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This article is a review of interpretations which have been given to some 
well known solutions of the vacuum equations. Special attention is paid 
to those of Schwarzschild, Curzon and Kerr, and it is argued that the 
bizarre topologies they have been endowed with are physically unrealistic. 
Among others discussed are the two-centres solution of Bach and Weyl, 
the NUT solution, and solutions for an infinite line-mass, both static and 
rotating. 

1. I N T R O D U C T I O N  

Rela t iv i s t s  have not  been  di l igent  in i n t e rp re t ing  so lu t ion  of  E ins te in ' s  
equa t ions .  T h u s  in the  book  of exac t  so lu t ions  [1] one f inds m a n y  whose 
phys ica l  m e a n i n g  is unknown,  or  only  p a r t i a l l y  unde r s tood .  

One reason  for th is  m a y  be t h a t  i n t e r p r e t a t i o n  is difficult and  uncer-  
ta in .  A n o t h e r  reason is the  following. T h e  obse rva t iona l  ver i f icat ion of  
genera l  re la t iv i ty ,  now and  in the  near  fu ture ,  is l ikely to  d e p e n d  on a very  
smal l  n u m b e r  of  exac t  solut ions:  those  of  Schwarzschi ld  and poss ib ly  Kerr ,  
cosmologica l  models ,  and  p e r h a p s  some g r av i t a t i ona l  wave metr ics .  Some 
workers  feel it  is a was te  of  t ime  to  t r y  to  i n t e rp re t  met r i cs  which have no 
p r o s p e c t  of  obse rva t iona l  verif icat ion.  

Yet i t  seems to me t h a t  we canno t  c la im to u n d e r s t a n d  genera l  rela-  
t iv i ty  unless  we can d e t e r m i n e  the  phys ics  beh ind  the  exac t  so lu t ions  we 
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know. Of course, it may be- - though it seems a heresy to say so - - tha t  
behind some of the solutions there is no physics, or wrong physics. If this 
is the case it is important  to know it, and so find out the physical limits 
of the theory. 

To me the essence of interpretation is to understand the s o u r c e s  in the 
exact solutions. This is certainly so in the classical field theories of gravi- 
tation and electromagnetism. In the vacuum metrics of general relativity 
sources appear as singularities, and singularities in Einstein's equations 
are notoriously difficult to handle. Much of this article will be about sin- 
gularities and what they are likely to represent. I shall also in some cases 
allow the filling in of the singular region with matter.  

My intention in this work, and in Part  II to follow, is to describe 
the known physical interpretations of some of the more important  exact 
vacuum metrics, i.e. solutions of 

R~k = O. (I) 

(The cosmological constant is set equal to zero throughout.)  Therefore 
it is a review article. There are many relevant papers which should have 
been mentioned but  have not, and I wish to apologise to disappointed 
colleagues. The omissions have been caused partly by my ignorance and 
part ly by the need to keep this article to a readable length. Where research 
papers have been reported in textbooks I have usually given the textbook 
reference. I emphasise that  this article is not a history of interpretations. 

Two omissions should be explicitly mentioned. First, I have paid 
scant attention to a considerable literature on static plane metrics: these 
are only briefly mentioned. Secondly, I have left out altogether solutions 
referring solely to topological defects such as strings and domain walls. 

The Schwarzschild solution is discussed in Section 2. Section 3 is about 
static axially symmetric metrics, including brief descriptions of the singu- 
larity structure of the Curzon solution, and the Bach-Weyl two-centres 
solution. In Section 4 I turn to stationary axially symmetric solutions, 
paying particular attention to the Kerr, NUT and van Stockum metrics. 
Section 5 considers how far understanding can be improved if one allows 
in-filling of singular regions with reasonable matter.  There is a conclusion 
in Section 6. 

I use units such that  c = 1, G = 1, and signature . . . .  ~-. General 
relativity is abbreviated as GR. The following letters always denote con- 
stants: a, b, e, h, k, m, ml ,  ms, r0, zl, A, B, C, R0, e, 00, r ~, ~0. 
By a physical singularity I shall normally mean a region where the scalar 
K = R~,/>y~R ' ~ 7 8  is infinite. 
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2. T H E  S C H W A R Z S C H I L D  S O L U T I O N  

If  one solves (1) for a static, spherically symmetr ic  space-time one 
expects to obtain a metric referring to the field outside a single static, 
spherical particle. This is the Schwarzschild solution. I shall not a t t empt  
to give a complete description of all the efforts that  have been made to 
interpret the Schwarzschild solution. A good account is given in [2]. Here 
I confine myself to some of the more important  aspects. 

The  Schwarzschild metric in its s tandard form is 

ds 2 = - (1 - 2 m r - 1 ) - l  dr  2 - r2(dO 2 + sin 2 ode 2) + (1 - 2 m r - 1 ) d t  2, (2) 

r > 0 ,  ~ ' > 0 > 0 ,  2~r> r  oo > t > - o o .  

In this gtt is zero at r = 2m, which I shall call the Schwarzschild surface. A 
test particle moving on a radial geodesic takes infinite coordinate t ime to 
reach r = 2m from a finite radial coordinate whereas it can be calculated 
that  such a particle falls from r = r0 to r = 0 in finite proper time. Hence 
the coordinate t is unsuitable near r = 2m, and metric (2) has a coordinate 
singularity there, though not a physical one. 

Although (2) has a coordinate singularity at r = 2m it is a valid 
solution of the vacuum equations for r > 2m and r < 2m. For r < 2m 
something very strange happens :  the coefficients gr~ and gtt both change 
sign so t becomes a space-like and r a time-like coordinate. The metric 
is neither static nor spherically symmetric.  This is the region of final 
approach to the black hole which is supposed to exist at r = 0; notice 
tha t  this (physical) singularity is space-like. Evidently the object being 
described is very far from the static spherical particle which we may have 
expected to find when we set out to obtain (2). 

