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New Solutions for Charged Spheres in 
General Relativity 
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Exact solutions of the Einstein-Maxwell field equations are obtained for the 
case of static and spherically symmetric distribution of charged matter. The 
solutions are obtained through the extension of a method originally used for 
neutral configurations and are conveniently matched to the Reissner- 
Nordstrom exterior metric. The physical plausability of the solutions is discussed 
and it is shown that some of them reduce in appropriate limits to known neutral 
or charged solutions. 

1. INTRODUCTION 

It is well known that the Reissner-Nordstrom metric is the unique static, 
spherically symmetric, and asymptotically fiat solution of Einstein- 
Maxwell coupled equations. The problem of finding analytically exact static 
interior solutions for the Reissner-Nordstrom metric has focused the 
interest of many researchers I-1-6] because such solutions can describe the 
equilibrium configurations of collapsing distributions of charged matter 
whose collapse is countered by the coulombian repulsion due to the electric 
charge. 

In this paper we present new solutions for charged spheres by 
adapting a method first used to reproduce known solutions representing 
neutral spheres I-7]. The solutions are given in terms of a generating 
function which is conveniently adjusted to the corresponding functions of 
the Reissner-Nordstrom metric in order to match both metrics. We 
illustrate the method by considering first the case of charged incoherent 
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matter obtaining a family of solutions which generalizes previous solutions 
admitting a conformal Killing vector [8]. For a particular case we find 
that the charge density and the energy density bear a constant relation 
through the distribution. As a second example we find the uniformly 
charged analogue of the Tolman V solution [9]. A third solution for a 
neutral sphere satisfying physically plausible conditions is also presented. 
The paper is organized as follows. In Section 2 we present the field 
equations and the method used to obtain the solutions. In Section 3 the 
matching conditions and the examples are given. 

2. FIELD EQUATIONS AND THE GENERATING FUNCTION 

We are concerned with static, spherically symmetric solutions of 
Einstein-Maxwell combined equations. It is convenient to use standard 
Schwarzschild coordinated x~= (t, r, 0, ~b), with respect to which the line 
element assumes the form 

ds 2 = e vclt 2 - e a dr 2 - r2( dO 2 + sin 2 0 d~ 2 ) (1) 

where v and 2 are functions of the radial coordinate. 
The energy-momentum tensor for the charged matter can be expressed 

as 

T ~  = (p + p )  U~Ua - p a ~  + 17r(F~'F~ + a~, ~ - ~ -  j (2) 

where p, p, and U s are, respectively, the energy density, the isotropic 
pressure, and the unit timelike four-velocity of the fluid, and F ~ is the 
Maxwell field tensor. 

The resulting Einstein-Maxwell equations are 

8rcp + Q2/r4 = e - * ( 2 ' / r -  1/r 2) -k- 1/r 2 (3) 

8rcp - Q2/r4 = e -~(v ' / r  + 1/r 2) - 1/r 2 (4) 

8r~p + Q2/r4 = e - a [ v " / 2  + v'2/4 - 2%'/4 + (v' - 2')/2r] (5) 

where we have defined 

Q(r)  = 4rt ar2e al2 dr (6) 

which represents the total electric charge obtained within a sphere of radius 
r, and a is the charge density. 
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Hereafter a prime denotes differentiation with respect to r. We need 
the Bianchi identity T~I, e = 0 which, as can be recalled, is not independent 
of the field equations. A simple calculation yields 

p' + �89 + p)v' = ~ d(Q2)/dr (7) 

Furthermore, Eq. (3) can be integrated to give 

e ~= 1 - 2 m ( r ) / r +  Q2/r2 (8) 

where we introduced the mass function m(r) defined as 

re(r) = (4rcpr 2 + QQ'/r) dr (9) 

Substitution of Eqs. (7) and (8) into Eq. (4) gives 

8z~p + 1/r 2 - Q2/r4 

= r[1 - 2m(r)/r + Q2/r2] { 1/r 3 - 2(p'  - Q2'/8nrn)/[rZ(p + p) ]  } (10) 

Defining a function G(r) by 

r[1 - 2m(r)/r + Q2/r2] 
G -  8~p+ l/r2 Q2/r4 (11) 

