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Abstract 

Adding the cosmological term A, which is assumed to be variable in this paper, to the Brans- 
Dicke Lagrangian, we try to understand the meaning of the term and to relate it to the mass 
of the universe. We also touch upon the Dirac large-number hypothesis, applying the results 
obtained from the application of our theory to a uniform cosmological model. 

w Introduction 

After the cosmological constant was introduced into cosmology by Einstein, 
its real significance was studied by various cosmologists (for example, [1]),  but 
no satisfactory results of  its meaning have yet  been reported. Zel'dovich [2] has 
tried to visualize the meaning from the theory of  elementary particles because 
the constant corresponds to the vacuum energy. Actually Linde [3] has argued 
that the cosmological term 1 arises from spontaneous symmetry breaking and 
suggested that the term is not  a constant but is a function of  temperature. Also 
Dreitlein [4] ,  though he regards the term as a constant, connects the mass of  
the Higgs scalar boson with both the term and the gravitational constant. In 
cosmology, the term may be understood by incorporation with Mach's principle, 
which suggests the acceptance of  the Brans-Dicke Lagrangian as a realistic case 
[5].  The investigation of  particle physics within the context of  the Brans- 
Dicke Lagrangian (for example, [6] ) stimulates us to study the term with a 

1 Throughout this paper, we call the constant the cosmological term. 
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modified Brans-Dicke Lagrangian from cosmology and elementary particle 
physics. 

w Fundamental Equations 

We assume the cosmological term is an explicit function of a scalar field r 
as was proposed by Bergmann and Wagoner [7], and start with the usual varia- 
tional principle of general relativity using a Brans-Dicke Lagrangian modified 
by A(q~): 

f [  16rr __~r162 x (2.1) 0 = ~ ~b(R - 2A(~) )  -I- - ~ Z  m co ,i 

Here R is the scalar curvature and L m is the Lagrangian density of matter, which 
is assumed not to depend explicitly on derivatives ofgi], and ~b plays a role 
analogous to G -1 . The field equation for the metric field is, then, 

l 8rr w (  ) 
R i i  - ~ g i j R  + g i j m  - ~c 4 TO + ~2 r - lgijdP,k(P'k 1 . . . . .  + ~ (q~,i;/ - gi]~162 (2.2) 

where 
2 i} [(_g)l/2 Lml Ti] - (_g)l/2 bg# 

is the energy-momentum tensor of matter. Contraction of equation (2.2) results 
in 

8rr w ,i 3 Dq~ (2.3) 
R - 4 A = - - - T T  T+~-~b,,r  + 7  

While the field equation for ~b is obtained by varying ~ and r in equation (2.1) 

8A w 200 
R - 2A - 2q~ ~-~ = ~-  ~b,iq~" - -~- ~ (2.4) 

By eliminating R from equations (2.3) and (2.4), 

aA 47r 20o + 3 
A -  ~ a-~ = q~c - -u  T -  2----~ []q~ (2.5) 

Since Brans-Dicke cosmology does not pay any attention to A, the relation be- 
tween the matter field and the scalar field can be obtained analytically through 
an equation analogous to equation (2.5), although a certain degree of arbitrar- 
iness inevitably accompanies the introduction of a scalar field. Here we assume 
the simplest case of the coupling of the two fields as follows: 

8rr 
D~ - (2w + 3)c 4/aT (2.6) 
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where the constant ~ shows how much our theory including A(q~) deviates from 
that of  Brans and Dicke. Then a particular solution of  equation (2.5) is given as 

A - 26o + 3 1 - /~ G~b _ 8rr(1 - g) T (2.7) 
4 /~ ~ 4 ~  4 

Since we assume A is a function of  only q~, we have 

De =f(r (2.8) 

By multiplying equation (2.2) by ~ and taking the covariant derivative, we find 

81r i ~A co n~b ~b,j 
c- 7 Tj;i  = - - 2 A -  2r ~--~-~-(5,i~) 'i +T 

Equation (2.4) then ensures that the conservation law T}; i = 0 holds. 
Therefore equations (2.2) and (2.6)-(2.8)  are the fundamental equations of  

our theory. 

w Application to Cosmology 

We apply those equations to the homogeneous and isotropic universe. Then 
the metric is that given by Robertson and Walker, and the energy-momentum 
tensor, that of a perfect fluid, 

2 f dr2 } 
ds 2 = -  g i jdx i  d x l  = c2 d t  2 - a (t)  ~ l--S-~kr2 + r2 (dO 2 + sin s 0 d~ "2) 

