken of the fac[ that, as noted above, for 

compositions 1-7 [5] the average number of contacts between particles N c is close to N cmin " 
Accordingly, for these compositions, when the diameter of the AP grains is large, it is pos- 
sible for more than one agglomeration to be formed within each cell. In the end this leads 
to a fall in the average size of the agglomerations. Secondly, with these compositions, as 
the pressure increases, the agreement between the experimental and the calculated data im- 
proves, which is probably associated with the more favorable conditions for particle contact 
in the case of specimens burning at elevated pressures owing to the rise in the temperature 

of the reacting surface and the more intense gasification of the matrix~ 

It should be noted that relation (3) for the mean cell size is based on the laws of geo- 
metric probability and does not involve any arbitrary assumptions. Accordingly, in principle, 
(3) is also valid for a packing consisting of a polydisperse set of particles; however, it 
makes it possible to obtain only the average cell size [12]. At the same time, since the 
experiments give the size distribution of the agglomerations, it is interesting to try to find 
a relation between the distribution functions for the agglomerations and the intergranular 
cells. One possibility for determining the sizes of the cells is to find the distribution 
of the distances between particles (particle centers) in the packing. The solution of the 
problem of the distances between random points in spsce is known [13]. It can be extended 
to the case where the random points are replaced by a system of monodisperse spheres and the 
distribution of these spheres in space is considered [14]. Under these conditions the mean 
intercenter distance is found from the expression 

= 0,277(4a/3} AP )V:DAp �9 (6) 

However, the applicability of expression (6) is limited to ]ow particle concentrations. The 
solution becomes physically meaningless at BAP ~ BI = 0.0884, since at BAp > ~i the particles 
interpenetrate. This is because in deriving (6) the limiting condition R ~DAp (R = DAp is 
the particle contact condition) was not introduced. 

Taking this into account, let us consider a packing consisting of a set of polydisperse 
particles. We will assume that, as ! first approximation, the system of particles can be 
characterized by the mean dimension D and that the_meaz free distance is related to the mean 
intercenter distance by the simple dependence ~ = R - D. Then as a basis for examininz the 
problem we can take the distribution of the centers of the sphericalparticles as random 
points in space and assume that the number of points appearing in any region of volume V is 
a Poisson random quantity with mean NV [13]. 

If RI, R2, ..., R n are the distances from a certain fixed point to the nearest rsndom 
points i, 2, ..., n, respectively, then the function of the radial distance to the n-th near- 
est neighbor is written [13] 
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i,~(Rn) dRn-- F(n,a)exp( - 4  R[n-idR"; (7) 

where ~ is the distribution function truncation parameter; N, number of particles (particle 

centers) per unit volume; F(n,~):~tz-ll-fdt , incomplete gamma function [15]. Here it has been 

taken into account that as the lower limit of integration it is necessary to take R n = D and 
not R n = 0, which is manifested in the substitution of the incomplete gamma function F(n, ~) 
for the function F(n) [13]. 

Dimensional analysis suggests that f (R) is a function of the single composite parame- 
ter I = NR~; accordingly, n n making the substitution x = (4/3)~X, we rewrite (7) in the form 

f~(x)dx = x~-iI-=dxlF(n, a). (8) 

After transformations, we obtain the obvious relation 

x = : 8 Ap 

where 8Ap = NV is the volume fraction of AP particles in the composition; V = (~/6)D 3 is the 
mean particle volume. 

As may be seen from (8), the intercenter distance distribution function has the form of 
a gamma distribution [15], in which the gamma function is replaced by an incomplete gamma 
function. When integrating (8) for the pur_pose of finding_R and the wariance of R it is ne- 

' as the lower limit. Computation cessary to take the quantity x = (4/3)~N(C) 3 = 8 8AptD) 3/D 3 
of the moments of the function fn(X) [15] gives the values of the dimensionless (normalized 
to D) mathematical expectation 

r ( n +  ~ ) 
En = y r (n, a) 

(9) 

the variance 

~ " =  ~" Ll3-ff> b):] i t ( , , ,  ~<l 
- -  {F (n, a) F (n -J- 2/3, a) -- [r (n + ti3, a)l~}'/2 (io) 

and the coefficient of variation 

~n - -  ~r (n-}-, 2/3, a) r (n, ~) _ i}1/~. 

