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Abstract 

A scalar-tensor theory of gravitation with scale invariance broken spontaneously is examined 
to show ff and how the finite-range force added to the ordinary Newtonian force can be 
composition independent in the EStviSs experiment. 

w Introduction 

Much progress has been and is going to be made in different types of experi- 
ments to test a possible finite-range gravitational force at macroscopic distances 
[1]. The potential between two massive objects may be given by [2] 

V(r) = - Goo(ml m2/r) (1 + ae -fIx) (1) 

One of the theoretical bases of (1) is provided by a version of the scalar- 
tensor theory of gravitation which offers a natural framework in formulating the 
concept of spontaneously broken scale invariance [3-6] ; the ultimate aim of 
the approach is to understand the gravitational constant, on one hand, and the 
masses of elementary particles, on the other hand, in terms of a common origin. 
We proposed [3] a theory by introducing two scalar fields, one of which ac- 
quires a mass, giving rise to the second term of(1).  

On the basis of this theory we now focus our attention on the E6tv6s experi- 
ment. Although this experiment is not designed to measure how the gravita. 
tional force varies with distance, it should tell us whether the finite-range force 
is also composition independent. The answer to this question can be made af- 
firmative from a theoretical point of view. We show this by improving our pre- 
vious analysis to include two or more interacting matter fields. 
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We emphasize that there is no a priori reason why the strength of the scalar 
fields should be proportional to the total energy of a gravitating system; unlike 
the tensor gravitational field with the total matter energy-momentum tensor as 
its source, scalar fields may have sources which are of quite a different nature. 
In our theory, fortunately, the couplings of the scalar fields are related intimately 
to the particle masses which are generated spontaneously in the originally mass- 
less theory. For this reason it is reasonable to expect that the scalar fields couple 
essentially to the trace of the effective energy-momentum tensor of the matter 
fields, some of which are now massive. 

It should be kept in mind, however, that the present accuracy of the E6tvSs 
experiment may not be sufficient to test detailed properties of the finite-range 
force in question; the additional contribution is proportional to the parameter a 
o f ( l ) ,  which could be smaller than 1, and to the ratio (X/R) a , which is < 4 • 
10 -9 for X < 10 km, R being the radius of the earth. (The finite-range force 
gives no contribution in the experiments using the Sun as the gravity source 
[7] .) It is premature to conclude whether composition independence has been 
established or not for the finite-range force, if any, before more detailed infor- 
mation is available for a and X. 

Nevertheless we assume for the moment that composition independence is 
honored by the finite-range force as well, and seek the condition under which 
the source of one of the scalar fields is proportional to the trace T of the total 
effective matter energy-momentum tensor Tuv. Although- T = - T ~  differs from 
Too in any microscopic regions, they should give the same result if they are in- 
tegrated over a static macroscopic object with negligible internal stress, like a 
rigid body. In order to demonstrate the required proportionality, we examine a 
simple nontrivial example of the interacting matter system of a Dirac field and 
a scalar field. 

In Section 2 the basic Lagrangian is presented. We apply the technique of a 
conformal rescaling which is more convenient for the present purposes than to 
work with field equations as in Reference 3. The transformed Lagrangian is an- 
alyzed in detail in Section 3. In Section 4 the condition for the proportionality 
is obtained. The result is extended also to the system of many fermions and 
bosons. A simple choice of the coupling constants is suggested. The final Section 
5 contains discussion and remarks on the nature of the theory. 

w The Basic Lagrangian and Conformal Rescaling 

We assume the Lagrangian 

s163163 +s +s + s 

where 

s = b(�89 - �89 uck ,u - �89 ~,u~ 'u) 

(2a) 

(2b) �9 
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Zo = (2c) 

4 
s = - b  ~ Cri)4-rt~ r (2d) 

r=O 

g2 = - b [(hi r + h: r ~ r  + �89 ( ~  r + g~ if2) ~z ] (2e) 

s = - b e @ ~  (2f) 

where b = det (bi#) with b~# the vierbein field; ~ and ff are the two "gravita- 
tional" scalar fields) As matter fields we introduce a Dirac field �9 and a real 
scalar field �9 which are coupled to each other through the Yukawa interac- 
tion s 