For r > 2m (2) is physically sensible and is used with success to 
predict the GR tests of the solar system. However, sometimes the isotropic 
form of the metric is used. This is obtained by transforming to a new 
radia] coordinate p by 

r = p  1 +  , p > O ,  (3) 

which takes (2) into 

ds 2 = - 1 + -~p (dp 2 4" p~dO 2 + p2 sin ~ 0dr 

+ ( 1 - ~ p p ) 2 ( l + ~ p p ) - ~ d t  2. (4) 
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There is still trouble at the Schwarzschild surface, which is now at p = �89 
but the black hole region r < 2m of (2) does not occur because (3) gives 
no real values of p for v < 2m. In fact, if we assume p > 0 the region 
r > 2m of (2) is covered twice by (4), once by p > �89 and once for 
�89 > p > 0; but the region r < 2m is not covered at all. The simple 
transformation (3) illustrates an important  and frustrating feature of GR 
(and one which bedevils the interpretation of solutions): locally equivalent 
solutions of Einstein's equations may have different topologies. 

A transformation similar to (3), namely 

r = p2 + 2m, cr > p > -r 

was proposed by Einstein and Rosen [3], and leads to the metric 

ds ~ = -4(p~ + 2m)dp2-(p~ + 2m)2( dO2 +sin 2 0dr + 2 m ) - l  dt 2. (5) 

This has no spatial singularity, but  it still has the Schwarzschild surface, 
now at p = 0. Like the isotropic form (4) it covers r > 2m twice and 
r < 2m not at all. 

Let us revert to (2). There are several different transformations that  
regularise the Schwarzschild surface [2]. One of these yields the Kruskal 
metric which, according to current conventional wisdom, gives the best 
description of Schwarzschild space-time. It is the maximal analytic ex- 
tension; it is geodesically complete, which means that  time-like and null 
geodesics drawn from any non-singular point either reach spatial or null in- 
finity, or end on a physical singularity. This is not the case in (2) because, 
as we saw, infalling geodesics cannot cross r = 2m in finite t. 

The transformation from Schwarzschild coordinates (r, 0, r t) to 
Kruskal coordinates (u, 0, r v) is given in the standard textbooks, e.g. [2]. 
The Kruskal metric is 

ds 2 = 32m3r-1e-r /2m(dv  2 - du 2) - r2(dO 2 + sin 2 Ode 2) (6) 

where r is given implicitly by 

u _ v2 = ( 2 m ) - l ( r  _ 

v is a time-like coordinate and u is space-like. The Schwarzschild surface 
transforms into u = +v and is quite regular in the new coordinates. The 
big surprise is that  the physical singularity at r = 0 transforms into two 
singular space-like lines 

v = +(1 + u2) 1/2. 
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Fig.  1. The Kruskal diagram. 

The Schwarzschild space-time in Kruskal coordinates can be pictured 
as in Figure 1 (~, r omitted).  The space-time does not exist above and 
below the singular lines r = 0, 2 but extends indefinitely in both  horizontal 
directions. A null cone is drawn schematically at a point P: it illustrates 
the neat feature of Kruskal coordinates tha t  u = =t=v + C, ~ = O0, r = r 
is a null geodesic, so in the diagram every null geodesic is parallel to one 
of the two straight lines r = 2m. 

Four regions are shown in Fig. 1. Of these I and II  correspond to 
r > 2m and 2m > r > 0 in Schwarzschild coordinates, and the join 
between them is now smooth.  Regions I ~, II ~ duplicate I and II  so that  the 
Kruskal manifold is twice as big as that  supporting (2). 

There is an impor tant  difference between II  and I I '  arising because v 
has the t ime sense shown by the arrow. A test particle at Q in II  must hit 

2 Recently Lynden-Bell and Katz [4] have suggested a method of extending the Schwarz- 
schild metric through r = 0. This leads, roughly speaking, to an imCmlty of Krusl~l 
diagrams, one above the other. 
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the upper singularity r = 0 as it proceeds, always within the upper null 
cone like the one shown. This is the reason for the black hole property 
that  a test particle once within 2m > r > 0 cannot escape the singularity. 

Now consider a test particle at Q' in II'. It too must proceed within 
the upper null cone at every point in its trajectory, and so must ultimately 
cross r = 2m outwards. So we have the strange situation that  a test 
particle in II cannot escape, whereas one in II' not merely escapes, but  
is expelled! Moreover, whereas the test particle in II is being at t racted 
to the upper singularity, as one would expect, the one in II' is apparently 
being repelled from the lower singularity. 

A further queer property of the Kruskal diagram concerns the two 
regions r > 2m, namely I and I' in Fig. 1. Observers O and O' in the two 
regions are totally disconnected and cannot communicate. The diagram 
tells us that  every spherically symmetric particle has two distinct worlds 
outside its Schwarzschild surface. It also turns out, following a detailed 
examination [5] of the transformation (r, 0, r t)---~(u, 0, r v) that  there is a 
curious time reversal in I' relative to I. Consider a geodesic such as ABCD. 
It transpires that  as a test particle proceeds along BC the Schwarzschild 
time t increases (i.e. in I t increases with v). However, along the portion 
B'C ~ of the geodesic A~B'C'D ~ the Schwarzschild time decreases (in I' t 
decreases with v). 

It seems to me that  the Kruskal interpretation, though mathemati-  
cally complete, does not make physical sense. A possible escape from its 
difficulties is described in Section 5. 

A related transformation of the Schwarzschild metric, that  of Novikov 
[2], throws some light on the Kruskal diagram, without removing all its 
obscurities. (For a clear and critical review of the Kruskal and Novikov 
representations see Ref. 5). The metric in Novikov coordinates (R, 0, r 
r) is 

ds  2 = - S d R  2 _ r2(dO 2 + sin 2 Ode 2) + d r  2, 

where S, r are complicated functions of R and r .  In these coordinates the 
curves 

R = R0, 0 = 00, r = r r = s 

are geodesics, 7- being the proper time along them. Now imagine test 
particles being thrown out of the central mass at different speeds (less 
than the speed of escape) and suppose each carries a clock which records 
v. Attach a specific number R to each test particle as it is ejected and let 
it keep this number throughout  its trajectory. Arrange that  the particles 
are ejected so that  each arrives at its summit when its clock reads r = 0. 
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This scheme gives a hypothetical way of setting up a Novikov coordinate 
system. It assumes that  particles can be thrown out of a black hole. 

