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Abstract  

After brief reviews of the Geroch and spin-coefficient formalism approaches to null infinity, 
we present a dictionary which translates between the two formalisms. 

w Introduction 

There are now (at least) two frequently used methods of  studying the asymp- 
totic structure of  space-time: (1) the method of  spin coefficients [ 1 ] with the 
related Penrose [2a, b] conformal techniques, and (2) Geroch's [3] reformula- 
tion of  the conformal approach with the Ashtekar [4] method of  abstraction 
and formalization to problems on null infinity I .  

Though the two methods are obviously equivalent, the words, ideas, and 
formulas which arise appear to be very different, so much so that workers using 
the different formalisms frequently find it difficult to communicate with each 
other. 

It is the purpose o f  this note to try to bridge this gap by presenting what is 
in essence a dictionary translating between the two formalisms. The basic tool 
used in this note is the introduction of  three independent vectors and three inde- 
pendent one-forms on ~ which can be thought of  as the pull-backs to ~ o f  a null 
tetrad system from the full four-space. 

In Sections 2 and 3 we summarize, respectively, the Geroch results and the 
results from the spin-coefficient point of  view and give their relationships. Fi- 
nally in Section 4 we briefly describe the asymptotic symmetry of  ~. 

1 This work has been supported by a grant from the National Science Foundation. 
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We emphasize that this note is not intended as a review [5] of  either formal- 
ism but as an aid in going from one to the other. It is assumed the reader is fa- 
miliar with one of  the formalisms. Furthermore, we point out that we have 
taken certain liberties with notation; most of  the time we use the abstract index 
notation, but on occasions we switch to component or form notation without 
carefully distinguishing between them. 

w The Geroch Approach 

Following Geroch [3 ], we let (]1~, gab) be a space-time. By a simple asymptote 
of  (M, gab) we mean a manifold M with boundary I with a smooth metric gab, a 
smooth scalar ~ together with an imbedding of / I I  into M (by which we identify 

with its image in M, namely, M -  I )  such that 

1. onFI,  gab= g22~ab; 
2. on l ,  g2 = O, na = Vag2 =/= O; 
3. the restriction of  n a -z gabnb to I;  i.e., n__ a = i*n a is complete and the mani- 

fold o f  the orbits of  n_ a is diffeomorphic to S 2. I has topology of  S 2 • R ;  
4. there exists a neighborhood U I o f / i n M  such that gab satisfies the vacuum 

Einstein equations on UI n M. 

If  (34, gab, ~'2) constitute a simple asymptote so does (M, 602gab, 6092) for all 
smooth positive co. One thus has the freedom of additional conformal transfor- 
mations. Asymptotes so related are called equivalent. 

The fundamental equation (which is derived from the transformation law of  
the Ricci tensor under conformal rescalings) from which most of  the basic re- 
suits follow is 

~Sab + 2Van~ - fgab = g2-1Lab = ~ - l  SaCgbc = 0 (1) 

with 

Sab -- Rab - ~Rgab, Sab -~ Rab - 1Rgab (2a) 

f =  ~2 -1 na na (2b) 

Equation (1) is to hold on U I. From (1) and the Bianchi identities on Rabca the 
following equations (also on Ut) can be derived [3] : 

Sab nb+ Vaf  = 0 

V[aSblc = -Kabcan a 

Vm Kabcm = 0 

ViaKbclcle = 0 

where Kabca = ~2-1 Cabca. 

(3a) 

(3b) 

(3c) 

(3d) 

Equation ( I )  restricted to I implies n a n a = 0, i.e., I is a null hypersurface. 
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Furthermore if we introduce o n M  a null tetrad system n a, m a, ~l a, I a such that 
na la = ma ma = 1 with all other contractions vanishing, then it is implied that n a, 

m a, and ~ a  are tangent to I. 
The next step should be to define an abstract manifold g which is a diffeo- 

morphic copy o f / a n d  build the intrinsic structure in it. However, we do not 
lose generality if we simply identify g with I and think of  the pull-back opera- 
tion to g ,as being the restriction to 1. The action of  the restriction operator i* on 
any tensor can be obtained if we give the action of  i* on the tetrad basis (and the 
related forms) by 

i*n a = n a, i*l  a =  l a 

i *m a = m a, i*m a = m a 

i , ~ a  = ~ a ,  i*ma = ~ a  

i*n a = 0 

(4) 

where the underlined quantitiesn a, m a ,  etc. (which are the same a s  n a, m a, etc. 
on I )  reminds us that they should be thought of  as living intrinsically on ~. 