It is clear from (9)-(11) that the moments of the distribution depend on the particle 
concentration through BAp, on the particle-size distribution through ~3/(~)z, and on the 
ordinal number of the neighbor n, whereas the coefficient of variation depends only on n. The 
oxidizer fractions used in [5] had Gaussian particle-size distributions. It is easy to show 
[15] that in this case the condition of symmetry of the AP particle diameter distribution 
function leads to the third central moment of the distribution function vanishing, and we 
then have the relation ~3/(~)3 ~2 = 3VAp + i, where RAp is the coefficient of variation of the 
AP grain-size distribution of the corresponding functions, 

l The quantities En(Rn) , g~(Rn) and Vn~Rn) were calculated for a series of values of 8A P 
and VAp. The incomplete gamma functions were calculated in accordance ~ith standard sub- 
programs on a BESM-6 computer for the values n = i, 2, ..., 14 (nma x = N~ax = 14 [7]). As an 
example, Table 2 gives the results of the calculations for BAp = 0.33 (VAp = 0; 0.3) and 

BAp = 0.37 (VAp = 0). Note that Vn(R n) increases with increase in VAp and decrease~in BAP" 
It is interesting to observe that, starting from a certain n (n = i0 in Table 2), V n ceases 
to depend on VAp. This indicates that the polydispersity of the oxidizer does not affect 
the "long-range" order in the packing [8]. Moreover, the coefficient of variation has a max- 
imum for a value of n corresponding to the mean coordination number for a packing with a 
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TABLE 2. Results of C0mputer Calculations of 
the Packin~ Parameters 

~AP = 0.33 ~ AP =o,:~3 t;Ap =0,87 
DiI / (]~)3 =l  D-"aI(D--) a = t,27 Da/( D)a=l 

E n tO'ff n E n t 0 "Vn 

5 
6 
7 
8 
9 

/0 
ti 
J2 
13 
t4 

E~ 

i305 
1,130 
i,i63 
1,204 
t,245 
1,310 
t,370 
t,430 
1,488 
i .542 
~;593 
t ,64i  
1,687 
1,730 

1,410 

0,8i5 
0.955 

,062 
t ,134 
1,197 
tt 247 
1222 

t J59 
t,104 
1,07~ 
1,018 
0,975 
0.902 
0,8.% 

t.130 0,988 i,095 
11164 1,i37 t , l t 6  
i.2i0 1,228 1.144 
<268 t,297 t;175 
1,335 i ,338 1,22i 
t,406 1,332 1,272 
t ,478 i,234 1.325 
t.546 1,172 "1,380 
t ,6t0 1A21 t,436 
1.670 L075 * 1,484 
t,725 1,()19 1 1.535 
1,777 0,975 I 1,979 
1.827 0,902 i,620 
t .873 0,895 i.667 

1.50i ~ -- I t,360 
I 

0,762 
0,85t 
0,960 
1,073 
t,120 
t380 
1,182 
t,033 
t,080 
i ,039 
1,02i 
0,972 
0,920 
0,894 

given oxidizer content SAP" At the same time, there is a certain increase in the mean inter-- 

14 

c e n t e r  d i s t a n c e  ~n : = ( t / t 4 ) . ~ ,  En (Rn) w i t h  i n c r e a s e  i n  VAp" 
n = l  

Using the properties of the moments of the functions [15], we obtain relations for the 
parameters of the agglomeration diameter distribution 

o(D~g~ = o(D = o(N), 

E(Dag ~ = [~A,/(I - ~AP )]H, 

~ ~ (nags) 
Fagg = E (Dagg) = [(t - -  ~:kP )/~all l /a "~ ? )"  

(12) 

(13) 

(14) 

Relations (12)-(14) make it possible to determine the mean size of the agglomerations and the 
width of the spectrum, starting from the packing parameters of the particles in the composi- 
tion.~The cur~es in Fig. 3 represent the calculated dependences of the coefficients of varia- 

tion Vagg on VAp for compositions with ~AP = 0.33 and BAp = 0.37 [volume content of dispersed 
components~in compositions: i) 1--7, 2) 8, 3) 9-12]. The points represent the experimental 
values of V a- from [5]. The agreement between the theoretical values and the experimental 

~exn ~g values v ~ is satisfactory. The use of broader oxidizer fractions leads to a broadening of a 
the agglomeration size sDectrum, as predicted by the theoretical model. 

The values of Da~ for a monodisperse packing (VAp = 0) calculated from the Kendall- 
Moran model (Eq. (13)~can be compared with the values D~ calculated in accordance with the 
simplified scheme (Eq. (5)). The comparison indicates tha~gtbe values of Dagg calculated by 

-- DCal/D these two different methods lie close together. Thus, the relative error ~ = (Dagg agg agg 

is 9 and 12% for compositions 1-8 and 9-12, respectively. Our terms of reference did not 
include the question of the limits of applicability of the calculation metbod described; how- 
ever, we assume that it can be used for determining the expected size of the a~glomerations 
for compositions with BAB < 0.5. Mathematical modeling methods [9] can be used for calculat- 
ing the parameters of denser random packings of the oxidizer grains, 

Our results and those obtained in [3, 5] make it possible to formulate the following 
model of the agglomeration of aluminum during the combustion of AP-based composite propellants. 
The aluminum particles in the specimen are in contact with each other. The time spent by the 
particles in the heated layer of the condensed phase T~ ~ • 2 ~ i0 '-~ sec (~ is the thermal 
diffusivity) at u = i0 ~2 m/sec considerably exceeds the time T2(T~ = i0--~-i0 -s sec [2]) need- 
ed for the formation of bridges between the particles capable of holding them together under 
the action of the gas flow. Accordingly, the passage of the combustion wave is accompanied 
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by the progressive coalescence of the particles, and the rate of propagation of the thermal 
wave in the spaces between AP grains will be greater than the average for the specimen as a 
whole owing to the high thermal conductivity of the aluminum. 