The central mass in the Novikov diagram (as in the Kruskal one) is 
represented by two singular lines, and it is clear from the foregoing why 
this is so. One singular line represents the ejection of test particles forming 
the coordinate system, and the other represents their return to the central 
mass. Thus the fact that  there are two singular lines says nothing about 
the mass, but  is forced on us by the coordinate system chosen. 

The Novikov diagram is like the Kruskal one but distorted (see Ref. 2); 
in ]particular, it has four regions like I, I ~, II, II ~ of Fig. 1. It may therefore 
be that  in the Kruskal representation also the presence of two singularities 
is a coordinate effect. 

Before leaving the maximal analytic extension of the Schwarzschild 
manifold I shall refer to the solution for a static spherically symmetric 
charged particle, although this is not a vacuum space-time. Its metric is 

2m e2, ~ - i  
ds 2 = - (1 - ~r + - ~ )  dr2 - r2(d02 + sin2 OdeS) 

+ 1 - - -  + e ?  (7 )  
r 

and the ranges of the coordinates are the same as in (2). If e 2 > rn ~ the 
only singularity is at r = 0. If e 2 < rn 2, gtt has two zeros, and coordinate 
singularities like that  at the Schwarzschild surface occur. The maximal 
analytic extension of this manifold is much more complicated than that  of 
Schwarzschild. It has an infinity of pairs of singular lines r = 0, an infinity 
of pairs of regions like (I, I') (II, II') of Fig. 1, and others besides [6]. It is 
hard to believe that  this extension has any relevance to charged masses in 
the real world. I shall refer to this again in Section 5. 

The Kruskal version of Schwarzschild has not been accepted by all 
relativists. From quite a copious literature I mention three lines of heresy. 
1. The Schwarzschild surface is a real singularity and the coordinates 
should end there. (See, for example Refs. 7-9). Certainly something phys- 
ical happens at r = 2m, so this is an arguable case. 
2. Spherical symmetry is a mathematical  abstraction and no real object can 
be precisely spherically symmetric; therefore we must beware of properties 
that  depend crucially on the spherical symmetry. This interesting view 
was put  forward in [8]. In its favour is the following: the Schwarzschild 
space-time has been proved to be the only static vacuum one with a non- 
singular horizon, so the slightest depature from spherical symmetry will 
destroy the Schwarzschild surface at r = 2rn. 
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3. All the static spherical bodies we know have boundaries outside their 
Schwarzschild surfaces, so one should use (2) as an exterior metric matched 
at r = r0 > 2m to a suitable static interior. This will be mentioned again 
in Section 5. 

These three theories would be falsified if a black hole were definitely 
observed. 

3. STATIC AXIALLY SYMMETRIC METRICS 

These can be expressed in Weyl form 

ds 2 = -e-2#[e2U (dz 2 + dr 2) -t- r2dr ~] + e2~ dt ~, (8) 

where/~ and u are functions of z, r and the coordinate ranges are 

co > z > - c o ,  r > 0, 27r _> r > 0, co > t > - c o .  

One has in mind a background of cylindrical polars as the spatial coordi- 
nates, p satisfies Laplace's equation 

02# 02# 1 0It 
Oz = + ~ + - r - - 0 r  = 0 '  (9) 

and u is determined (up to an additive constant) by the field equations 
once p is prescribed. For weak static fields p can be interpreted as an 
approximate Newtonian potential of the gravitational field. This gives us 
a guide to the physical meaning of exact Weyl solutions, though it has to 
be used with caution, as we shall see. 

The singularities of (9) will refer to sources of the gravitational field, 
but  (8) may also have singularities representing stresses on the z-axis. The 
latter is free of singularities provided 

lim u = 0. 
r--~0 

Singularities of this type are called conical singularities. They arise from 
a topological defect angle, as in cosmic strings. 

T h e  C u r z o n  so lu t ion .  
The simplest Weyl solution for an isolated system has 

1 _ _ 2 _ 2 D - - 4  p = - - m R  -1, t t = - - g , , ,  ,- n~ , R = - F ( z  2-4-r2) 1/2. (10) 

This is called the Curzon metric, p in (10) is the Newtonian potential 
for a spherical particle, but  the Curzon solution is different from that  of 
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Schwarzschild (it has fewer Killing vectors). Its far-field is that  of a mass 
a t / ~  = 0 with multipoles on it. 

It was discovered twenty-five years ago that  the Curzon metric has a 
strange singularity structure [10], quite different from that  of the Schwarz- 
schild solution. It has no horizon (gtt does not vanish for R > 0) but it has 
a curvature singularity at R = 0. This is naked. However, as first shown 
by Gautreau and Anderson [11] it has also at R = 0 what is known as a 
directional singularity. This means that  the limit of RabedR abed (---=: K)  
depends on the direction of approach to the singularity. In fact K ~ 0 
as R ---, 0 along the z-axis, but K --~ c~ as R -- 0 is approached from 
any other straight line direction. (For the behaviour of K along curved 
approaches see Ref. 12). This suggests that  the Weyl coordinates might 
be extensible through the singularity. 

This extension has recently been carried out by Scott and Szekeres 
[13]. They  interpret the Curzon singularity as a ring on which some time- 
like geodesics terminate. Others pass through the ring and here the ex- 
tended Curzon solution can be matched to Minkowski space-time. The 
latter is another world not contemplated in the ordinary view of the Cur- 
zon metric. Strange phenomena, reminiscent of those occuring in the 
Kruskal diagram, are envisaged: for example, an observer falling from 
the Minkowski region through the ring sees a material object created out 
of nothing. 

None of this arises, of course, if we stick to the region R > R0 > 0. 
Interior solutions for R0 > R > 0, matched to the Curzon metric are known 
[14,15], so there are non-singular space-times which are asymptotically 
Curzon. 

T h e  7 - m e t r i c  
There is a useful Weyl metric referring to an isoluted body, which gener- 
alises the Cnrzon metric. It is (8) with 

rn R1 + R2 - 2a 
/z = ~a log R1 + R2 4- 2a ' 

_ rn2 [ 4R1R2 ] 
~' 2a 2 log (R1 4 : R - ~ ' - -  4a 2 ' 

where R1,2 = +[  (z a) 2 + 
The Curzon metric is obtained by letting a -+ 0 and keeping m finite. 