The covariant derivative Du is given by 

1 - - i ]  . Dug1 = (O u + i -4_,a u aii) ~ (3a) 

where the spinor connectionA/] u is defined in the second-order formalism by 

1 k Aqu = ~ b u (eta]- cgk - C j X i ) -  1 -2 k 1 "-s re b u eijktA (3b) 

with 

b (x) 

We easily find that 

c~j = (b~b~ - bVb~/) bk~,v (3c) 

A l = i~Ts 7 l~ .  (3d) 

The curvature tensor is defined by 

Ri]ta v =-AiJ~, v + Aik~AkJ v - (p+-+ v) (4) 

All the constants f,  cr, h's, g's, e, r are real dimensionless so that the Lagrangian 
(2) possesses a complete scale invariance. 

We apply a conformal rescaling 

, A -1 (x) (x) (Sa) 

) A1/2(x) @(x), ~(x)  , A l l 2 ( x ) ~ ( x )  (5b) 

with 

AiBz ---> Aiiu - biu F i + bj~Fi 

Fi = b f  F u = b f  (log A),u 

(6a) 

1 The Greek and Latin letters are used for world and Lorentz indices, respectively. The con- 
stant Dtrac matrices 7i obey ~ {3% 3'j} = ~ij = diag ( -  + + +). The Levi-Civita symbol e i j k l  

is normalized by e 0123 = +1, while ")'5 = i70~1"Y2~3. We use other notations as close as 
possible to those in Reference 3. 

(6b) 
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Substituting (6) into (4) we obtain 

R , A2(R + 6 V u F  u - 6FuF u) (7) 

Notice that the field @ does not appear explicitly here. The first term of (2b) 
can be brought to a pure Einstein-Hilbert action by choosing 

A(x) = Kf -1 ~(x) (ST 

The second term of (7) can be dropped because it finally results in a 4- 
divergence. The last term of (7) combines with the second term of (2b) to give 

- (f~[2~ 2 ) b Z  -1 ok-2 ok, u(o' u (9a) 

with 

Z -1 = 1 + 6 f  -2 (9b) 

This term is shown to be an ordinary kinetic energy term of the field ol de- 
fined by 

q~ = vl exp(7ol)  (lOa) 

where 

7 = ~f-xZ1/2 (10b) 

Equation (10a) may be interpreted as meaning that r has a "vacuum expectation 
v a l u e "  01 . 

w The Transformed Lagrangian 

The remaining terms of (2) are also brought to simpler forms if we redefine 
the fields as 

>~vl f - l ( v2  +r ( l l a )  

> K v l f - l ~ ,  r > ~v l f - l cb  ( l l b )  

The results will be discussed for various terms separately. 
The first two terms of (2a) become 

s163  , b ( l / 2 g 2 ) R  - b �89 'u +be -~'ra, [- �89 'u - "~'~1 

_ 1_.2 l]~, u ~ , u  + ~ eiik eiiklAt - .~ -rv~2AlAle-'Y~ ] (127 

The last two terms in the square bracket, related to the presence of the torsion, 
may not be important in most of macroscopic phenomena in which matter spins 
are always averaged. 

In the potential term s we keep only terms at most quadratic in o's: 

bs > - bfOK -4 [Fo(~) + r~f-tF1 (~) ( - z t l 2$o l  + 02) + K2 f-2F2(~) 

�9 ( �89  - a2)Zl12ol  + K2f-2F3(~) o22 + 0(037] (13a 7 
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} = K,f -x 02 (13b) 

4 

Fo(O = ~ Cr~ r (13c7 
r = 0  

F1 (}) = dFo (~)/d~ (13 d 7 

4 

F2(}) = ~ r2Cr} r-1 (13e) 
r = 0  

Fa (}) = �89 ~-I [F2 (}) - F1 (~7] (130 

The equivalence between (137 and the previous result given by equations (47- 
(6b) in Reference 3 is obvious by replacing x = v2/vl in Reference 3 by ~. 

