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Abstract  

We examine the entropy of self-gravitating radiation confined to a spherical box of radius R 
in the context of general relativity. We expect that configurations (i.e., initial data) which 
extremize total entropy will be spherically symmetric, time symmetric distributions of radi- 
ation in local thermodynamic equilibrium. Assuming this is the case, we prove that extrema 
of S coincide precisely with static equilibrium configurations of the radiation fluid. Further- 
more, dynamically stable equilibrium configurations are shown to coincide with locai max- 
ima of S. The equilibrium configurations and their entropies are calculated and their prop- 
erties are discussed. However, it is shown that entropies higher than these local extrema can 
be achieved and, indeed, arbitrarily high entropies can be attained by configurations inside 
of or outside but arbitrarily near their own Schwarzschild radius. However, if we limit con- 
sideration to configurations which are outside their own Schwarzschild radius by at least 
one radiation wavelength, then the entropy is bounded and we find Sma x < MR, where M is 
the total mass. This supports the validity for self-gravitating systems of the Bekenstein 
upper limit on the entropy to energy ratio of material bodies. 

w Introduction 

Recent ly ,  a number  o f  interest ing conclusions and speculat ions have been  

obta ined by  considering gedanken exper iments  involving a self-gravitating gas 

conf ined by a box.  Studies o f  the processes o f  black hole fo rmat ion  and evapora- 

t ion in such a system have led to insights in to  the nature o f  quan tum gravita- 

t ional  dynamics  (see, e.g., [1] ,  [2]) .  However ,  in previous calculat ions [3] o f  
the en t ropy  cont r ibu t ions  o f  the "o rd ina ry  m a t t e r "  in the box  (as opposed  to 
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the entropy of the black hole), the self-gravitating nature of this matter has been 
neglected. The purpose of this paper is to study this effect. 

Our interest in calculating the entropy of self-gravitating radiation confined 
to a box stems mainly from recent work of Bekenstein [4]. He has conjectured 
that for an arbitrary object of "size" R, the entropy to energy ratio is bounded 
by the black hole value, 

S/E < 27rR (1) 

He has supported this conjecture with some calculations of S/E for systems 
in flat space-time. Our main aim is to determine if equation (1) holds for self- 
gravitating systems. 

We begin our investigation in Section 2 by studying the extrema of total en- 
tropy of self-gravitating radiation confined by a box of radius R in the context 
of general relativity. Assuming that such extrema are spherically symmetric and 
time symmetric, we prove that the extrema coincide with static equilibrium con- 
figurations. These equilibrium configurations are studied in Section 3. However, 
in Section 4 we show that these local extrema are not global maxima of entropy. 
For example, configurations of radiation which are well within their own 
Schwarzschfld radius can exhibit arbitrarily high entropies, in violation of equa- 
tion (1). Configurations which are outside o f -bu t  arbitrarily close to - thei r  own 
Schwarzschild radius can also achieve arbitrarily high entropies. However, the 
configurations which are within their own Schwarzschild radius can be produced 
classically only by starting with a white hole. If one rules out the existence of 
white holes [5] these configurations cannot be produced. Furthermore, it is not 
plausible that configurations arbitrarily close to their own Schwarzschild radius 
can be achieved on account of the finite size of the constituents of the radiation. 
A reasonable limit appears to be that the configuration lies outside of its own 
Schwarzschild radius by a (proper) distance D at least as large as the (proper) 
wavelength X of the ambient radiation, 

D > X (2) 

As shown in Section 4, this limits the maximum possible entropy S to the 
Bekenstein formula and gives Smax ~ Sbh. Thus, if our limitation, equation (2), 
is correct, support is given to the Bekenstein limit for self-gravitating systems. 

w Extrema of Total Entropy 

Our aim is to find the maximum entropy configurations of self-gravitating mat- 
ter in general relativity having total energy M and conf'med by a spherical box of 
radius R. We shall neglect all quantum effects except, 9 f course, for the basic 
quantum discreteness of radiation which gives it a well defined, finite entropy. 
In particular, we neglect the Casimir (i.e., zero-point) energy of the matter. In 
the cases we consider, this should be unimportant when the number of species 
of radiation is small, as we will assume. (Note, however, that the argument in 
[4] relies crucially on the magnitude and sign of the Casimir energy.) We shall 
treat gravity via classical general relativity and assign no entropy to the gravita- 
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tional field although graviton contributions to entropy may be included by 

treating gravitons as a species of  radiation. 

In  general relativity, an " instant  of  t ime" is described by a spacelike hyper- 
surface, ~.  The geometry and extrinsic curvature, Kaa ,  of s are related to the 
energy density/~ and momentum density j a  measured by an observer moving 
orthogonal to E by the Einstein constraint equations, 

Da(Kat~ - Khab  ) = 87rJt~ (3) 

(3)R = 167r# + K a a K a ~  - K 2 (4) 

where D a is the derivative operator  associated with the metric hab on the hyper- 
surface, and (a)R is its scalar curvature. The total  m a s s M  of  the configuration at 

the instant of  time represented by  ~ is determined entirely by the geometry of  
Z. On the other hand, the total  entropy,  S,  of the configuration depends on the 
composi t ion and distr ibution of  the constituents of  matter.  Thus, our first task 

in maximizing the total  entropy is to maximize the entropy locally at fixed/a and 
Ja.  We assume that  this is done by put t ing all the mat ter  in the form of  radia- 

t ion in a thermal (black body)  distribution. 
The stress energy tensor of  thermal radiation is that of  a perfect fluid with 

equation of  state P = p / 3 ,  

Tab = pUal2 b + l p (gab  + UaUb) (5) 

where u a is the 4-velocity of  the local rest frame of  the radiation. By the stan- 
dard formulas for black body radiation, the rest frame energy density, p, and 
entropy density, s, are given in terms of  the locally measured temperature,  T, by  

p = b T  '~ (6) 

s -- b T  3 ( 7 )  

where b is a constant  of  order uni ty in Planck units G = c = h = k = 1, assuming 
that the number of  species of  radiation is of  order unity, a Equations (6) and (7) 
allow us to  express the ent ropy density in terms of  the energy density, 

s = a p  3/4 (8) 

where a = ~ b 1/4 . 