Initially, when the particle contact areas are small, the rate of heat transfer from the 
combustion surface is limited by the contact resistance of the particles [16]. At tempera- 
tures close to the ~elting point of aluminum, when the oxide shell starts to crack as a re- 
suit of the difference between the thermal expansion coefficients for AI and A1203 [I] and 
"bridgelets"ofmolten metal are formed between the particles [2], the rate of heat transfer 
will be determined by the thermal conductivity of the metal, The progressive heating of the 
framework of aluminum particles and the matrix occupying the spaces between them results in 
the intense gasification of the latter. This leads to a sharp increase in capillary pressure 
and a corresponding increase in the tensile strength of the particle aggregations [17]o 

After reaching a maximum at a certain value of the liquid content of the aggregations~ 
the strength gradually falls and is determined by the net effect of the capillary forces 
governing the formation of liquid "bridgelets" between particles and the capillary pressure 
of the liquid in the aggregation [17]. It is to be assumed that by the time the strength 
falls sharply due to the presence of liquid, the contact bridges will already have had time 
to form. The presence of capillary forces should also lower the requirements with respect 
to the relation T2 << TI. The POssible oxidizing agents for A1 are the AP decomposition 
products, and the length L of gaseous diffusion through the liquid matrix for characteristic 
process time T is (DT) !/2 ~ 10-5-10 -6 m; accordingly, only metal particles situated c]ose 
to AP grains can be oxidized. The burnup rate is maximal at the contact boundary of the ma-- 
trix/metal system [18]. This leads to the isolation of each cell, and hence the agglomera- 
tion is the product of the coalescence of all the metal particles present in a given cell, 

On the basis of these results we may draw the following conclusions. The proposed model 
of the agglomeration of aluminum satisfactorily describes the laws of variation of the size 
of the agglomerations with variation of the oxidizer particle size and the content of the 
components of the composition, and moreover with variation of the width of the size spectrum 
of the oxidizer particles employed. In order to determine the mean size of the agglomerations 
formed during the combustion of compositions containing narrow oxidizer fractions, it is 
possible to use a simplified scheme for the calculation of the agglomeration diameter. Varia- 
tion of the external pressure and the linear burning rate of the specimens has almost no ef- 
fect on the size of the agglomerations over the investigated interval of variation of these 
parameters. It is to be expected that this agglomeration model will also be applicable to 
compositions with other nonmelting oxidizers in cases where the corresponding temperature 
and time conditions for the coalescence of the metal particles in the combustion wave are 
satisfied. 

The authors wish to thank E. G. Klimova for carrying out the computer calculations, 
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DYNAMICS OF GAS COMBUSTION IN A CONSTANT VOLUME IN THE 

PRESENCE OF EXHAUST 

V. V. Mol'kov and V. P. Nekrasov 

The urgency of the question of protecting closed volumes from explosion by the method of 
depressurization requires the production of physicomathematical models which would permit 
obtaining dependences of the fundamental parameters of gas mixture combustion (pressure, rate 
of pressure rise, temperature of the fresh mixture and the combustion products, etc.) on the 
time before and after the opening of the faulty areas. While the dynamics of gas combustion 
in a closed volume has been studied sufficiently well [1-5], models describing the combustion 
process after depressurization of the volume have been developed slightly and possess a number 
of weaknesses. 

Approximate methods which do not take account of the dynamics of the development of an 
explosion after the beginning of the gas run-off [6, 7] are used most often to determine the 
areas of the faulty holes and openings. This can result in groundlessly exaggerated or danger- 
ously reduced values of the faulty hole areas. Moreover, such methods do not afford the pos- 
sibility of investigating the influence of important factors as, e.g., the level of depres- 
surization pressure at the maximum explosion pressure. The pressure change during an explo- 
sion was studied in [8] only for the subcritical exhaust mode and in a narrow band of excess 
pressures (Ap < 50 kPa). A turbulization factor is introduced in [9, I0] to explain the pres- 
sure peaks experimentally observed during combustion. The assumption about the exhaust of just 
fresh mixture [9] and utilization of just the law of mass conservation and the adiabaticity 
condition [i0] did not permit the authors of these papers to describe the change in pressure 
with time p(t) in a constant volume with gas exhaust; only values were estimated. A more de- 
veloped mathematical model, proposed in [ii], assumes the exhaust of either the fresh mixture 
or of the combustion products. 

The purpose of this paper is to obtain a physicomathematical model that will describe 
the dynamical characteristics of gas combustion in a constant volume in the presence of ex- 
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