Note that though there is no meaning to i*l  a, terms of  the form lanb are 
allowed but pull back to zero. Roughly speaking an arbitrary tensor which de- 
pends at least in one slot on l a is either nonintrinsic to ~ or trivial when restricted 
to ~. 

The basic idea of  Geroch was to express or describe the asymptotic structure 
of  M in terms of  the pulled-back fields of  M on ~. There are essentially two types 
of  structure: (a) the universal or geometrical structure which is common to all 
simple asymptotes, and (b) the dynamic structure which describes the gravita- 
tional fields. 

Before proceeding further we point out that a natural restriction of  the per- 
missible choices of  ~ (in the equivalence class of  asymptotes) greatly simplifies 
the analysis. In the following, this choice is always made, namely, ~2 is chosen so 
that f =  0 at I [or using Eq. (1) VaVb~"~ = 0 at I ] .  Geometrically this means n a is 
covariantly constant on I. This limits the rescalings to those w such that ~ n ~  : O. 

The two basic universal fields of  g are n a and gab = i 'gab .  By applying i* to 
(1) and using f = 0 we have 

~ n  gab : 0 ( 5 )  

From n a = gabn  b = 0 one can conclude that gab is a degenerate metric with 
signature (0, +,~). Note that if we write gab = 2~anb)  + 2m(amt0 then gab = 

2rn(a~b). 
Condition (3) tells us that g has the structure of  the bundle S 2 • R with S 2, 

the base space B, being the manifold of  orbits of  n__ a and R representing the inte- 
gral curves of  n_ a. If  one denotes the projection 7r: ~ -+ B, equation (5) is telling 
us that gab is the lift o f  the positive definite metric hao that lives on B, i.e., 

gab = ~ h a b .  
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Under the allowed conformal transformations 

I = ( . 0 2  = ~o-lna gab _ gab, n-- 'a (6) 

the tensor 

a b pabed = n n gca (7) 

is gauge invariant. The studies of  the symmetries of  ~ is based on solutions to 
~.~Fabca = 0. We will return to this in the last section. 

One of  the advantages of  the particular choice of  6o's is that it allows one to 
define in a very simple way the pull-back of  the covariant derivative operator 
Va. It is easy to show [3] that D a =- i*Va is unique and lives intrinsically on ~. 

From Vagbc = 0 and 7a na = 0 [from equation (1) o n / ]  we have 

Dagbc = 0  and Dan b = 0  (8) 

and for covectors a a such that aa na = 0 at I we have (from Vaab = V[aOtb] + 

1 DaUb = D[a~b] + ~ a _  g__ab (9) 

where gc  is any vector such that ct c - d - gcaa__ . If further ~a satisfies ~nOta = 0 
then equation (9) says, in effect, that the covariant derivative of  vectors ortho- 
gonal to n a which are Lie transported along n__ a, is by the metric connection of  
the base space B. 

We can obtain the full action of the intrinsic connection by operating D a on 
the covectors l a, ma, and ma- In order to do this it is useful at this point to intro- 
duce coordinates on J in the following fashion: 

(a) choose ~" and ~- as the (complex) stereographic coordinates on B with the 
result that ~" and ~-are constant on the null generators (the integral curves o f n  a) 
on ~ and (b) choose an arbitrary cross section of ~, then "slide" it up and down 
by the integral curves of  n_ a. This yields cross sections u = const such that ~.n u = 1. 
The coordinates on ~ are thus (u, ~', ~). 

Using these coordinates the one- forms/ ,  ~ ,  m could have been chosen pro- 
portional to du, d f ,  and d~-, respectively and the vectors n__ a, Na, m a proportional 
to ~/Ou, ~ / ~ ,  and ~/a~'. Specifically we would have 

d~ d~" 
m -  Vr-~p, ~ -  x / ~ P '  l= du (10a) 

ma ~.--~---= x/-2 e ~ ~la ~--~--= x / ~  e ~ n a 0 - ~ 
- -  ~ X  a ' - -  ~)X a ' - - O X  a ~ U  

with 

d~d~ 
gab dxa dxb - p2 (10b) 

[For the unit sphere P = �89 + ~'~-).] 
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Since m a satisfies ~-nma = 0 and rn a n a = 0, the universal part of  the intrinsic 
connection is given by Dam b = n*(Vamb) where Va is the metric connection of  
B and m a = rr m a. 

