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A b s t r a c t  

The effect of quantum fluctuations of gravity on the measurement of proper distances is 
considered. It is shown that, when the length scales are of the order of Planck length, the 
concept of a unique distance between points ceases to exist. It is also shown that the quan- 
tum expectation value of the proper length is bounded from below by Planck length in any 
space-time. 

w F l a t  S p a c e  as G r a v i t a t i o n a l  V a c u u m  

Classical general relativity identifies gravity with space-time curvature. In 
this picture the proper (physical) distance between two events x i and x i + d x  i is 
given by 

ds  2 = g i k  ( x )  (Ix i d x  k (1) 

where g i k  is determined by the Einstein equations. In the absence of gravita- 

tional field, g i k  assumes the familiar flat space value ~ik = diag (1, - 1, - 1, - 1)  

and we get 

ds  2 = rlik d x  i d x  k = d t  2 - d x  2 - d Y  2 - d z  2 (2) 

It is tacitly assumed in the classical theory that g i k  at any s ing le  event x i can 
be measured to arbitrary level of accuracy. Thus the proper lengths in (1) and 
(2) can be determined as accurately as one wants. This immediately leads to the 

1 This essay received the fifth award from the Gravity Research Foundation for the year 
1984-Ed. 
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conclusion that 

lim ds 2 = 0 (3) 
x i  ~ y i 

where yi = x t 4- dx  i. This, rather trivial, result states that the proper interval goes 
to zero as the events approach each other. 

Classical gravity, however, is only an approximation to quantum gravity. The 
flat space-time should be more properly considered to be the vacuum state of 
quantum gravity. The metric tensor gik becomes a quantum field and is be- 
deviled by the quantum fluctuations. Even in the flat space-time the vacuum 
fluctuations of gravity will be present. Thus, it is no longer possible to measure 
the value ofgik  at a single event x i and obtain a unique value for the space-time 
interval in (1) or (2). A more detailed, probabilistic description is required. 

In particular, we expect the quantum fluctuations to grow very large at small 
distances. Therefore, it is not clear how the result in (3) would be modified 
when the fluctuations in the metric tensor are taken into account. We shall show 
below how these questions can be settled in a simple model for quantum gravity. 

w Quantum Con formal Fluctuations 

Considerable progress can be made in discussing the quantum dynamics of 
gravitational field, if the attention is confined to the conformal degree of free- 
dom of gravity [1-3] .2 Quantum gravity can be approached through the path 
integral, 

K = ( ~ g i k  exp iS[&k] 
.J 

where 

(4) 

S -  16rrG (_g)1/2 d4x  = 12L~ (_g)1/2 d4x  (5) 

Most of the contributions to the path integral are expected to arise from the 
classical solution gig = gik (say). In considering the quantum con formal fluctua- 
tions, one evaluates the path integral in (4) over a class of metrics which are 
conformal to gik: i.e., we take 

gik = [1 + r 2 gik (6) 

In terms of r the path integral becomes, 

K=f~)~b exp {_ i i + 

2For a review see Reference 1. 
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which can be evaluated in closed form due to the quadratic nature of the $ de- 
pendence. Detailed discussion of this approach, its relevance to quantum gravity, 
etc. can be found in references cited previously [1-3] and will not be repeated 
here. 

In particular, the above formalism can be used to answer the following ques- 
tion; What is the probability that the conformal fluctuations has a given value 
q~(x) in the gravitational vacuum (flat space)? The answer is given by 

5~[~(x)] = N e x p  I - ~  d3k j ~-~5- Ik I [qk]21 

= N e x p  [- l fd3xd3yVg)IX-)x2VO(Y)~ 
4rr2L] ' _ y ~  ~j (S) 

where 

= fqk eik'x d 3 k  r (2rr)a (9) 

The expression (8) denotes the square of the "ground state wave functional" for 
gravity and is derived and discussed in References 4 and 5. The time indepen- 
dence of ~ reflects the fact that the ground state is a stationary state. (For the 
corresponding expression in electrodynamics see References 6 and 7.) The vac- 
uum fluctuations of gravity can be studied using this probability functional. 

w Quantum Fluctuations and Length Measurements 

Let us see how the fluctuations of the conformal factor affect the measure- 
ment of proper length between points in space x and y (at time t) in flat space. 
To do this, one has to make a measurement of the fluctuating field q~(x) in (7). 
Consider an experiment which achieves this measurement with a spatial resolu- 
tion of L (say). In other words, the measurement cannot distinguish points x 
and y as distinct if Ix - y I < L. (An ideal experiment, of course, is a special case 
of L = 0.) If the sensitivity profile of the set-up is denoted by f(r)  then we will 
actually be measuring the field q~(x) "coarse grained" over the scale L: 

@(x) = f~b(x + r) ffr)  dSr (10) 

(The function f i s  taken to be zero for t r ] > L and is of the order of unity for 
] r ] < L. Thus the experiment does not distinguish between points x and x + r 
when ] r ] < L.) The quantity of interest is the probability that @ has a particular 
value 77 (say). Since the probability distribution for ~(x) is given by (8), this can 
be easily seen to be given by 
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a [r = ~l = 

PADMANABHAN 

~r 5 (~r-  n) ~ [~(x)] 

=N f5 5 2@ f ~)'~(x) exp ix [q~I- 71 

X exp 47r2L~ d a x d a y  ]x2.y--~- ] (11) 

Performing the integrations (for details, see Reference 8), we get 

( 1 ~1/2 .2 
1~ [r/] = ,27rA2 / exp ( -  ~ T  ) (12t 

with 

f dak If(k)l 2 
a ~ =Z~ (2~r)a 21kl (13) 

Suppose we take f(r) to be the Gaussian sensitivity profile, 

={ 1 ~3/= exp( -  Irl='~ 
f(r) \21rL:] 2L: ] (14) 

then, from (13) we get 

f dak 1 12 L~ 
A ~ =L~ | r2n~3 If(k) = (15) j (  ) Ikl 4rr 2L2 

For any other choice off(r)  with a characteristic width of L, the answer will be 
of the same order: A 2 "~ L~/L 2 . 