We expect that the configurations which extremize total  entropy in a spher- 

3 b is proportional to the number of species, n, of radiation. (More precisely, b is propor- 
tional to 8n B + 7nF, where n B and n F are, respectively, the number of helicity states of 
bosons and fermions.) Hence, a in equation (8) is proportional to n 1/4 . Therefore, accord- 
ing to our formulas, by allowing n ~ ~ we can get arbitrarily large entropy density to 
energy density ratios and can violate the Bekenstein limit equation (1). However, for 
very large n the Casimir energy may become appreciable and invalidate our formulas. 
Nevertheless for large n we still could construct states not confined by box walls (and, 
hence, with no Casimir energy) which initially are confined to a region of size R but have 
S/E  larger than the Bekenstein limit. By using massive particles, the rate of spreading of 
such a system can be made small. 
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ical box of radius R wilt be spherically symmetric. (Indeed, in general we could 
not even define the notion of a "spherical box" for nonspherical solutions.) 
Thus, we shall restrict attention only to spherically symmetric configurations. It 
should be emphasized, however, that we have not proven that there are no non- 
spherical extrema of entropy, and, indeed, we would not expect a proof of this 
statement (or a counterexample to it) to be easier to obtain than a proof of (or 
counterexample to) the conjecture that all static fluid stars in general relativity 
must be spherical. 

The extrema of S for spherically symmetric perfect fluid stars have been 
studied by Cocke [6], who concluded that they correspond to equilibrium con- 
figurations. However, Cocke assumed that the space-time metric was static and 
used the Einstein constraint equations as well as the radial-radial component of 
Einstein's equation (though it was not necessary to use this additional equation 
[7] ) to derive the equation of hydrostatic equilibrium by varying S. We wish to 
derive the fact that extrema of S correspond to static configurations and thus 
cannot assume a priori that the space-time metric is static. Thus, the assumptions 
made in our derivation below are weaker than Cocke's in that staticity of the 
metric is not assumed. On the other hand, Cocke treated an arbitrary perfect 
fluid while we consider only radiation. In addition, there are a number of other 
relatively minor differences between our discussion below and Cocke's, e.g., he 
imposes boundary conditions relevant to a star, whereas we impose boundary 
conditions relevant to a gas confined by a box. 

We begin our analysis of spherically symmetric, radiation-fluid extrema of S 
by arguing that all such configurations must describe a "moment of time sym- 
metry," or must at least represent a possibly non-time-symmetric moment in a 
space-time which possesses a moment of time symmetry. By a "moment of time 
symmetry" we mean that the extrinsic curvature, Kab, of the hypersurface rep- 
resenting that instant of time vanishes. By the Einstein constraint equations, this 
also implies that the radiation-fluid 4-velocity must be orthogonal to the hyper- 
surface. Physically, we expect extrema of entropy to be configurations of time 
symmetry because mass motion of the fluid should cost energy but contribute 
no entropy. For a non-time-symmetric configuration, it should be possible to 
convert the energy of mass motion implied by nonvanishing Kab into thermal 
energy, thereby producing a nearby configuration of higher entropy. The follow- 
ing argument substantiates this physical expectation. 

Given a solution of the constraint equations (3), (4) we can use the Einstein 
evolution equations with a P = 0[3 fluid stress tensor, equation (5), to produce 
a solution of Einstein's equation 

Gab = 87r Tab (9) 

Conservation of stress energy, V a T a b  = 0,  implies that for this solution the en- 
tropy density 4-vector, 

S a = SU a (1  O) 
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[where s is given by equation (8)] is conserved, 

Vas a = 0 (11) 

This means that the total entropy 

S = f s % a d Z  (12) 

is independent of hypersurface Z, where n a denotes the normal to ~. Since the 
space-time under consideration is asymptotically flat we expect-although this 
has not been proven-that  there will exist an asymptotically flat, maximal (i.e., 
K = 0) hypersurface. On such a hypersurface, the "kinetic term" KabKab - K 2 = 
KabKab in equation (4) is positive definite. Thus, ifKab 4= 0, we can modify the 
solution by keeping hat, fixed, scaling down Kab and Ja by a constant factor, and 
increasing/~ to compensate for the decrease in KabKab in equation (4). By in- 
creasing/~ and decreasing da, we increase the entropy density sana of the radia- 
tion. Hence, the resulting solution will have the same total mass (since the metric 
hab is unchanged) but higher total entropy. By evolving these new data, we can 
obtain a configuration of higher entropy nearby our original configuration. 
Thus, for an extremum of entropy, we need Kab = 0 on a K = 0 hypersurface. 
This shows that-modulo our ability to find a K = 0 hypersurface in the evolved 
spacetime-a necessary condition for a configuration to be an extremum of en- 
tropy is that it belongs to a space-time which has a time symmetric hypersurface 