The potential can be made stationary for cr 1 = a2 = 0 by requiring 

F1 (~) = 0 (t4a) 

from which follows 

F~ (~) = 2 ~F3 (~) (14b) 

The cosmological constant can be avoided if the condition 

Fo(~) = 0 (14c) 

is imposed. Then (13a) is put into the form 

s = -b  �89 rig 2 + O(o a) (lSa) 

where the diagonalized fields are defined by 

o l  = (1 + ~Z) -a/2 (Ol + ~Z 1/2 o2) (15b7 

G = (1 + ~ Z )  -I/2 ( ~ Z m o ,  - o27 (15c7 

and the squared mass of o2 is given by 

#2 = 2f2 ~-2 (1 + ~2Z) F3(~) (15d) 

We assume that the right-hand side of (15d) is positive under the constraints (14) 
for } and c's. The field ol remains massless. 

The same procedure can also be applied to s We find 

s > b{-M C ~ +  [~(3h2 + 2~-lhl)Z1/2ol - h2021 ~r �89 ~- ~2 

+ [v2}(2g~ +}-2g?)ZV201-g~v2o21'~2 +O(o2)} (16a 7 

where 
M = v2(h2 + ~- lh l )  

m 2 = v2~(g~ ~ + U 2 g l )  

give the masses of qs and 4, respectively. 

(16b) 

(16c) 
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We assume that M or rn is of  the order of  GeV, a typical mass scale of  ele- 
mentary particles; we must allow a latitude of  a factor "" l0 s to accommodate a 
wide spectrum ranging from the electron to the intermediate weak bosons. We 
have 

K M  "~ 10 -19 (17a) 

We also recall that, as was shown in Reference 3, results which are reasonable 
from an overall point of  view emerge if we choose 

f ~  1, ~ ~  1, KoI ~ v 2  ~ 1 

gl ~ g 2  ~ hi ~ h2 ~ 10 -19 (17b) 

The second and the fourth terms in (16a) hence describe "gravitational" inter- 
actions of  the matter fields characterized by a small constant K. This justifies 
ignoring the higher-order terms in (16a). 

The Yukawa interaction term is now given the form 

s ..> - b e ( l -  3 7 a ~ ) ~ c b + O ( o  2) (18) 

w Sources o f  the Scalar FieMs 

It is convenient to introduce an effective Lagrangian 

L = - ~ ( ~  + M ) ~ -  � 8 9  � 8 9 1 6 2  a - e ~ r  (19) 

for the matter fields which have acquired the masses as given by (16b) and (16c), 
with the other gravitational effects being neglected. From (19) follow the effec- 
tive field equations, 

(~ + M )  �9 + eCq~ = 0 (20a) 

- ( [3  - m 2) r + e ~  = 0 (20b) 

From (19)we can also define the effective (symmetrized)matter energy-momen- 
tum tensor T~v. By using (20), the trace T is calculated to be 2 

T = - M ~  - m2~b 2 - �89 (21) 

The interaction term does not occur in (21), basically because T measures viola- 
tion of  scale invariance. 

In order to calculate the sources of  ~'s to the first order in ~, we use (20) in 
the sum ofs  s and in the second and third terms in the square bracket of  
(12), keeping terms up to linear in o's. We also use the formula 

~,t~cb,~ = �89 Vl@ 2 - q~[3@ (22) 

2We can modify the theory slightly so that the last term of (21) is absent (the improved 
energy-momentum tensor), but without any substantial changes in the final results. 
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and discard the first term U]O 2 , which is unimportant in the final results. 3 We 
obtain 

s b[�89 (1 + ~2Z)1/2 (h2~qt+g~v2~b 2) e2] (23) 

Notice the absence of ol- The sources a~ of ~ are obtained: 

J1 = 0 (24a) 

J2 = - (1 + ~2Z)112 ( h 2 ~  + g22 v202) (24b) 

As explained in Section I, composition independence for rigid and static 
macroscopic objects will be true ifo72 is proportional to the first two terms of 
(21). (The last term is again neglected for the same reason as in J2 .) The pro- 
portionality follows if 

M/h2 = m 2 ]v~ g~ (25a) 

or, on using (16b) and (16c), 

hi/h2 = ~-l (g ~ /g~ ) (25b) 

It is straightforward to extend the analysis to a system of many Dirac fields 
and scalar fields in mutual interactions through Yukawa couplings of arbitrary 
combinations. We can show that (24a) continues to hold while (24b) is re- 
placed by 

Y2 = -(1  + g z )  '/2 + Z 

where the subscripts in the parentheses label the kinds of fields. The right-hand 
side of (21) is also replaced by the corresponding sum. The condition (25b) for 
composition independence is now put into the form 

h l ( o  = ha(2) = . . . = ~ - 1  gl(~) =~-1 gl(~) = . . .  (27) 
o- 2 h20) h2(2) o2(1) g2(~) 

The obviously simplest and plausible choice is 

hi (~) = gl (9) = 0 (28) 

which implies "specialized roles" of the scalar fields; apart from the mutual in- 
teraction s  ~ couples exclusively to the scalar curvature whereas ff couples 
primarily to the matter fields. 