The 7-metric gives Schwarzschild if one puts m --- a; this shows that  in 
Weyl coordinates the Newtonian potential p corresponding to Schwarz- 
schild is that  of a finite rod with mass density 1/2 and length 2m. Weyl 
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coordinates represent Schwarzschild space-time for only the region outside 
the Schwarzschild surface. 

The 7-metric was discovered by Darmois [16]. It has been rediscovered 
in various forms and investigated many times since [11,17-21]. It has a 
directional singularity if m > 2a, but  not for m < 2a [11]. At infinity 
the metric represents an isolated body with monopole and higher mass 
moments. An interior solution for it has been given [22]. 

S o l u t i o n  f o r  a c i r c u l a r  disc 
The 7-metric is easily derived if one uses (8) in prolate spheroidal coor- 
dinates. Zipoy [18] used instead oblate spheroidals and obtained a met- 
ric which he regarded as having a ring singularity and a double sheeted 
topology, somewhat in the style of the Scott-Szekeres interpretation of the 
Curzon metric. However, Bonnor and Sackfield [23] showed that  this com- 
plicated topology was unnecessary and that  Zipoy's metric could represent 
the field of a disc in 3-space with euclidian topology. 

Other solutions for circular discs are known. These include several for 
counter-rotating discs [24-26], and another [27] which was used to s tudy 
the cosmic censorship hypothesis. 

S t a t i c  s o l u t i o n  fo r  two  a r t i c l e s  
What  is probably the most perspicacious of all exact solutions in GR was 
discovered in 1922 by Bach and Weyl [28]. Equation (9) which generates 
the metric (8) is linear, so solutions may be superposed. Let us take 

-- - m l [ r  ~ + ( z  - a)~] - 1 / 2  - m~[r 2 + ( z  - b ) 2 1 - 1 / 2 .  (11) 

This evidently refers to two Curzon particles on the axis of symmetry, one 
at z -- a and the other at z =-- b. But this is a static solution: how can 
there be two separate masses at rest? 

The theory answers this question in a beautiful way. When one works 
out the function v corresponding to (11) one finds that  there is a singularity 
along the z-axis between the particles, representing a stress holding them 
apart.  3 But wait, we know that  in gR a stress generates a gravitational field; 
why does this not show up in (11)? The answer, mysteriously wonderful, 
is that  the mat ter  carrying the stress is of precisely the sort (not realisable 
in nature) that  has zero active gravitational mass, and so will exert no 
gravitational field [29]. The force exerted by the stress on each particle is, 
in the lowest approximation, m l m 2 ( a  - b) - 2 ,  as expected [30]. 

Alternatively, by a different choice of arbitrary constant one can make the stresses 
stretch from each particle to infinity, i.e. if a > b, the singular lines can be on oo > 
z > a and  b > z > - o o .  
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A similar solution applies to two Schwarzschild particles in Weyl coor- 
dinates. These solutions must follow because GR is not only a field theory 
of gravitation but  also contains its equations of motion. Tha t  these results 
can be achieved in this way shows that  some, at least, of the singularities 
in Grt have remarkable physical validity. 

T h e  C - m e t r i c  
This metric 

ds ~ = - A - 2 ( z  -t- y ) - 2 ( F - l d y 2  + G - l d x  2 q- B - 2 G d r  2 - B 2 F d t ~ ) ,  (12) 

where 
F = - 1  ~ y~ - 2 m A y  3, G = 1 - x 2 - 2 r n A x  3, 

was discovered by Levi-Civita in 1918, and its history has been described 
in [31] and [32]. Some recent references are listed in [33]. The metric's ap- 
pearance gives no indication of its physical meaning beyond the fact that  it 
is static and can be taken as axially symmetric. Searching for its interpre- 
tation was rather  like detective work in a mystery story. Although static 
in the form (12) the C-metric has an extension which is time-dependent, 
and which refers to the field of accelerated particles [33]. Therefore it will 
be described in detail in part II of this work. 

In f in i t e  l i ne - mass  (ILM) 
Even simpler than form (10) for p is the cylindrically symmetric potential 

# = 2cr log r 

originally considered by Levi-Civita. In Newtonian theory this is the grav- 
itational potential of an infinite uniform line-mass (ILM), ~ being the mass 
per unit length. The corresponding Weyl metric is [34] 

ds2 = - r S a 2 - 4 a ( d z  2 + dr  2) - C - 2 r 2 - 4 a d r  2 q- r4adt2; (13) 

this contains two significant arbitrary constants ~, C whereas the Newto- 
nian solution contains only one. C refers to the deficit angle, and cannot 
be removed by scale transformations. Both ~r, C are presumably fixed by 
the internal composition of the ILM. 

1 (see below) and K is infinite at r = 0 for all C, ~r except ~ = 0, er = 
nowhere else. Thus metric (13) has a singularity along the axis r = 0, and 
we can tentatively take this as referring to an infinite line source. There 
is no horizon. 

For small c~ it seems reasonable to regard (13) as describing an ILM 
with mass e per unit coordinate length. There are two reasons for this. 
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First, the time-like geodesics, interpreted as test particle paths, are what 
one would expect from the Newtonian analogue. However, circular time- 
like geodesics exist only for 

1 (14) ~ > c r > O .  

(Note that  ~ = 1 means about  1028g cm-1).  Secondly, one can, for 
satisfying (14), match (13) with a perfect fluid interior lying within 

a boundary r = const. [35,36]: this gives a satisfactory global solution. 
When ~ �88 the circular geodesics become null, suggesting a limiting 
case. Metric (13) with ~ = �88 C = 1 is a transform of one of Kinnersley's 
type D metrics [37] (his Case IVB with his C = 0). 

When ~ = �89 the metric (13) is flat so clearly ~ does not for all its 
values refer to the mass per unit length of an ILM. In [34] we showed that  
the strength of the gravitational field diminished as ~ increased from �88 
to �89 and we were inclined to agree with Lathrop and Orsene [38] that  

= �88 is the greatest positive mass per unit length for an ILM, and that  
for (r > �88 metric (13) must refer to something else. However, there has 
recently appeared [39] a solution for an ILM, with incompressible fluid 

1 Such an ILM would not allow interior, which permits values of cr > ~. 
circular geodesics. This puzzle is so far unresolved. 