(Kab = 0). 
I f  the evolved space-time of our extremum configuration has a K = 0 hyper- 

surface as we have assumed, then in a neighborhood of this hypersurface it must 
be foliated by other K = 0 hypersurfaces [8]. Our argument above requires for 
an extremum of S that Kat ~ = 0 on each such hypersurface, which implies that 
the space-time is static. However, we shall now prove this fact directly by solving 
for all spherically symmetric, time-symmetric configurations which extremize S 
at fixed M with respect to all variations which preserve spherical symmetry and 
time symmetry. By doing so, we shall prove that the necessary and sufficient 
condition for an extremum is that it be data for a static, equilibrium configura- 
tion of a P = p/3 radiation-fluid. 

For time symmetric data, the initial value constraint equations become 
simply 

(3)R = 16rrp (13) 

We can write our spherically symmetric spatial metric, hab, in the form 

ds 2 =grrdr 2 + r 2 d[2 2 (14) 

In terms ofgrr, we have 

2 d [ r (1-  gr-~r)] (15) 
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Equation (13) has the unique solution regular at the origin, 

where 

(16) 

fo r re(r) = 4rr p(r') (r') 2 dr' (17) 

The total mass M of the solution is determined by the asymptotic behavior 
ofgrr as r -+ ~. We have 

M = lira m(r)=m(R) (18) 
r ---e- o ~  

where we neglect the energy density of the confining box and assume that no 
matter lies outside the box. On the other hand, the total entropy is given by 

S = ;Sana d~ 

=4rra foRpal4 [1 2m_(rr)]-l/2r2dr (19) 

Thus, our task is to extremize the integral 

I=foR[ldm~al4 [ 2 dr/ 2m-(rr)]-*12r2dr (20) 

with respect to all variations ~m(r) which vanish at the end points: 8m(R) = 0 to 
keep M fixed; fi m(0) = 0 for regularity at the origin. Hence, the condition for 
m(r) to be an extremum is simply that it satisfy the Euler-Lagrange equations, 

d ( ~ _  aL =0 (21) dr \am ] am 
for the Lagrangian, 

L =(m,)a/4 (l_ 2--~-)-1/2 rl/2 

where m' = dm/dr. 
Equation (21) yields 

- ~ m"r~ + -~m m,'+ -~m','- �88 , -  : m m = O  

(22) 

(23) 
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This equation can be put in more recognizable form by substituting m' = 4nr2p 
everywhere. We obtain 

d (p + 0/3) [re(r) + 4nr3p/3] 
d--'r- (p/3) = - r[r - 2re(r)] (24) 

Equation (24) is precisely the general relativistic Tolman-Oppenheimer-Volkoff 
equation of hydrostatic equilibrium for a perfect fluid withP = p/3. Thus, the 
requirement that S be an extremum yields precisely the condition that the radia- 
tion fluid be in static equilibrium. 

Thus, we have shown that the static, spherically symmetric equilibrium con- 
figurations of the radiation extremize S with respect to variations which preserve 
spherical symmetry and time symmetry. We now point out that the restriction 
to spherically symmetric and time symmetric variations is not necessary; the 
equilibrium configurations extremize S with respect to all variations which keep 
M fixed. Namely, if we found a nonspherical first order variation for which 
6M = 0 but 6S :# 0, we could average this variation over the rotation group. By 
symmetry, each of the rotated perturbations would have the same 63/= 0 and 
~S :# 0, so by averaging over the rotation group we would produce a spherical 
variation with 6M = 0 and ~S :# 0. Thus, the absence of such spherical variations 
also implies the absence of nonspherical variations. Similarly, if a non-time- 
symmetric variation changed S at fixed M, a time symmetric variation with the 
same 6p and 6hab but with 6J a = 6Kab = 0 would also satisfy the varied con- 
straint equations, since the variation of equation (3) would be trivially satisfied 
while the variation of equation (4) would remain satisfied since 6Kab does not 
enter that equation because Kab = 0 in the background geometry. On the other 
hand, the variations of S, equation (12), andM, equation (18) depend only on 
~p and 6hab , so the time symmetric variation would yield the same 6S ~ 0 with 
6M = 0. Thus, the absence of such time symmetric variations also implies the 
absence of such non-time-symmetric variations. 

In summary, we have proven that all spherically symmetric, static equilib- 
rium configurations of a P = p/3 radiation fluid are extrema of total entropy. 
Conversely, if we assume that all extrema are spherically symmetric and that all 
fluid space-times of the type considered contain a maximal hypersurface, then 
these equilibrium configurations are the only extrema of S. 