Eq. (!0) can be rewritten in the form 

(r 3 + G)(r 2 + G') 
8np' + G(G - r 3) 8z~p 

(r 3 + G) 
+ r3G(G_ r3 ) (r 3 + G ' r -  2 G -  Q 2 r -  (GQ2/r4)'r 3] + 

2Q 2' 
- 0  ( G - r 3 ) r  

(12) 
It should be noted that given G and the charge distribution as known 
functions of r, the solution of the linear differential Eq. (12) takes the 
general form 

8~p(r)=ef-~(r)arIpo + f C(r) eIB(r)ar dr] (13) 

where Po is an integration constant, and B(r) and C(r) are 

B(r) = (a + r3)(a ' + r2)/G(G - r 3) 

( G + r  3) 
C(r) . . . . .  Gr3( a _ r3 ) [r 3 + a '  r-- 2G - Q 2 r -  (aQ2/r4)' r 3] 

- 2Q2'/(G_ r3)r 
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After obtaining p(r), the energy density p(r)  is easily calculated from Eqs. 
(9) and (11), obtaining 

Sup(r) = 1/r2{1 + G'(87zp + 1/r e -  QZ/r4) 

+ G [ S T ~ p ' -  2/r 3 - (QZ/r4) ']  + Q2/r2} (14) 

Finally, taking into account Eqs. (7)-(9) and (11 ), the metric coefficients in 
terms of G (and Q) can be expressed as 

e - ~ = - G / r (8np  + 1/r 2 - Q2/r4 ) ( 15 ) 

e v = (AZ/ r )e  -~r2/G)ar (16) 

w h e r e  A 2 is a constant. 

3. T H E  S O L U T I O N S  

We should like to stress that any given function G(r)  and charge dis- 
tribution generates a static and spherically symmetric solution of Einstein- 
Maxwell equations. The function G must satisfy some general requirement if 
its associated solution is to be physically meaningful. Thus, the regularity 
conditions at the origin r = 0 [ m ( r ) / r  ~ 0 and Q2(r)/r 2 _~ 0 as r ~ 0] imply 
that l imr~o G(r) / r  3 =  -1 ,  assuming a nondivergent pressure at the origin. 
For  instance, if G(r)  -- - r  3 and Q(r)  = 0 one obtains Minkowski flat space- 
time as a trivial solution. The following choice 

G R'N'(r) = -- r3(1 -- 2 M / r  + e2/r 2) 
1 - - e2 / r  2 (17) 

Q(r)  = e (18) 

where M and e are constants, gives the vacuum Reissner-Nordstrom 
solution as can be verified. 

Any interior solution must join smoothly to the Reissner-Nordstrom 
metric at the surface r = ro of the distribution. This requirement is satisfied 
provided that 

G(ro) = G R N ( r o )  (19) 

Q(ro) = e (20) 

The last equation implies the continuity of the radial electric field assuming 
no charge concentration at the boundary surface. 

We turn now to the examples. 
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3.1. Charged Dust Solution 

As a first case, consider 

G(r) = ~r 3 (21) 

where ~ is a dimensionless constant which is to be calculated in order to 
satisfy the boundary condition (19), thus 

(1 -- 2M/r  o + e2/r~) 
= 1 - e2/r 2 (22) 

The charge distribution will be chosen so that p ( r ) =  0, thus we have a 
charged incoherent matter. Making use of (12) we obtain for Q(r)  the 
expression 

Q~(r) = r (~ + l~/~EC + (~ + 1 / ~ -  1)2r(~- 1)/~] (23) 

where C is an integration constant to be calculated from Eq. (20). 
The energy density and the metric can be obtained from Eqs. 

(14)-(16) as 

8gp = l / r 2 [ -  2Cr (1 ~)/a-4o~(o~ q- 1 )/(o~- 1) 2] 

e a=  - -~[ t  - Cr(1-=)/=- (~+  1)2/ (~-  1) 2] 

e v = A 2 r - ( ~  + 1)/c~ 

Rearrangement of Eq. (22) gives at once 

M = (1 + ~)/2r 0 + (1 - ~)eZ/2ro 

(24) 

(25) 

(26) 

(27) 

This equation relates the total mass of the distribution to the parameter ~, 
the second term at the right being interpreted as the increase in the mass 
caused by the electric energy. If we restrict ourselves to cases for which 
M > e, and the boundary of the sphere lies outside the Reissner-Nordstrom 
gravitational radius, r+ = M + ~ ,  then Eq. (22) shows that ~ (as 
well as C) is negative. Therefore, the electromagnetic contribution to the 
total mass is positive as it should be. 