S e m i - i n f i n i t e  l i ne -mass  (SILM) 
This was discussed in some detail in [34]. In general the metric contains 
only one arbitrary constant ~ and takes the form 

ds 2 = - X - 2 a {  (X/2n)4a2(dz2 § dr 2) § r~dr 2 } § X2adt 2, (15) 

where 

x = R +  z l ) ,  1/2, 

log X is the Newtonian potential of a SILM of line-density ~ lying along 
the z-axis from zl to ~ (if e = - 1 )  and from zl to - ~  (if e = +1). As 
in the case of an ILM it seems reasonable to assume that  (15) gives the 
space-time of a SlLM of line-density a if ~ is small. However, for ~ = �89 the 
metric is flat; in fact it is a uniformly accelerated metric. 

For ~ = 1 the metric (15) acquires an extra arbitrary constant C: 

ds 2 = - ( C X ) - 2 {  ( X / 2 R ) d ( d 2  + dr 2) + r2dr 2} § C2X2dt  2. (16) 

This admits four Killing vectors whereas in general (15) admits two. There 
is evidently something unusual about this case and in [34] I interpreted it 
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not  as a SILM at  all bu t  as an infinite hollow cylinder with an appl ied 
grav i ta t iona l  field paral lel  to  its axis. I f  in (16) we put  C = (4m) -1/4,  

= +1 ,  zl = 0 we ob ta in  a t r ans fo rm of one of Kinners ley ' s  type  D 
metr ics  [37], name ly  his Case IVB with  his C = - � 8 9  and m = �88 4. 

For a > 1 I was unable  to in terpre t  (15), bu t  clearly it does not  refer 
to a SILM. For some values of  ~r < 0 one can in terpre t  (15) as a SILM 
with  negat ive  mass  density, bu t  it tu rns  out  t ha t  when cr = - � 8 9  (15) is a 
t r a n s f o r m  of T a n b ' s  p lane  met r ic  (see below).  

Superpos i t ion  of two or more  SILMS of  different a can be used [40] to 
in terpre t  some well known v a c u u m  metr ics  of  Ehlers and K u n d t  [41] which 
have not  so far  been  explained.  

T h e  ILM and SILM metr ics  i l lus t ra te  a c o m m o n  difficulty in in te rpre ta -  
tion. A cont inuous change in a p a r a m e t e r  (in these cases a )  may  produce  
sudden  and inexplicable changes in physical  meaning.  

M e t r i c s  f o r  a n  i n f i n i t e  p l a n e  
Let us submi t  the SILM metr ic  (15) to the coordinate  t r ans fo rma t ion  

r = Zp,  2c(z - zl)  = Z 2 - pU, r = r t = t; (17) 

the result  is 

ds 2 :: - Z S a 2 - 4 a ( Z 2  "}- p2)l-4a2(dZ2 + dp 2) - Z2-4C'p2dr 2 -b Z4~ 2, (18) 

and we assume Z > 0, p > 0. T h e  whole of  the Weyl space- t ime associa ted  
with (15) m a p s  on to the half-space Z > 0, the s ingular i ty  r - z l)  < 0, 
r = 0 going into the  plane Z = 0. T h e  t r ans fo rma t ion  (17) opens  out  the 
SILM singular i ty  and spreads  it over a plane.  

This  i l lustrates  one of the difficulties in in terpre t ing  space- t imes .  
Should one regard  (15) or (18) as more  realistic? Or  are they  bo th  equally 
valid, (15) as a represen ta t ion  of a SILM, and (18) as a represen ta t ion  of  an 
infinite plane (in general  non-un i form)?  

1 (18) reduces,  via an obvious t r ans fo rma t ion  to In case cr = - g  

ds 2 = r  + dr  2) - ( ( dx  ~ + dy2), ~ > 0, (19) 

a met r ic  originally due to Taub ,  which in [1] is called the general  p lane  
s y m m e t r i c  v a c u u m  solution.  In fact  I showed [42] t ha t  this solut ion has 
no fewer t han  four different mani fes ta t ions  in the  l i tera ture--sILM wi th  

=: --�89 plane,  ILM wi th  ~ = - � 8 9  and a R o b i n s o n - T r a u t m a n  solution. 
Each fo rm offers a different physical  in te rpre ta t ion .  

Al though  Horsk~ (see, for example ,  Ref. 43) has s tudied a t r ans fo rm 
of (19) and  argued t h a t  it describes the grav i ta t iona l  field of  a uniform,  
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infinite plane, this does not seem to me established. In favour of this 
interpretation is the nature of the four Killing vectors: one is time-like but  
the three space-like ones are easily recognisable as characterising plane 
symmetry. On the other hand we find [42,44,45] that  test particles are 
repelled by the singularity at ~ = 0 so if (19) represents a plane the plane 
has negative mass, and there seems to be no corresponding solution for 
a plane of positive mass. Consider now the family of test-particle paths 
orthogonal to ~ = 0, all with the same value of x, but  each with a different 
value of y. One finds that  the proper distance between neighbouring paths 
of coordinate separation dy is [~(r)]l/2dy, where ~(r)  is the ~ coordinate 
of the particle at t ime v. Thus the proper separation changes with time. 
If ~ = 0 represents a plane, one would expect the trajectories to remain 
parallel. 

In [42] I argued that  the SILM interpretation of (19) is the most real- 
istic. 

4. S T A T I O N A R Y  A X I A L L Y  S Y M M E T R I C  M E T R I C S  

An appropriate form of the metric is 

ds 2 = -e-2U[e2~(dz2 + dr 2) + r2dr 2] + e~g(dt + wdr 2, (20) 

which reduces to the static Weyl metric (8) when w = 0. The vacuum field 
equations reduce to two for p and w, 

+ o r 2 -  2 r2 [ \ o z /  + \ o r /  l '  (21) 

Oz -~z + ~rr 0r  = 0, (22) 

and, ~ in the static case, v is determined by quadrature up to an additive 
constant when p and w are prescribed. 