It is worth noting that in ordinary (i.e., non-general-relativistic) dynamics, 
there is good reason to expect a connection between equilibrium configurations 
and extrema of S, specifically that local maxima of S should represent stable 
equilibrium configurations. This is because in ordinary dynamics the entropy S 
of a configuration is expected to measure the logarithm of the fraction of time 
the system spends throughout its dynamical history "looking like" the given 
configuration [9]. Hence, if the entropy is low, the system should change its 
macroscopic appearance to a state of higher entropy on a relatively short time 
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scale. Since the macroscopic appearance of a system in a state of maximum en- 
tropy should not change over long time scales, such systems should appear to be 
in stable equilibrium and thus should represent stable equilibrium solutions of 
the macroscopic equations used to describe the system. It is interesting that this 
argument cannot be made globally in general relativistic dynamics for the simple 
reason that there is no preferred time slicing of space-time and thus the concept 
of the "fraction of time" spent by a system in a given state does not have any 
obvious meaning. Indeed, this is one of the main difficulties involved in under- 
standing the nature of black hole thermodynamics. However, in the case of mat- 
ter configurations, the above argument can be made locally: the entropy of each 
local element of matter should not decrease with time, i.e., Va sa > O. But this 
implies the total matter entropy, S = fsana dZ, should not decrease with time, 
and thus a configuration of maximum S should be in stable equilibrium. In the 
case of perfect fluid radiation, the macroscopic equations actually preserve S, as 
already noted above, equation (11). Thus, local maxima of S must be dynam- 
ically stable because there is no nearby state to which they can evolve via the 
macroscopic equations. Above, we showed that extrema of S correspond to 
equilibrium configurations. In the next section, we shall show that local maxima 
orS correspond precisely to locally stable equilibrium configurations. 

w (3): Spherical Equilibrium Configurations 

In this section we study in more detail the equilibrium states of our system, 
which comprise a two-dimensional set parameterized for example by total mass 
M and box radius R. According to the above discussion a spherically symmetric 
equilibrium state-or equivalently a spherical extremum of the entropy S at 
fixed M-corresponds to a solution of equation (23) for which m(0) = 0, 
re(R) = M. [Regularity at the origin demands further that at r = 0, m(r) 
47r[3 r3p(O) ~ r 3 ; elementary flatness only that m/r ~ 0; see (14), (16), (17).] 
Because (23) possesses a scale invariance we can simplify it by introducing the 
dimensionless variables 

/~ := m(r)[r 

q :=  dm/dr = 4nr 2 p 

z :=Inr  

in terms of which (23) becomes 

aq__ 
dz 

and this together with the identity 

2 q ( 1 -  4/.t- 2q)  

1 -  2/~ 

(25) 

(26) 

(27) 

(28a) 

dU 
= q - ,u (28b) 

dz 
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yields a pair of  first-order equations equivalent to the second-order equation 
(23). 

To discover the "qualitative" character of  (28) it helps to plot the solutions 
as curves in the # - q  plane (Figure 1). Eliminating dz from (28) gives the slope at 
each point of  this plane: 

(1 - 2U) (q - U) dq = 2 q ( 1  - 4 U -  2 -~ q) d/a (29) 

Thus a solution curve will be vertical where it crosses the line/a = q (a in the fig- 
ure) and horizontal where it crosses the line 4#  + ] q = 1 (/3 in the figure). The 
curve of  interest to us begins at the origin with slope 3 [since q/l~ ~ 4nr 2 
p/(m/r) "~ 3; alternately it can be verified directly that in the neighborhood of  
# = q = 0 the general solution of  (29) is (3# - q)2 q ~ const, whence q ~ 3/~ for 
the unique solution passing through the origin]. By (28) both dq/dz and dla/dz 
are positive, and must remain so until the solution curve crosses/3, at which 
point the numerator of  (28a) changes sign and the curve turns downward, but 
continues in a rightward direction (with z remaining a good parameter). Similar 

3 (0 reasoning shows that the curve proceeds to spiral around the point/a = q = i~ 
3 

in the figure). Near this point one can expand (28) in terms o f x  = # - i~, Y = 

/ 

,,=�89 

./z 

Fig. 1. The ~-q plane. Solutions intersect the line ~ (# = q) vertically and the line 13 (4t~ + 
2q/3 = 1) horizontally in such a way as to spiral around the point O (~ = q = 3/14). 
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3 
q -  i~, obtaining 

which is a linear system with eigenvalues u_+ = - �88 + i x / ~ / 4 .  It follows that x 
and y behave asymptotically like linear combinations of  the real and imaginary 

V + Z  

parts of  e - , i.e., of  r -a/4 sin (1  X/r~ In r) and r -3/4 cos (1  ~ In r) [10].  In 
particular r increases monotonically to ~ as the solution curve approaches the 
singular solution/g = q = 3 .  Figure 2 depicts a numerically obtained approxima- 
tion to the solution curve C of  interest to us. Notice that/~ = m(r)/r  remains al- 
ways ~< 0.25 for equilibria regular at r = 0. Thus radiation cannot attain equilib- 
rium if confined to an R less than about twice its own Schwarzschild radius. 

Consider now a fixed radius R and the 1-parameter sequence of  spherical 
equilibria confined to a box of  this radius. Each such equilibrium corresponds to 
an initial segment of  the curve C in Figure 2, beginning witfi r = 0 at/a = q = 0 
and terminating with r = R at a point/g = M/R,  q = 4zrR 2 p (R). Conversely, be- 
cause of  the scale invariance of  equations (28) each such initial segment of  C 
(equivalently the end point of  such a segment) corresponds to a unique equilib- 
rium with radius R,  obtained from any homologous equilibrium solution by the 

(30) 

r ~ Xr 

m ~ Xm 

p ~ X-2p 

0.3 

0.2 

P 

0.1 

0.0 i i �9 

0.0. 0. I 0'.2 0.3 /~ 

Fig. 2. The curve, C, corresponding to equilibria regular at the origin. P is the turning point. 
The exterior Schwarzschild metrics correspond to the piece of the t~ axis between 0 and 1/2. 
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In discussing the stability of  our solutions it is the interpretation of the points of  
C as representing distinct equilibria at fixed R which will be appropriate, rather 
than our original interpretation according to which distinct points of  C represent 
distinct values o f r  in a single equilibrium solution. With this in mind let us settle 
also on a fixed parametization of C, which we can do by employing that solu- 
tion ~', of  

d~ = dlz/(q - I~) 