If one now gives the action of  Da on an ot c such that Otc n c r  0 then we will 
have the general action o f D  a. In order to simply express this action we let 
~ =_/c of  equation (10a) and set 

Dal__b - - O b l a  = ')'(ab) (1 1) 

from l a  na = 1 and D a n t' = 0 we have 

~ a b n  b = 0 (12) 

3'ab can be decomposed into a trace-free part and a trace part 

1 mn_ 
7__ab = o~ + ~gaag 7ran (13) 

where gmn satisfies gmngam gbn = gab, i.e., it is defined up to multiples of  n_ a and 
henceby  (12) defines the trace unq-quely. The trace of  T__ab is pure gauge and can 

o 
be made to vanish by an appropriate choice of  ~ .  Oab, which is the radiation data 
for the asymptotically flat space and constitutes the "nonuniversal" part of  the 
connection, Da, on ~, can be written 

o --o 
Oab = t7 m___am b + o~ (14) 

In the spin-coefficient formalism o ~ is known as the asymptotic shear. 
We will now collect some of  the relevant equations from M that are pulled 

back by i* to g. 
From the fact that the unphysical Weyl tensor Cabcd vanishes on I (see Ref. 3, 

Theorem II) we have on I 

C~b~d = 0 

(15) 
Rabcd ='ga[cSdl - gb[cSdla 

(There is no implication that Kabca =-- ~ -1Caaea  vanishes on 1.) From (15) we 
have that the pull-back to ~ of  Raocd involves only the Ricci tensor, i.e., Sab, or 
more accurately Sa ~, namely, 

Sa  b = i*Sa b (16) 

1 d From V[aVbl ke = ~Rabe kcl one has 

D[aDb] kc  = 1 d _ ~Ra~c k_d (17a) 

with 

and 

R__abc d _ d Sc[a~_d]  - g___c[aSb] + (17b) 

Sab = gbcSa c = Sba.  (17C) 
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Note that the pull back ofRabc a is the curvature tensor of  the connection asso- 
ciated with D a . 

The tensors_Rabca, Sab ,Sa  b and S = S a _a  can be explicitly expressed in terms 
of  the connection by replacing in (17a)_k a by ~a, m_a, and ~a ,  respectively, and 
multiplying, respectively, by n__ a, ~ a ,  and m a and adding (using 8a b = / a n  b + 
m a ~  ~ + ~_am ~) obtaining 

1R a = ndDlaDb~c  + maDtaDbl~c  + ~ a D [ a D b l m  c ~ _ _ a b c  _ 

or (17d) 

R a = 2naDlaDb]lc  + ~abc d _abc 

where the second term is the curvature tensor of  the base space and the first 
term can be expressed [from (11)] in terms of  Tab. By taking the trace on a and 
d in (17d), using (17b), we obtain 

S a b "o =-2Oab + �89 (17e) 

and 

Sa a = S  = -_~ + �89 (17f)  

with 3' = 3"abg ab, the curvature scalar of  the base space and dot meaningnaDa. 
Also defining gab - 2m(a~lb) we can write 

_ cb Sab - S a c g  + Aa nb (17g) 

with 

= 2g  DbOac- Da3"- _ Aa ~c o _ �89 a (17h) 

We now consider the pull-back of  the tensor fields K abca and *K abca = 
l~abe fg  c d  to ~. More specifically we consider 2 ~ ey 

K ba =K ab =-Kambnnmnn 

*K ba = *K ab =-*Kambnnmnn 
(18) 

both  of  which allow pull-backs gab and *K ab. One now has the relationships 
[from (3b), (3c), and (3d)] between D a ,S_a b, K ab, and *K ab, 

D[aSb] c = eab m *K rnc (19a) 

DmK am = 0 (19b) 

D m * g  arn = 0 (19c) 

where eabc satisfies eabeeabc = 3! and e abc =-i*(eabcdnd). Knowledge of  D a de- 
termines Sa b (17) which in turn determines *_K ab from (2.19a). The _K ab and 
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*K at', both  of  which come from tensors on M which were duals of  each other, 
are related by 

g a m g  rnb n P * K  rnt" _ = - 6.am p 

, mr, garn g = Cam p r t p K  mr" 

They, however, do not determine each other completely; g at" c o n t a i n s  informa- 
tion about the longitudinal modes of  the field, while *K a~ contains information 
only about the radiation coded in the Da or in the Oat, of  (13). (See next section.) 