3 The term 1 [] ~2  contr ibutes  the  addit ional  terms,  

= _ 1  t i f - l z l / 2 ( ]  + ~2Z)-I/2IZ]tlD2 

1 2 -2 = - ~  f Zv2(1 +~2Z)-I/2Da'2 

In the  weak-field limit, [] a'l = ~ ~ [:3 ep 2 gives a I which is " f rozen"  inside the  mat ter  
distr ibution 0 2  . In )~6 we write [] 02 = ([] - V2) 02  + u2~,2. The first par t  again yields the  
frozen component ,  while the second paxt is ~ u 2 / m  2 ~ 10 -a9 as small as J2.  
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For the choice (28) the proportionality is given the form (apart from the 
terms containing [] ~(~)) 

J2 = v21(1 + ~2Z)1/2 T (29) 

The static gravitational potential is simply the sum of the usual long-range part 
and the finite-range part due to the exchange of ~2- From (29) we find 

a = a21 [(1 + ~2 Z)/47ro~ ] = 2 ~-2f-2 (1 + ~2 Z) (30) 

in agreement with equation (13) of Reference 3 with ~ = 1, x = ~. 

w Discussion 

The analyses in the preceding sections may be generalized further to any 
matter systems described by the theories with dimensionless coupling constants 
and the masses generated by o's. Various types of gauge theories, e.g., Weinberg- 
Salam model, will fall into this category, although the relation between Higgs 
fields in these theories and the scalar fields, especially ~k, in the present theory 
is yet to be worked out. It seems likely that only the Higgs fields acquire masses 
through the mechanism discussed here 4 , masses of other fields may emerge as a 
secondary effect from the vacuum expectation values of the Higgs fields. 

One may be suspicious if the effect of interactions, like atomic or nuclear 
binding energies, is not included correctly in (21), which contains no interaction 
terms explicitly. We point out, however, that the terms in (21) do not represent 
energies either. Deviations of (21) from the energies of free constituent particles 
at rest should give exactly the interaction energies under the condition that the 
spatial integrals of T,v other than Too vanish. Notice also that the fields are in- 
teracting fields obeying (20). 

Our theory is somewhat unique in that we started with the (globally) scale- 
invariant total Lagrangian. In some other versions of the scalar-tensor theory, 
the particle masses are either introduced at the outset [8, 9] or generated spon- 
taneously but with some dimensional constants already prepared in the potential 
term [6]. Perhaps the real origin of our nonvanishing v's will be found in "sub- 
traction points" which are required to define quantum loop corrections in com- 
pletely massless theories, s This is another aspect that distinguishes our approach 
from the purely classical theory' in which dimensional constants are introduced 
in the Lagrangian as coefficients of terms allowed from general requirements [9]. 

Although these conjectures on the origin of the dimensional constants do 

4A negative squared mass can be obtained if the sign of the second term of (2e) is reversed. 
s A similar view is also shared by Minkowski [5 ], in his scale-invariant theory. 
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not  affect most  of  phenomenological  consequences, our suggestion [2, 3] X -2 
GmN 4 h-3 c does contain Planck's constant. 6 

Finally we add a comment  on the formal argument on the equivalence prin- 
ciple. The finite-range part V2 = - a G = M e - U r / r  coming from the ff~ exchange 
has no origin in the space-time geometry.  I t  thus appears that  a test particle falls 
off  a geodesic. We find, however, that  V2 (r) is equivalent mathematical ly to the 
contr ibut ion of  a "posi t ion-dependent  mass," as discussed by  Brans and Dicke 
[8],  and is absorbed into the "geometrical"  term V1 = - � 8 9  + goo) by redefin- 
ing the metric asgoo ~ goo - 2V2. This can be achieved by  a conformal trans- 
formation guu ~ (1 + 2V2)guv [8].  A test particle then falls along a geodesic in 
the new geometry.  
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