[cf. (28b)] which vanishes at the point of  maximum/~ (point P in Figure 2). 
In the present notation, our earlier expression (19) for the entropy can be 

written as 

fo R S =a q3/4r l /2(1-  2/~) -1/2 dr (31) 

where a = (4zr) 1/4 a. In the first place it is clear from this that under the rescaling 
(30) S ~ X 3/2 so that, for constant f O.e., for a homologous family of  solutions) 
S ~ R 3/2 N M3/2. This means that for M ~ R,  S will be far less than the entropy 
( ~ M  2) of  the corresponding black hole. However, it is not necessary to talk in 
order-of-magnitude terms since we can actually evaluate S exactly in terms of/a 
and q. 

To that e n d - a n d  also because it will be needed for our subsequent analysis 
of  s tabi l i ty- le t  us introduce a parameter [3 conjugate t o M  with respect to S. For 
equilibrium configurations we define [3 by 

as  = [3 a M  (32)  

where the variations are carried out at fixed R, and the definition is consistent 
because at equilibrium dS = 0 when dM = 0, as we have seen. Putting q = din/dr 
in (31) and repeating the variation performed in Section 2, but without setting 
6m(R)  = 0, produces 

fo R 6S = 6S/6m 6m dr + [3~m(R) 

where 6S/6m = 0 for equilibria [i.e., eq. (23)] and we find 

[3 = �88 -1/4 (1 - 2.)-'/=I,=R 
I f  T = T(R)  is the local temperature at r = R,  then, by (26), (6), and the defini- 
tions a = (4r01/4 a and u = 4 bl/4, 

/3 = T -1 (1 - 2M/R)  -1/2 
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Thus/3 -1 is the surface temperature T(R)  corrected by a "red.shift factor" 
(1 - 2M]R) 112 relating the surface r = R  to spatial infinity. 4 

Correcting the work p d V  (which is performed at radius R) by this same fac- 
tor we can express the first law of  thermodynamics as 

dM= (3 -1 d S -  (1 - 2p) ~/2 p d V  (33) 

where p = �89 p(R),  p = p(R) and where d V  = 4nR 2 dR(1 - 2p) -1/2 is the change 
in volume due to an alteration dR in the radius of  the confining box. Recall now 
t h a t M =  ttR and that [by (31) and (30)] we can write S = S(M, R)  = oR 3/2, 
where o = o(~'(R)) depends only on the similarity class of the configuration in 
question. For a variation in which this Class does not change, (33) becomes 

p a R  = (1 - 2p) a/2 Tod(R 3/2) - (p/3) (4nR 2 dR)  

which can be solved for o (since dR drops out) with the result 

S = oR ~12 = a q + 3 p r3/2 (34) 
6 ql/4(1 - 2p)l/2 r=R 

[This formula can be confirmed directly by comparison with (31): definingf(r) 
so that (34) reads S = af(r)lr=R, one verifies easily that for solutions #(r), q(r) 
of(28) ,  df(r)/dr coincides with the integrand of  (31).] Note that forM, R at all 
large (compared to Planck scales) S/(MR) = S / (pR  2) = alp R -l/z < 1 when q 
and p lie on C; hence the Bekenstein limit is satisfied by a large margin. 

To conclude this section we discuss briefly the stability of  our equilibrium 
configurations with respect to spherical perturbations. Let us call an equilibrium 
dynamically stable when small perturbations about it remain small for all time 
and thermodynamically stable when it is a strict local maximum of the entropy 
at ftxed total energy M. At the end of  Section 2 we argued that thermodynamic 
stability should imply dynamical stability. Conversely, it is plausible that an un- 
stable equilibrium will show at least secular instability to any dissipative mecha- 
nism which would allow it to reach the nearby configurations o f  higher entropy; 
but in general this is all that can be said. In the present case, however, we will 
establish directly both the above implication and its converse: thermodynamic 
and dynamical stability coincide [6]. 

The equation of  motion for a perturbation, fi m, of  re(r) about its equilib- 
rium value [with 5m(0) = 0 = tim(R)] is 

k(r) 2 ~m + L -  S m =  0 (35) 

4 v t / 2  h 112 Properly it is e = [go0 [ and not e- = (1 - 2rnfr) which is the red-shift factor. 
However, one can think of e-h[r=R as the red shift between r = R and r = 00 which wouM 
apply ira Schwarzschfld metric (for which v = -h)  prevailed for R < r < ,~. Such a factor 
appears because rn (r) is not a "local energy" but an energy "as registered at o~" 
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where a superior dot is a time derivative, 

k(r) 2 = l&6 e-V rllZ q-Sl4(1_ 2p)-a/2 

and for any function 4 (r) 

L .  4 = (A 4')' +C0 

with 
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(36) 

(37) 

A(r)  = rl /2 q-,/4 (1 _ 2 )-1/2 

C(r) = ~ r-a/Zq-t/4(1 - 2p) -s/2 (3 + 2q) (38) 