Up till now we have only used the gauge condition leading to f = 0 with 
~nr = 0. Most of  the objects discussed (and in particular Sab ) have a rather com- 
pficated transformation law under a change in the conformal factor. There is, 
however, a unique tensor [3] Pat, (depending only on the choice of  conformal 
factor) such that 

-Nab ~ S~ab - Pab (20) 

is gauge invariant, i.e., Nab = Nat  , .  Nat,, which is known as the news tensor, has 
the following properties: 

-Nat,g at' = 0,  -Nat,_n t' = 0,  -Nat, =-Nt,a 

Dla-Nt,] c = eat,m *K~mngnc (21) 

-Nat, = N m a  rnt, .+ N ~ a ~ t ,  

The tensor Paa can be written 

Pat, = }6~gat, + O~ (22) 

w i t h  pat,g ab = O. In the special case of  the conformal factor having been chosen 
so that ~ =  const then Pat, = 0. Using (22) and (17f) we have 

Na b "o o =-2Oat, - Pat, (23) 

so that in the special case of  constant 6~ or in particular in a Bondi frame (where 
gat, is the metric of  a unit sphere) with 6~ = 1 we have 

= -2bah (24a) -Nab "o 

with the news satisfying [4, 6] 

N = - 2 o  ~ (24b) 

To conclude this section we mention that Ashtekar [4] has reformulated the 
material of  this section so that it is intrinsic to ~ with no need for M or the pull- 
back operation i*. 
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w The Spin-Coefficient Formalism 

In this section we will first briefly review the basic ideas of the spin-coefficient 
(S.C.) formalism and some of the results for asymptotically flat space-time all 
expressed in the physical space-time (/~r, gaa). We will then indicate how the spin- 
coefficient formalism appears in the rescaled manifold and how the spin-coefficient 
quantities are related to the fields on ~ of the previous section. 

The basic quantities of the S.C. formalism are the null tetrad field la, ha, rna, 
ma satisfying ~a~ a = -~a~n a = 1 with all other products vanishing, r~ a and ma are 
complex conjugates of each other. The metric tensor takes the form 

gab = 21(ant,) - 2rfi(amo) (25) 

The metric connection is expressed in terms of the 12 complex spin coefficients, 
(the covariant derivatives of each of the tetrad vectors contracted on all indices 
by the different tetrad vectors), e.g., 

ff = Valb " manTb, p = Valb �9 mamb (26) 

etc. (see Ref. 1) many of which have simple geometric meaning. Instead of the 
Weyl tensor Caoca one has its five complex tetrad components: 

~0 = -Cabcd Fa~lbFr ~'11 = -Cabcd "~al~lb~'lcl~ld 

~12 = -Cabcdlal~bmC~ d (27) 

~3 = -Cabcd Ta~b~c~Id, ~4 = -Cabcd "~amb~cmd 

The vacuum Einstein equations are then differential equations relating the 
tetrad vectors, spin-coefficients, and ~'s. 

In the discussion of asymptotically flat space-times, a special choice of coor- 
dinate system is frequently made and referred to as Bondi coordinates. This 
coordinate system is not unique; the lack of uniqueness forms what was origi- 
nally called the Bondi-Metzner-Sachs (coordinate) group [8]. One chooses a 
one-parameter set of null surfaces labeled by u; on the surface, the (null) geo- 
desics are labeled by the (complex) stereographic coordinate ~" and ~, the affine 
length r along the geodesics being the last coordinate. In terms of these coordi- 
nates the tetrad has the form 

ra ax =du 

7 o a _ o  
~x a Or 

~a ~_2_=O___+UO___+XA O-L_ 
~X a ~U Or 3x A 

r~_CO = 0 ~A a 
Ox ~ ~o ~ r  + Ox "~ 

(28) 
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with A = (~', ~). With simple assumptions on the behavior of the ~'s and assum- 
ing the wave fronts (u and r constant) are topologically spheres the Einstein 
equations can be integrated asymptotically. The results, to leading terms, can be 
summarized as follows: 

(a) the Weyl tensor components are 

~o = 4~ -~ + o(r  -~) 

41 = ~tO1 r-4 + O(r -s) 

~ = ,Or-~ + O(r -~) 

~ = $Or-2 + O(r -~) 

4a = qJ~ + O(r -2) 

(b) the spin-coefficient o (the shear of la) is 

"~ = o~ -2 + O(r -4) 

(c) for the tetrad vectors we have 

?a O _ O .~a ~__.~_ = 0.__~_ _ ~ + O(r_ l ) 
Ox a Or' Ox a Ou Or 

r~ a O X,/2P O ~~ O 
- + _ _ _ _ + . . .  