Thus as long as one confines oneself to length measurements averaged over 
many Planck lengths (i.e., for L >> Lp), A is almost zero and the probability in 
(121 is sharply peaked at r/= 0. The physical distance between the two events 
(x, y) is hardly affected by quantum fluctuations. However as the accuracy of 
measurement increases (L -* 0), the dispersion in quantum fluctuations grow and 
length determinations become fuzzy. Using (12) and (6), one can show that the 
probability that two points (x, y) are separated by a proper distance R is given by 

( 1 ~1/2 expF- (R-Ro)2_] 
P(R) =\2no 2] L 2o 2 _1 

(1 6) 

where 

R o : [ x - Y [ ,  a 2 =Ro 2 L~ 1 L2 4rr2 (17) 



PLANCK L E N G T H  AS THE LOWER BOUND 219 

To have a well defined concept of length between two points, one must have 
o 2 << Ro 2 implying L >> Lp.  As the measurement becomes more and more ac- 
curate, we can only talk about the probability for a particular value for the 
length. The concept of definite proper length breaks down at L ~- Lp. Equation 
(16) is the main result of this analysis. 

w L o w e r  B o u n d  to Proper Length  

Classically nothing prevents one from considering two events that are arbi- 
trarily close; the proper length tends to zero in this limit. However it is physi- 
cally meaningless to talk about distances below the resolution limit L. If this 
resolution limit is taken to zero, then equation (16) predicts infinite uncertainty 
in the proper length. 

Instead of considering the fluctuations in the conformal factor, one may 
look at the expectation value of the line interval 

(Olds2lO)==-(gik(X)) dxi  dx  k =(1 + (dp2(x)))dxi dx  k gilt (18) 

However, it is well known that (q52) diverges for quantum fields. Also we notice 
that ds 2 involves for its definition two events x i and y i  = x i + dxi. It is better to 
consider (q~2 (x)) as the limit 

(~b2(x)) = lim (~b(x) ~b(y)) (19) 
x - + y  

In flat space, the limiting distance between two space points x and y (at some 
time t, say) is given by 

lim 12(x,y)= lim - Ix -  y[2 = 0 (20) 
X-'~y X'-+y 

in the classical limit. When quantum fluctuations are included, this is replaced by 

lira (12(x ,y) )=- l im ( l+ (~(x ,  0 r  2 (21) 
X-+y  X-+y  

The expectation value can be evaluated by standard field theory techniques and 
is given by (see Reference 8) 

(r t) ~b(y, t ) ) -  (47r2)-1L~ (22) 
I x - y l  = 

Therefore 

{ E (4rr2)- lL~] ]z} lira (12(x,y))= lira - 1 [ x - y  
x - - , y  x - * y  tx  - y 12 

= L~/4rr 2 (23) 
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In other words, the expectation value of the proper length between two events is 
bounded at Planck length! This is another simple conclusion that follows from 
the study of quantum conformal fluctuations. 

This result is far more general than indicated by the derivation above. First 
of all, for any two events x i and x i + e i, in flat space, the expectation value has 
the form 

Thus, 

<o I~(x + e) ~(x) l o> = 
(4rr2) -1 Lp2 

(d  ei) 
(24) 

I (47r2)-1 L~_I 2 (25) 
lim (12(x,x+e)) = lim 1 + -~ eiei=(4rr2)-lLp 

e ~ o e - - ,  o et ei 

(The plus sign shows that the lower bound arises from the limiting value of time- 
like separations.) The result can also be generalized to arbitrary curved space- 
time because of the following fact: In any space-time, 

(Lp/27r) 2 
lim (r ~(y))  = + s2 (26) 
x---~y 

where s 2 is proper interval between x and y (see, e.g., Reference 9). It is clear 
that the analysis can be carried over to any space-time. 

This result has important implications for the ultraviolet divergences which 
arise in the quantum theory of fields. Consider the Green's function for a mass- 
less free scalar field if(x) in flat space. It is usually taken to be (Sis the action 
for the scalar field) 

Go(x,y) - f ~)~(x) ~(x) ~ (y )exp  2 ~[4] (27) 

However, we have just seen that even flat space undergoes vacuum fluctuations 
of gravity. Thus one should average Go (x, y) over the fluctuations of the metric 
tensor, obtaining 

G ( x , y ) = ( G o ( x , y ) ) - f ~ ) ~ ( x )  f~ ) ~ (x ) exp i (g+  Sg) (28) 

Since 

we get 

(47r2) -1 
Go (x, y) - (x - y)= (29) 

(47r2)-1 (477)-1 
- 2 (30) G(x,y)  ~ ((x _ y)2) ( x - y ) :  + (4zr2)-ILp 
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In other words, the Green's function is finite at the coincidence limit x = y! As 
is 'well known, this feature can eliminate the ultraviolet divergences in quantum 
theory. (This is equivalent to a momentum space cut off  at Planck energy.) 
Admittedly the arguments have to be refined further; but the physics is trans- 
parent in (23) itself. 

It was always felt that Planck length should play a fundamental role in 
quantum gravity. Our analysis confirms this thought and shows that Planck 
length plays a crucial role in all physics. It provides a lower bound to all proper 
length scales. 
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