[Tlus can be derived by straightforward perturbation of  the (u) = (o0), (~), and 
(~o) components o f G u  u = 81rT~ u and of  the v = 1 component of Vu TtZv = 0: For 
the metric one uses ds 2 = - e~dt 2 + (1 - 2m/r)  -1 dr 2 + r 2 dg22 and perturbs v 
and m about their equilibrium values. For TUv one uses (5) with u 2 = u 3 = 0 and 
perturbs p and pl while maintaining the relations p = 3 p, uaua = - 1. Finally one 
eliminates 5p, 6v, and u 1 to obtain an equation for 5m alone, whose equivalence 
with (35) follows immediately by virtue o f  equations (28) for the equilibrium 
values of  q,/a.] Clearly (35) (with 6m = 4)  is the Euler-Lagrange equation for 
the Lagrangian 

f? s  = k(r) 2 (k 2 d r -  V (4 )  (39) 

/ "  
V ( 4 )  : J [ A ( r )  4'(r) 2 - C(r) 4 (r) 2 ] dr (40) 

and the boundary conditions 4(0)  = 4(R)  = 0. (Notice that variations of  4 cor- 
respond to second variations o f m . )  Since the "kinetic term" f k  2 ~z dr is posi- 
tive definite, energy arguments based on the analogy with a ball roiling in a po- 
tential V lead to the conclusion that dynamical stability is equivalent to the 
positivity o f  V(4)  [11].  

The condition for thermodynamic stability is that the second variation, 62S, 
be negative definite in 6m, for 6m(R)  = 0. s The second variation of  (31) is 

= 3a f r l12q-S14(1 - 2p)- i l~(6m')  2 

+ a r - l / 2 q - l / 4 ( 1 -  2,u) -3/2 6 m 6 m ' +  r-3/2q3/4(1-  2U) -s/2 6m 2 ] dr 

5 . . . . .  2 . , .  . . . . . . .  Strictly speaking weak posltivIty (6 S ~ 0) Is necessary for stability while strict poslfivaty 
(52S > 0 if 8 m * 0) is sufficient. When ~ 2S is positive but not strictly positive, stability 
will be determined by higher variations of S. Analogous remarks apply for dynamical 
stability, which, in particular, cannot always be decided by reference to the first variation 
of the equations of motion. 
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Integrating the second term by parts and assuming 6m -~ 0 at r = R and (suffi- 
ciently rapidly) at r = 0 yields, with use of  (28), 

62s = 3a f [-A(r) (Srn') 2 + C(r) (6m) 2 ] dr 

=-3aV(Sm)  (41) 

We see that 62S is negative iff V is positive, so that, as claimed, a single condi- 
tion governs both dynamical and thermodynamical stability. Notice, incidentally 
that, because 6S = 0 in equilibrium we can also express our conclusion by saying 
that the entropy S serves as a "potential energy" in the Lagrangian (39). 

Where along the curve C of  Figure 2 will 62S be positive definite? On phys- 
ical grounds a very dilute black-body gas in a box is obviously stable against grav- 
itational collapse; hence 62S is positive near/a = q = 0 (i.e., for ~ -~ - 00).6 The 
standard theory of  stellar stability then tells us [12] - o r  at least suggests strongly 
- t h a t  the equilibria along C continue to locally maximize S until the first max- 
imum of M, or equivalently of/a (recall we have fixed R), whereupon instability 
sets in iff a plot of  the equilibria in the/3-M plane turns in a clockwise direction 
(with/~ plotted upward and/~ to the right) and continues until the first counter- 
clockwise turning point. 7 Given all this, consider the turning point ~ = 0, in 
the/z-q plane. At this point dt~/d~ = O, whence d(J/d~ and cl(q -1 )/d~ have t h e  
same sign since/~ = (1 - 2/~) -t/2 T -1 and q • Z 4 . Thus the condition d~/d~ 
d z ~t/d~ z < 0 for clockwise turning in the 13-/a plane is equivalent to the condi- 
tion dq/d~ d21a/d~ 2 > 0 for clockwise turning in the/s-q plane; and ~ = 0 is in 
fact a point of  instability onset. The largest value of  M/R attainable by a 
stable configuration of  self-gravitating radiation in a spherical box is thus the 
same as the largest value attainable by any equilibrium:/.tma x ~ 0.246. For such 
a configuration, the entropy as given by (34) with/a = q ~ 0.246 is 

Sma x ~ 0.327aR312 

6AnalyticaJly stability means that, for ~ sufficientiy small, the A term in (40) always domi- 
nates the C term. This in turn can be shown to follow (for perturbations of finite central 
pressure) from the inequality 

fo ;o r dx ~ -~ (r x-2 dx 

which holds for all ~ vanishing at x = 0 and vanishing faster than x 3/2 at x = 0. (To prove 
it substitute r = ux 12.) 

7Some of these assertions are more definitely reliable than others when, as here, the equilib- 
ria belong to an infinite-dimensional manifold of configurations. In particular the proof 
that S fails to maximize just beyond a clockwise turning point can be carried out in any 
Banach manifold [13]. Also in our case instability can never disappear as one moves along 
C; for any configuration for ~'2 > ~'1 contains a homologous replica of the s't configuration 
and thus must be unstable if the latter is. 
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Finally we remark that solution curves other than C are easily computed and 
may have physical interest. Although they do not describe configurations regular 
at r = 0, they have portions rmi n ~ r < R which can be "joined on" to other 
forms of  matter for r < rmi n to produce everywhere-regular static solutions of  
Einstein's equations. (c.f. [14] .)A priori, such solutions might provide much 
higher entropies than any equilibrium configuration of  pure radiation and the 
same M and R. This does not seem to be true if one requires the auxiliary matter 
to obey an energy condition, but even if it were, we would expect (Section 2) to 
find pure-radiation configurations of  still higher entropy. In fact pure radiat ion-  
but nonequilibrium-configurations exist with arbitrarily great entropy, and it is 
to the consideration of  such configurations that we now turn. 