Ox a r O~ r Or 

(d) the metric has (for leading terms) the form 

with 

ds2=du2(1 - 4--~ + . . . ) +  2 d u d r -  r 2 d~d~ 
r - - ~ + ' ' "  

(e) the leading Weyl tensor terms are given by 

~o = _~o 

~o = ~r~o 

4o _ ~o = ~2 oo _ ~2No + No bo _ oo ~o 

(f) with the evolution equations 

~, = _ ~ o  + 3 o o c  

~bo = - ~  + o o 4  o 

(29) 

(30) 

(31) 

(32) 

(33) 

where a dot denotes a/Ou and ~" [9] is essentially 0/0~'. Knowledge of a(u, ~, ~), 
the asymptotic shear, allows, from (32), the calculation of fro, fro, and Im 4 ~ 
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while further knowledge of Re ~o, qjo, and C ~ at o n e  value o fu  gives the Weyl 
tensor to order r -6. 

Equations (29)-(33) summarize the basic properties of the asymptotic 
region of (M, gab).  

Before constructing the asymptote associated with (.~, g, ab) [7] we point out 
a slight technical (or notational) problem which must be overcome before we 
translate from one formalism to the other: the Geroch formalism of Section 2 
uses a signature (- + + +) while the spin-coefficient formalism of this section uses 
(+ - - -) .  Since in the spin-coefficient formalism the tetrad vectors are consid- 
ered to be the basic set of variables (the metric being defined from them) it is 
easiest to arrange the change of signature by changing some of the tetrad vari- 
ables. In particular it can be accomplished, for example, by leaving all the con- 
travariant components of the tetrad vectors unchanged but changing the signs of 
all the covariant components. We will accomplish this in a slightly different way 
which not only changes the signature but reverses the sign of the l a vector (mak- 
ing it past rather than future pointing and hence keeps lana = 1), namely, by 
introducing 

l ' a  = - T  a, T' a = 

"~'a = "~a, ha~, = - n a  

t~7 'a = ~7 a, I~l' a = -1~7 a 

(34) 

we have 

gab = 21(anb) + 2m(amb) 

If we introduce the new coordinate ~ = r-X and choose ~2 = ~, we have, from 
(29)-(34) on I, i.e., at ~ = O, the following: 

d~d~ 
ds  2 = 2 d u  d ?  + p----T- (36) 

We thus have l '  �9 3' = r~' �9 m' = 1 and gab = 21 (anb) + 2rn(amb) .  Noting that co- 
variant differentiation and the curvature tensor in the form Rabcct are unaffected 
by the signature change it is easy, using (34), to see how all the tetrad variables 
change under the signature change and reversal of I a, e.g., 

To now construct the asymptote we must choose a conformal factor f2 that 
vanishes at the boundary (r = ~ )  and a coordinate system which includes the 

2 ~ t  boundary. W i t h  gab = ~2 gab = -~22gab and the choice 

l a = a - 2 Y  'a = -~ '2 -2 l  a, l a = l ~  = l a  

2 ~ t  n a = ~,a = ~a, n a = ~2 n a = -~22~a  (35) 

m a = ~ 2 - 1 ~ , a  = ~2-1 ~ a ,  ma  = ~ 2 ~ ,  a = _ ~ 2 ~ a  
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3 
I a dx  a = du, I a - -  

OX a ~? 

d-( ma 3 = x / ~ e  0 
ma dxa - x / ~ e '  3x  - - ~  3--~ (37) 

na dx  a = d?, n a 
3 

O X  a OU 

0 = 0  ~ =Valb .mare  b (38) 

and finally 

~o = +f2-1 CaacdlamblCm d 

o = _ ~2-1 Caac d lam b ~ c m d  

d7 ~ = - ~2-1 Catw d la md~lcn  d 

t~ o = _ g2- a Cancel man~ lC na 

~o = +~-1  Cabcc l~anb~end 

(39) 

[Note the sign change in the first and last term compared with (27).] 
We now see that Kabed of Section 2 restricted to I is equivalent to the lead- 

O O ing terms of  the physical O's, i.e., to q;o, Cl,  C ~ C ~ and C ~ The pull-back of  
(36), (37) give gaa, l a ,  m a, m a, n_ a , m_ a, N a , while the pull-back of  (38) is equiv- 
alent to (11), (]-3), and (14). The trace part in (13) which was gauge there is now 
determined uniquely because the conformal factor was chosen as ~ = r -1 with 
the r an affine length. 