Equation (20) extends the Weyl metric to steadily spinning sources. 
For an isolated axially symmetric body (or system of bodies) the conditions 
at spatial infinity are known from the weak-field approximation to be 

# ..~ - m R  -1, w ~ 2hr2R -3, R = +(z ~ + r2) 112, (23) 

m being the mass and h the angular momentum. An intensive search over 
many years for solutions of (21) and (22) satisfying (23) has produced only 
a few metrics for a massive spinning body. 
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Papape t rou  [46] obtained a class of solutions of (21) and (22) by 
put t ing 

O---z 0--~ + Or Or - O. (24) 

I t  is then found tha t  

e -2"  = a cosh r  + bsinh r 

where r satisfies Laplace's equation, and w can be obtained from (24). This 
solution therefore depends on one harmonic function plus some constants. 
It turns out, however, that  there is no member  of this class satisfying 
the boundary  conditions (23) with m h  # O. Thus the Papapet rou class 
contains no solution referring to an isolated spinning mass. The same 
applies to some related classes which can be generated from the Papape t rou  
class (R,ef. 1, p.204). 

T h e  K e r r  s o l u t i o n  

A metric for a steadily spinning isolated axi-symmetric body was first ob- 
tained by Kerr. It  is convenient to write it in Boyer-Lindquist  coordinates 
[2]: 

ds 2 = - E A - l  dr ~ _ EdO 2 _ E - t  sin 20[ ( r  2 + a2)dr  - adt] 2 

+ E--1A(dt _ as in  2 Ode) 2, 

where 
P. = r 2 + a ~ cos ~ 0, A = r 2 -- 2 m r  + a 2. 

r here is like the radial coordinate of the Schwarzschild metric, to which 
(25) reduces if a = 0. For large r (25) has the correct form to represent 
a spinning mass m with angular m om en t um  m a .  (25) has two Killing 
vectors, one time-like (but not hypersurface-orthogonal) and the other 
space-]ike, referring to axial symmetry.  

The Kerr solution exhibits the dragging of inertial frames expected 
from early weak-field calculations in GR. A gyroscope held at fixed r 
would according to (25) precess relative to the distant stars, and the frame- 
dragging requires a correction to Kepler 's  law for circular geodesics [47]. 
The nearer the centre the stronger the dragging until, at  a value of r given 
by 

r l  = m 4- (m 2 - a 2 cos 2 0) 1/2, 

called the static limit, an observer cannot remain at rest relative to the 
fixed stars: the dragging is too strong and he must  orbit the centre in 
the sense of the spinning body. Mathematically, the reason is that  as r 
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falls below r l ,  gtt changes sign and the world-line r = r0, ~ = 00, r = r 
becomes space-like. 

For still smaller r the horizon is reached at 

r+ -= m + ( m  s - a2) 1/2, 

which is real if m 2 > a 2. This is like the Schwarzschild horizon and is taken 
to indicate the unsuitability of Boyer-Lindquist coordinates for small r. 

The region between rl  and r+ is called the ergosphere. It is possible 
to extract  energy from the Kerr black hole by throwing certain particles 
into the ergosphere. This is called the Penrose process. 

To extend the Kerr solution inside the horizon r+ it is necessary to 
use different coordinates, and the system usually chosen is Kerr-Schild 
coordinates. A good account of the extensions of Kerr space-time is given 
in Ref. 6, Ch. 5. They  differ according as a s > m s. In all cases there is a 
physical singularity at r = 0, cos ~ = 0, which is interpreted as a ring, not 
a point. The  extension takes place through the ring and r ranges from+oo 
to - ~ .  Allowing negative values of r leads to closed time-like lines since 
gr162 can become positive. 

The simplest of the three cases is a 2 > m 2 because then A does not 
vanish. This case has a single ring singularity. For a s < m s A can vanish 
and the maximal analytic extension is extremely complicated, containing 
an infinite number of sigularities, and resembling the Reissner-NordstrSm 
solution for an electric charge with m 2 > e s (see Section 3). Once again, 
I question whether this picture represents real physics. This issue will be 
taken up again in Section 5. 

The Kerr solution is remarkable for three reasons. The first is that  
Kerr managed to find it. His methods were quite unlike those generally 
available at the time, and even today the derivation of the Kerr metric is 
not easy. (The mere verification of it is of course straightforward.) The 
second is that  the Kerr solution with a s < m s is the only stationary, axially 
symmetric, vacuum and asymptotically flat solution with a non-singular 
horizon. This means that  the singularity at r = 0 would not be naked 
(i.e. visible to outside observers), and popular wisdom has it that  the Kerr 
solution represents the end-point of gravitational collapse of a rotating star 
to a black hole. 

The third reason why the Kerr solution is remarkable is that  so far, in 
spite of many attempts,  no entirely convincing stationary interior solution, 
with realistic matter ,  has been discovered. (For reviews of interior solutions 
see Refs. 48,49.) This distinguishes it from the Schwarzschild solution, for 
which several physically reasonable interiors are known. 
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Other solutions for spinning b o d i e s  
After Kerr 's discovery many workers were stimulated to look for other 
metrics for isolated spinning bodies, and some have been found. Other 
two-parameter solutions are given in [50,51] and three-parameter solutions 
in [52-55]; the extra parameter refers to higher multipole moments. The 
maximal analytic extensions of these solutions have not been given. 

Mention should also be made of a class of stationary metrics due to 
Debever and to Plebafiski and Demiafiski [1]. These contain the cosmo- 
logical constant (which can be put zero) and six parameters. Two of the 
latter refer to electric and magnetic charges, leaving four dynamical para- 
meters, apparently referring to mass, NUT parameter (see below), angular 
momentum and acceleration. The precise physical meaning of this met- 
ric, and its relation to others, for example the Kinnersley Case II metrics 
referred to below, has not been studied as far as I know. 

T h e  d o u b l e  K e r r  s o l u t i o n  
In 1980 Kramer and Neugebauer [56] published a vacuum solution referring 
to two Kerr bodies. This generalises the static Weyl solution for two 
non-spinning particles (Section 3). The feature of special interest is the 
gravitational action on one body caused by the spin of the other, which 
has no counterpart  in Newton's theory. It appears that  the spin-spin 
interaction can balance the gravitational attraction of two positive masses, 
and keep them aparl~, without the need of a strut  between them [57-59]. 
It has been stated that  this effect would be detectable if we knew G more 
accurately [60]. 