w Maximum Entropy Configurations 

In the previous section we found all the equilibrium configurations of  a radi- 
ation fluid of  mass M in a spherical box of  radius R. Under the assumptions 
stated in Section 2, these yield all the local ext rema-in  particular, all the local 
m a x i m a - o f  S. However, it is certainly possible that S can take on values higher 
than given by its local maxima. To see that this is indeed the case and that arbi- 
trarily large values of  S can be achieved, consider the time symmetric initial data 
whereby a "Friedmannian" region of  uniform density O is joined to a Schwarz- 
schild exterior of  mass M, as illustrated in Figure 3. 

The initial value constraint, equation (13), requires that, in the Friedmann 
region, 

3 
0 = 8,ra 2 (42) 

radiation 

Fig. 3. A Friedmann 3-sphere of radiation joined onto the Schwarzschild exterior of mass 
M at a moment of time symmetry. By letting a ~ ~, we can make the total entropy arbi- 
trarily large. 
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where a is the "radius" of the Friedmann 3-sphere. Matching the geometry across 
the surface r = ro requires 

-~ 7rr3op = M (43) 

For the configuration shown in Figure 3 we also must have 

2M < ro < a (44) 

a condition which follows from equations (42) and (43) provided a > 2M. The 
total entropy is 

S = apa/427raa(Tr- 0 o + �89 sin 200) (45) 

where 0o = sin -1 (ro/a). Thus, if for fLxedM we leta  --> o% let p ~ 0 via equation 
(42) and vary ro according to equation (43), we find that 

S ~ a a/2 ' > oo (46) 

Thus, arbitrarily high entropies can be achieved for any given value of M (and 
any R > 2M) for configurations of  the type shown in Figure 3. 

However, a configuration of this type cannot be built classically without 
starting from a white hole. I f  we evolve the configuration of Figure 3 backward 
into the past-using only energy inequalities on the matter, but making no fur- 
ther assumptions about its properties-we are inevitably led to a white hole, just 
as evolution into the future inevitably leads to a black hole. This can be seen 
most easily in our example by examining the domain of dependence of the 
"Schwarzschild part" of the initial data surface. Since Tab = 0 on this part of 
the surface, conservation of Tab and the energy condition Tab vav b > 0 for all 
timelike v a imply that Tab = 0 throughout its domain of dependence [15]. The 
vacuum Einstein evolution equations then imply that the space-time must be 
Schwarzschild in the entire domain of dependence of the "Schwarzschild part" 
of the initial data surface. This is sufficient to prove the existence of an initial 
white hole and white hole singularity. More generally, the existence of a past 
trapped surface on the initial data surface, together with the energy condition 
(Tab - �89 Tgab) vav b > 0 for all timelike v a, imply the existence of a singularity 
[15] to the past of the initial surface. This means that starting from nonsingular 
initial data with no past trapped surfaces we cannot construct a configuration of 
the type illustrated in Figure 3. There is reason to believe that white holes can- 
not exist [5]. I f  so, then the configuration of Figure 3 cannot exist either. The 
question remains as to what is the maximum entropy configuration that can be 
achieved starting from physically reasonable initial conditions, i.e., nonsingular 
initial data with no past trapped surfaces. 

As in Section 2, we shall continue to restrict consideration to spherically 
symmetric, time symmetric configurations, as these should maximize the en- 
tropy. For such configurations there is a simple condition which is equivalent to 
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the nonexistence of  past (or future) marginally trapped surfaces, namely, 

r ~> 2 m ( r )  (47) 

i.e., at each r the configuration must be outside its own Schwarzschild radius. 
How much entropy can a configuration satisfying equation (47) achieve? I f  there 
is no limit as to how close to equality one can get in equation (47), again arbi- 
trarily large total entropies can be attained. Tiffs is illustrated in Figure 4. Put- 
ting matter in the r ~ 2m "throat"  of  such a configuration costs essentially no 
energy but yields a finite entropy. By "stretching out" this throat we can achieve 
arbitrarily large entropy to energy ratios. This can be seen more clearly as fol- 
lows. We define e(r)  > 0 by 

e = r -  2re(r) (48) 

The total entropy, S, is 

r ~ dr  
= o~ 1 - dr ] r312 e 1t2 

a \-8-~l 1 - --~rl e - ~  dr (49) 

tJon 

On the other hand, the total mass is, 

M = m ( R ) =  1 [ R -  e(R)] (50) 

Thus, by letting e ~ 0 (keeping de/dr  "~ 1) we can make S ~oo while keepingM 
finite. 