Incidentally, note that after setting Q(r)  = 0, Eq. (23) gives ~ = - 1  and 
C =  0, then feeding back these values in Eq. (27), we obtain M =  0, thus, 
Eq. (23) precludes a static neutral dust sphere, as expected. 

Let us consider the case in which C =  0 in Eq. (23). Then the boun- 
dary condition (20) establishes a fixed value for c~, given by 

(1 _+ e/ro) 
= (1 -T- e/ro) (28) 



642 Patifio and Rago 

Comparison with Eq. (22) then shows that 

M =  +e (29a) 

Moreover, using Eq. (24) with C =  0 and Eq. (6), we obtain for the charge 
density the expression 

4~(~ + 1 ) 
8rta = + r2(= _ 1 )2 (30) 

From Eq. (24) it follows that 

p = _+a (29b) 

Observe that p will be everywhere positive for - 1 < ~ < 0. 
Equations (29) are known to hold for charged dust spheres in 

equilibrium under general requirements (see, for example, Refs. 1 and 10). 
If Cr  Eq. (23) shows that Q2/r2 diverges as r ~ 0  and the regularity 
conditions required for the general result (29) are not satisfied. 

Finally, it should be pointed out that the solution described by Eqs. 
(23)-(26) represents a generalization of the charged dust solution admitting 
a conformal Killing vector found in Ref. 8; in fact, their results are 

1 recovered for the particular value ~ = 3. 

3.2. Charged Analogues of thc Tolman Solution 

We will take again G(r) as given by Eq. (21) and consider that the 
proper charge density is constant, then Eq. (6) implies Q(r)~r 3. The 
appropriate junction condition at ro yields 

Q(r) = e(r/ro) 3 (31) 

The matter variables calculated from Eqs. (13) and (14) are found to be 

87tp(r)=por-A + AB~_2 r-2 + AD~2 r2 (32) 

I 4D~ D 12e2 ~ 1 r2 
8np(r)= ( ~ + l ) ( A + 2 )  A + 2  ro 6 (~+1)  

2~A "] r A (33) B [4~/(ot+l)+l]r_2 po 1+ + l j  
A--2  
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where the constants A, B, and D are given by 

(~+  1)(3e+ 1) 
A =  

~(~ - t )  

B - (cr + 1 )2 

~(c~ - 1 ) 

D = e2/r 6 (5cd -- 6~ + 1) 
0r - 1 ) 

This solution represents the uniformly charged version of the Tolman V 
solution [9] [with a slight change in notation, his n corresponding to 
-(cr + 1)/2cr 

For  neutral spheres (i.e., D = 0 ) ,  Tolman's results are recovered. 
Furthermore, if cr = - �89  then A = 0  and (28) and (29) give the charged 
analogues of a solution found previously in Refs. 11-13, this solution 
corresponding to the particular case n = 1 of the Totman V solution. 

3.3. A N e w  Solut ion  

Consider the following choice for G(r): 

r 3 ( a + b r  2) 
G(r)  = (34) 

a + c r  2 

where a, b, and c are constants. Observe that G satisfies the appropriate 
conditions at the origin for a # 0, so we expect the solution to be regular. 
For  the sake of simplicity let us treat the neutral fluid limit, so Q(r)  = O. 

A rather cumbersome calculation gives for the matter variables the 
expressions 

8~zp(r) = a + (b - c )r2/4  (35) 

8~p(r) = a + (3b + c)r2/4  (36) 

It is clear that a = 8~zpc = 8~Zpc, where the subscript c refers to the central 
value of the variables. On the other hand, if the pressure is to vanish at ro, 
then 

- 4  
b - c =  r--~o 8~p~ 
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so that Eqs. (35) and (36) become 

87zp(r) = 8rtpo(1 -- r2/r 2) (37) 

8top(r) = 8rCpc + ( c  -- 
24rc__Pc'] r 2 (38) 

J 

Observe that  p(r)  is a positive decreasing function of  r satisfying 
the regularity condi t ion [ 3 ]  Op/Or=O at the origin. Fur thermore ,  if 
16gpc/rZo<~C<~24~pJr 2, then p is everywhere a nonsingular  positive 
decreasing function of  r. The dominan t  energy condit ion p(r) >1 p(r)  is also 
fulfilled. The addit ional  requirement dp/dp ~< 1 implies that  c <~ 16~pJr  2, so 
that  the value of c must  satisfy c =  16gpJr~,  thus obtaining the stiff 
equat ion of state p = p. 
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