T h e  NUT s o l u t i o n  
This was discovered by Newman, Unti and Tamburino. It is a member of 
Papapetrou 's  class, but  it is more simply written in a different coordinate 
system as follows [1]: 

ds 2 = - U - l d r  2 _ (r  2 + a 2) (d~ 2 + sin 2 ~dr 2) 

+ U ( d t  + 4asin 2 �89 2, (26) 

U ---- (r 2 + a 2 ) - l ( r  2 - 2 m r -  a2). 

a is called the NUT parameter.  If a = 0 it reduces to the Schwarzschild 
metric, but  if a ~ 0 (as we now assume) it is very different. There are 
singularities along the symmetry axis at 0 = 0 and ~ = ~r; the former of 
these may be removed by transforming to cartesian coordinates but this 
does not get rid of the one at 0 = ~-. The latter has been treated in two 
different ways. 

Misner [61] showed that  the rotation axis could be made completely 
regular by introducing two coordinate patches, one at the north pole and 
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the other at the south. However, to do this consistently one has to in- 
troduce a periodic t ime coordinate. Thus every observer on a coordinate 
time-line moves on a closed path.  The hypersurfaces r = const, have the 
topology of S 3, instead of R • S 2. The invariants of the Riemann tensor 
depend only on r so these hypersurfaces are homogeneous. The coordinate 
r is allowed to run f rom - ~  to +oo.  In later work [62] Misner showed 
that  his interpretat ion of the NUT metric was connected with earlier work 
of Taub [63]. In this, r is interpreted as a time-like coordinate, T, and the 
pace-time is a sort of cosmological model, homogeneous on the hypersur- 
faces T = const. 

In 1969 I gave a different interpretat ion of the NUT metric [64]. I 
accepted 0 = ~r as a genuine singularity to be regarded physically as a 
semi-infinite massless source of angular momentum,  and supposed there 
to be a source of mass centred on r = 0. Support  for this picture came 
from a model studied by Sackfield [65]. 

A related interpretat ion draws an analogy from Dirac's theory of mag- 
netic monopoles [66,67]. The source of the NUT metric is taken to be an or- 
dinary mass together with a gravitomagnetic monopole (sometimes called 
mass and dual mass, or dyon). Both are centred on r = 0 and the sin- 
gularity on 0 = ~r is the analogue of a Dirac string. This accounts neatly 
for the homogeneity of the hypersurfaces r = const. However, whereas in 
electromagnetic theory the string has no physical effects, the singularity 
along 0 = ~r in the NUT solution does affect space-time [68]. 

S t a t i o n a r y  s o l u t i o n s  w i t h  c y l i n d r i c a l  s y m m e t r y  
If  we suppose that  p, t,, w in (20) are functions of r only, the equations 
(21) and (22) can be completely solved [1], apparently giving the space- 
t ime for an infinitely long rotat ing line source. The metric has physical 
singularities at r = 0 and r = cr or both; these have not been investigated 
in detail. However, the singularity at r = 0 can be covered by a regular 
region containing mat ter ,  and I shall describe the solution in this case. 

The complete solution, including an interior metric for rotating dust, 
correctly matched at a boundary  r = r0, was obtained in 1937 by van 
Stockum [69]. I t  has some unexpected features [70]. The exterior metric 
has three cases I , I I , I I I  according as the mass per unit coordinate length Cr 
satisfies cr < ~0, Cr = or0, ~ > a0 respectively, where 4 ~0 ~ 0.13 relativistic 
unit (=  2 • 1027g cml) .  

When ~r < 1 the metric is locally flat at infinity; for ~r = 1 the algebraic 
invariants of the Riemann tensor are constants, the metric has an extra  

4 In  [70] the  fo rmula  for the  mass  pe r  un i t  coord ina te  length ,  there  deno ted  by  ra, 
con t a ined  a p a r a m e t e r  q. In  the  resu l t s  desc r ibed  here  we pu t  q ---- O. 
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Killing vector and the exterior space-time is homogeneous. For ~' > I these 
algebraic invariants are zero at r = 0 but infinite at r = ~ .  It thus appears 
that  for cr > 1 the exterior metric does not describe an infinite rotating 
source alone, even though it can be matched to an interior describing one. 
In what follows we shall assume a < 1. 

The criterion for an axially symmetric space-time with genuine steady 
rotation (as distinct from coordinate effects) is that  the time-like Killing 
vector shall not be hypersurface-orthogonal (h.s.o.) It turns out that  in 
Case I the time-like Killing vector is h.s.o, and by a coordinate trans- 
formation the exterior can be brought to the Levi-Civita static form for 
a n  ILM (Section 3). 5 ']?he diagonalisation of the metric in Case I was also 
achieved in [71]. Case II has a h.s.o. Killing vector, but it is null. Case III 
has no h.s.o, time-like or null Killing vector. 

The result in Case I is surprising. One would expect the rotating 
mat ter  to drag the inertial frames outside the body, as happens in the Kerr 
solution. The rotation has some effect on the exterior: see footnote 5. 

In Case III the exterior contains closed time-like lines. Other space- 
times in GR, notably those of Kerr and GSdel, contain closed time-like 
lines but  in these the physical nature of the sources is obscure. Case III 
has a well-understood source, namely a cylinder of rotating dust. Thus 
we have a specification for a time-machine in GR, though admittedly there 
are technical difficulties in making a cylinder of infinite length! The mass 
per unit length required is about 102Sg cm - I ,  a few orders of magnitude 
greater than figures mentioned for cosmic strings. 

Embacher [72] studied rotating hollow cylinders and in the low mass 
case found a similar result, namely that  the cylinder did not drag the 
inertial frames outside. See also [73]. 