R rl/2 
S = a pa/4 e .~/2r 2 dr 

Fig. 4. A radiation configuration which is just barely outside its own Schwarzschild radius, 
i.e., r = 2re(r) + e(r) with e ~ r. By letting e --* 0 we can make the total entropy arbitrarily 
large. 
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However, it does not seem reasonable that one can produce configurations 
which are arbitrarily close to being at their own Schwarzschild radius. Such con- 
figurations could arise (without initial white holes) only with the aid of a second 
system (an "external agent"), e.g., with the use of strings, boxes, etc., which as- 
sembles the radiation into the required configuration and then releases it. How- 
ever, the thermal radiation of energy density p is composed of constituents of 
finite size X given by 

~k ~ p -1/4 (51) 

It does not seem plausible that one could assemble a configuration which is 
closer to its own Schwarzschild radius than the size of its constituents. This sug- 
gests that it will be physically possible to produce only configurations which 
satisfy 

D(r )  > X(r) (52) 

where D(r )  denotes the proper distance of the radiation from its Schwarzschild 
Iadius and X(r) denotes a typical proper wavelength of the radiation at that ra- 
dius. In addition, we note that the quantum fluctuations in the energy density 
of radiation in a region of size X are of the same order as the energy density it- 
self. Hence, for configurations which violate equation (52), the validity of oui 
classical analysis, which ignores fluctuations, is questionable. Thus, even if equa- 
tion (52) did not provide a cutoff for physically producible configurations, it 
might well provide a cutoff for the validity of our classical description of them 
and thus for the validity of our calculation of their entropy. 

Since without the limitation of equation (52), we obtain S ~ oo as e -~ 0, we 
expect that with the limitation of equation (52) the highest entropies wiU be 
achieved in the strong field regime e < r. (In the opposite limR of weak gravita- 
tional fields, the Bekenstein analysis applies.) For e < r, the relation between e 
and D is 

D = glr[2 e 

= r 112 e 1t2 (53) 

since gr,  = (1 - 2 m / r )  -1 = r/e. Using equations (51) and (53) we find that equa- 
tion (52) becomes 

e-112 < rl12 p114 (54) 

Substituting the inequality in the first line of equation (49), we obtain the fol- 
lowing bound for S: 

fo - S < or  s dr 

fo < R or  2 d r ~ R M  (55) 
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Thus, in the strong field regime e < r we find the limit 

S /M <. R (56) 

in agreement with the Bekenstein limit. Furthermore, this limit can be achieved. 
For example, a configuration with p = (8zrr 2)-1 for r > 1 (i.e., r ~ lp, where 

Ip ~ 10 -33 cm is the Planck length) and p = 0 for r < 1 will have e = 1 and will 
satisfy equation (52). According to equation (49) its entropy will be 

S ~ r d r  =R2 /2  

-MR (57) 

thus achieving the limit, equation (56). 

Thus, if our condition, equation (52) on the achievability of configurations 

is correct, we have found that the maximum possible entropy of a precollapse 

configuration is bounded by the Bekenstein limit. Furthermore, since e ~ r we 
find 8 

Srnax ~ MR ~ M 2 ~ Sbh (58) 

where Sbb denotes the entropy of a Schwarzschild black hole of mass M. 
Now, Sma x measures the number of internal states, N, of precollapse radia- 

tion configurations, 

N "~ exp (Smax) (59) 

The equality of Smax with Sbh appears to indicate that Sbh may indeed measure 
the "number  of internal states," Nbh , of a black hole, 9 as has been suggested 
by many authors. However, we have not  been able to obtain a satisfactory argu- 
ment  relating N to Nbh. It is not true that the number of precollapse configura- 
tions must equal the number of black hole internal configurations (even assum- 
ing that the latter notion proves to be well defined). "Conservation of states" 

would require that the number of black hole states at a given "t ime" equal the 

8Since these precoUapse configurations have entropy comparable to that of a black hole and 
since, at least in ordinary (i.e., non-general-relativistic) dynamics, the entropy of a config- 
uration measures the "fraction of time" the system spends in the same macroscopic state, 
it might appear that these precollapse configurations should be present as frequently as 
black holes. However, as discussed above, presumably an assembling agent is needed to pro- 
duce the precollapse configuration without starting from a white hole. This assembling agent 
must be in a very special state (possibly involving a high degree of correlation with the ra- 
diation) in order to have produced this configuration, since if we "run the clock back- 
wards" this agent must "catch" all the radiation before it collapses to a black hole. Thus, 
the entropy of the assembling agent should be very low, and the total entropy of the agent 
plus precollapse configuration should be much lower than that of an agent plus black hole 
configuration, where no special state of the agent is required. 

9 It should be stressed that the true meaing of the "number of internal black hole states" 
in general relativistic dynamics is unclear at present, just as the notion of the "fraction of 
time" a system spends in a given configuration does not have an obvious meaning. 
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number of  states at an earlier time that evolve to the black hole at the given 
time. However, these states at an earlier time may include many black hole con- 
figurations as well as the precollapse configurations. Furthermore, since evolu- 
tion of pure states to density matrices may occur, "conservation of  states" might 
not apply; one could have a larger number of  final states due to the "branching 
out" of  the state vectors. These statements indicate that the number, N, of pre- 
collapse configurations still should be a lower bound for Nbh. However, even this 
conclusion is not obvious because, as mentioned above, we do not expect to be 
able to produce these high-entropy precollapse configurations without the assis- 
tance of  a second "assembling agent" system. Therefore, the "conservation of 
states" (or, more properly, the "nondecrease of states") argument should be ap- 
plied only to the joint black-hole-assembling-agent system. It  is possible that 
when this is done, the formation of  the black hole will result in the destruction 
of correlations between the assembling system and the precoUapse configuration. 
If  this happens, there will be a large effective increase in the "number of  states" 
without the need for a large number of  black hole internal states, and the argu- 
ment giving N as a lower bound for Nbh fails. Thus, we have not been able to 
demonstrate a relationship between N and Nbh. Nevertheless, the suggestion re. 
mains that Nbh "~ N"~ exp (Sbh). 
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