From the definitions o f K  ab and *K ab in (18) using (39) we have 

K = 2 Re C ~ + 2~  ~ _ + 2 ~  ~ - tg4m_'~ am_m_ t3 _ t)4m- --a--bm (40a) 

*K ab = -2  Im ~~  + 2i~On(amb)  _ 2i~On(aNa)_ - -  _ l~J4 m "  0 amb + ll]14m.-O--a--bm 

(40b) 

from which we see that *K ao is determined from Oaa while_K aa is not. 
Equations (40), with (31), (32), and (35) and 

_G~ =_G~ - Pub = - 2 ( a ~  + 6~ 

Oat~ = 6 ~  + o ~  

constitute the main dictionary items between the S.C. and Geroch versions of  
asymptotically flat spaces. 

A freedom which still exists in the spin-coefficient version would be a dif- 
ferent choice of  Bondi coordinates. This would manifest itself on ~ as a new set 
o f  cuts u '  = u + c~(~', ~), new coordinates ~" and ~-' for the generators, new vec- 

,a ,a - - t a  t r - - t  
tors n ,m , rn , la, ma,  ma and a new f2' as is discussed in the next section. 
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w A s y m p t o t i c  S y m m e t r i e s  o f  

The last topic we want to discuss is how the B.M.S. group arises in both 
formalisms. 

From the Geroch point of  view the kinematical arena is constructed with the 
universal fields that live on ~. Therefore the asymptotic symmetries of  ~ arise 
from considering the diffeomorphisms that preserve the conformally invariant 
universal fields. More specifically, the Lie algebra of  infinitesimal symmetries 
is generated by vector fields ~a that are solutions of  the equation 

~ P a t ' c a  = 0 < > "~g_ab = 2Kg_aa;*~n_ a =-Kn_ a (41) 

for some scalar field K. 
The solutions o f ~ g a a  = 0, ~ n.__ a = 0 of  the form ~a = Ol/,/... a, ~nO~ = 0 are 

called supertranslations and it is not difficult to show [3] that the set of  super- 
translations $ is indeed an ideal in the Lie algebra ~. 

Finally ~ /$  can be obtained by considering the solutions of  

nasa = 0 ,  D(a~b) =ggab, ~n~a = 0  (42) 

since this determines a ~a such that ~a = gab~ b up to addition of an arbitrary 
element of  $. 

Equation (42) tells us that ~a is the lift of  a form living in the base space. 
Therefore s  is isomorphic with the Lie algebra of conformal Killing fields of  
S 2, i.e., s  is isomorphic to the Lorentz group Lie algebra. 

Now as we pointed out in Section 3 there is another way to generate the 
asymptotic symmetries of  ~. 

Since the choice of  a coordinate system adopted for ~ is not unique we can 
ask what is the freedom in the choice of  coordinates and its effect on the vectors 
and forms. For simplicity we restrict ourselves to the infinitesimal transforma- 
tions x a ~ x 'a = x a + ~a(x) .  From the freedom of  initial slice we have the first 
possibility u '  = u + a(~', ~)  with now a(~, ~)  infinitesimal or 

~a = O~n_._a 

The second type of  freedom arises by considering special  conformal transforma- 
tions in the base space, o f  which there is a six-parameter set since B is topologi- 
cally S 2. By a special  conformal transformation is meant a co nformal rescaling of 
B generated by solutions of the conformal Killing equation V(a r/~) = Khat ,  where 
Va is the base space metric connection and ~ = 1 + K. Metrics related by the 
special conformal transformation are transformable into each other by the coor- 
dinate transformation x 'a = x a + ~7 a with ~7 a the conformal Killing vector. This 
coordinate transformation can be lifted to ~ in the following fashion. Since the 
base space metric is changed by hab ~ 00__2 ha b we must have 

n 'a =6d-in a or ~ u  ~ =_~_~ ~)u 
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which implies 

u' : ~ou + t~(~, ~ )  : ( l  + K ) u  + t3(~', ~') 

The demand that the original slice go into itself makes t3 = 0. The conformal 

Killing fields r/a can be lifted to the u '  = const slices giving 

~a = ~a + uKn__a 

Note that in either case 

~a = ~(~-, ~-)n a 

487 

or (43) 

~a = rTa + u K n  a 

one could think of these transformations in the active sense. They generate what 

is called the Bondi-Metzner-Sachs group, with the first expression being the 

supertranslations and the second the homogeneous Lorentz transformations 
(which maps u = 0 into itself). Note that (43) constitutes the general solution to 

the equation for asymptotic symmetries~Lpeg = 0. 
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