T h e  K i n n e r s l e y  s t a t i o n a r y  m e t r i c s  
In his paper [37] on metrics of Petrov type D, Kinnersley exhibited a 
subset (his Case II) of six about which he wrote laconically "We propose 
that  all the metrics of Case II represent spinning particles and correspond 
to the six different ways we can pick a velocity four-vector and an angular- 
momentum vector orthogonal to it." It would be very interesting to see a 
complete investigation of these solutions, and their relation to other known 
metrics such as, for example, those in [74]. 

5 T h e  t r a n s f o r m a t i o n  u s e d  to achieve this  i n t roduces  a per iodic  t ime  coord ina te .  T h e  
t rm l s fo rmed  m e t r i c  m a y  be  called locally, b u t  no t  globally, s ta t ic .  
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5. MATCHING W I T H  I N T E R I O R  SOLUTIONS 

In the Schwarzschild solution difficulties of interpretation disappear if 
one matches the metric (2) with a static metric satisfying 

1 R Rik  -- 7gik = --87rT/k, 

where T/k is the energy tensor of some suitable matter .  The best-known 
interior is that  of Sehwarzschild which is usually taken to refer to incom- 
pressible perfect fluid. There are others, and some of these can be used 
as models of stars. This procedure is available only for boundaries of 
coordinate radius r0 > 2m. 

The Curzon metric can also be matched to a realistic static interior 
[14,15], and the bizarre topological difficulties are then irrelevant. Work by 
McCrea [75] matching Curzon to a thin shell as source showed, however, 
that  the ratio (mass/characteristic radius) has unity as upper bound. A 
similar result was found for some other axially symmetric sources. 

As already remarked in Section 4 no completely satisfactory stationary 
interior for the Kerr solution has yet been found. If it could be proved that  
none exists this would rule out the Kerr metric as a possible exterior for 
a s tat ionary astronomical body. This would not be a disaster as (21),(22) 
must allow many such exteriors though only a few are known. 

There is a further application of the interior equations which may help 
to eliminate the strange topologies of the maximal analytic extensions of 
the Schwarzschild, Kerr, Reissner-NordstrSm and possibly other solutions. 
A good description of this is given in the book by Wald [76]. The basic idea 
is that  these extensions are not models of single, isolated bodies in the real 
world. Their  function is to explain complete gravitational collapse. Now 
to do this collapsing mat ter  must appear somewhere in an augmented 
representation, and this mat ter  covers up the non-physical parts of the 
maximal analytic extensions. We shall illustrate this in the simplest case, 
i.e. the Kruskal diagram. 

If we consider a collapsing cloud of spherically symmetric mat ter  
(e.g. dust) and add it to the Kruskal diagram we get Figure 2. 

During the early part  of the collapse there is no singularity, r =- 0 
denotes the centre of the cloud, and ordinary Sehwarzschild (region I) 
applies outside. When the radius becomes less than 2m, region II appears 
and eventually the dust forms a black hole at r = 0. The non-physical 
regions I' and II' are covered up by the shaded part  of the diagram which 
represents matter.  

It is not clear whether a similar process can be applied to make sense 
of the maximal analytic extension of the Kerr solution. The metric for the 
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Fig. 2. Spher ical ly  s y m m e t r i c  dus t  col lapsing to a s ingula r i ty  

collapsing mat te r  is unknown but must  be very complicated because a col- 
lapsing, rotat ing cloud will radiate gravitational waves. For the Reissner-  
Nordst rbm metric with m S > e 2 it may be that  a collapsing, charged cloud 
could cover the non-physical regions [76]. 

I referred in Section 3 to an interior metric for an ILM, and in Sec- 
tion 4 to one for a rotat ing ILM. These, with the corresponding exterior 
metrics, constitute globally regular solutions with reasonable sources. Un- 
like the black hole space-times, they are genuinely t ime-independent,  and 
this applies for arbitrari ly small cylinder radius. 

6. CONCLUSION 

The analytic extensions of some well known exact vacuum solutions 
are mathemat ica l  constructions which are physically unrealistic. For in- 
stance, the Kruskal form of the Schwarzschild space-time contains two 
space-like singularities and two non-communicating infinite regions. The 
maximal  analytic extension of the Kerr metric with m S > a 2 has an infinite 
number  of singularities and an infinity of regions like the one an ordinary 
observer sees. 

There seem to be two ways out of the difficulty, both  involving the ad- 
dition of mat ter .  Consider the Schwarzschild solution. First, one can sim- 
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ply insert a static core of realistic mat ter  covering the trouble at r _< 2m. 
This procedure is well known, and works only for bodies with coordinate 
radius greater than 2m. The second way out is to suppose that  the black 
hole forms at the end of a collapse, that  the collapse requires infalling mat- 
ter and that  this mat ter  covers up the unphysical parts of the maximal 
analytic extension. This was discussed in Section 5. It is not clear that  
the embarrassing parts of the maximal analytic extensions can in all cases 
be extinguished in this way. 

Singularities in the Schwarzschild, Kerr and Curzon metrics cause 
much bewilderment so it is a relief to come across one which has a clear 
physical meaning. This is found in the two-particle solution (Section 3) 
where the conical singularity between the particles fulfils exactly the func- 
tion required of it. 

Turning to infinite sources one finds difficulties of another kind. In 
Sections 3 and 4 we considered metrics for infinite cylinders. The vacuum 
regions have no horizons, the location of the singularities seems straightfor- 
ward and they can be covered by realistic mat ter  (at least for some range 
of the parameters).  Yet there are strange, unexplained features in the 
vacuum exteriors, such as the closed time-like lines in the ultrarelativistic 
rotating cylinder. The nature and meaning of plane-symmetric metrics 
does not seem to have been settled. The NUT metric continues to live up 
to Misner's description of it as "a counterexample to almost anything". 

One of the problems in interpreting metrics arises from the coordinate 
freedom inherent in ca.  A singularity interpreted as a plane in one coor- 
dinate system may become something quite different in another, as indeed 
we saw in connection with metric (19). The use of Killing vectors does not 
necessarily settle the ambiguity. 

Another difficulty, arising in the cylindrical metrics, is that  a continu- 
ous variation of parameter (e.g. a) may bring about discontinuous changes 
in physical interpretation. Although it is reasonable when ~ is small to 
take it as the mass per unit length of an infinite cylinder, one does not 
know what the cylindrical metrics refer to for larger g. 
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