,J  

Tij = ( p  + e) u iu  j + Pgij 

where a(t)  is the spatial scale factor, k the dimensionless curvature index, e and 
p the total energy density and pressure of  the universe, respectively, and u i a 
velocity four-vector that has components of  (1 ,0 ,  0, 0) in the comoving co- 
ordinates. The (0, 0) component of equation (2.2) is 

+a  s 3 kr 4 e+  _ a r  r 6r 2 (3.1) 

where we assume ~b depends only on universal time t and a dot indicates differ- 
entiation with respect to t. From equation (2.6), we obtain 

d (q~a3) = 87r 
d-t (26o + 3)c z ~(e - 3p)a 3 (3.2) 

From equation (2.7), we obtain the variable A as follows: 

8n(1 - U).~ 
A -  ~-~-4- b~P- e) (3.3) 
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The equation of state in the radiation field 3p = e leads to the vanishing cosmo- 
logical term. Equation (3.3) yields the expression for f ( ~ )  as 

87rg 
f(4~) = (26o + 3)c 4 (3p - e) (3.4) 

The convseration law Ti/;j = 0 requires the well-known relation 

-- -3 _a(p + e) (3.5) 
a 

As an example, we consider the case of  the matter  field where A is not zero. 
In this field we can neglect pressure, which has less significance for the model of  
the universe [8]. Then equation (3.5) gives 

ea 3 = eoa~ (3 .5 ' )  

where subscript 0 indicates the present value of  a quantity. From equation (3.2), 
we obtain the following relation for the big-bang universe: 

3 --Kt (3.2') 

where 

From equation (3.3), we have 

87r 
K - (26o + 3)c 2 laeoag 

87r 
A = 4-~e4 (/a - 1)e (3 .3 ' )  

This implies that the cosmological term participates in the mass of  the universe, 
and that may have a significance in determining the mass of  an elementary 
particle when applied to the hadron era as studied in [4]. From equation (3.4), 
f ( r  is proportional to a -3 : 

a d r '  
a 3 f  

where f '  = df/ddp. 

(3 .4 ' )  

Substituting equations (3 .2 ' ) - (3 .4 ' )  into equation (3.1), we obtain 

(~)2 [cb2(f'~2 dPf' 6]-  \ f ]  3 f 12// ~- kc2 ( 

(3.1') 

Since, in particle physics, the terms of  4~ n are introduced to explain the 
origin of  the mass of  an elementary particle by symmetry  breaking [91, we as- 
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sume the functional form off(q~) as follows: 

f(~b) = (260 + 3 ) c  4 / ' re~ (3.6) 

Substituting equation (3.6) into equation (3.1'), we solve in the case of k = 0, 
i.e., the flat universe. When we notice two conditions, an expanding universe 
and an increasing function ~(t), n = 1 which gives the constant cosmological 
term is not suitable. Then, with n 4= 1 and the assumption of q5 = 0 at t = 0, the 
solution is 

= (At)Z~(1 -n) (3.7) 

where 
I -  n [ 2~r(3 +/~)eo~o n l '/= 

A=-+ 2 [( ln-~--n--~c~J'  

Equation (3.4') with equation (3.7) results in the following relation: 

a 3 _ 3 n 
- ao 4o (At) 2n/(n-1) (3.8) 

Again by the two conditions, the domain o fn  narrows into n < 0. Since equa- 
tions (3.7) and (3.8) satisfy equation (3.2'), 

3 
n = ~ (- (3 +/1)(2oo + 3) + 8/~ 

+ [(3 +/~)2(2w + 3) 2 - 16t~(2c~ + 3)(1 - U)] 1/~ } (3.9) 

From equation (3.3'), 

260+3 1- /~  1 
A -  2(n-  t) I~ (ct) 2 (3.10) 

Following Brans and Dicke [5] and Weinberg [10], the gravitational "con- 
stant" G is given by the weak field approximation as follows: 

1 (3 2c~ )q~-i (3.11) 
G= 2 2oo+3 ~ 

Equations (3.11), (3.7), and (3.8) present the relations of G with the Hubble 
constant H = it~a, as 

H +n)/O -n) G _ 3 H ,  t (1 and G e ~ H  2 (3.12) 
G n G ~  ' 

When we put n = - 1 in equations (3.8) and (3.12), the following relations are 
obtained: 

1 H G -3H (3.13) a = t  l/a, H = 3 t ,  G const, and G 
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and this is the case of  Dirac [11] 2 although the cosmological term is not zero 
but is 

5(360 +2) 1 
A - - -  

18 (c0  2 

While if  we put # = 1, all the equations we obtained reduce to those of  Brans 
and Dicke and equations (3.9), (3.10), and (3.12) give n = -3(60 + 1), A = 0, 
and d/C -- -U/(~ +1). 

w Discussion 

In the present work, the cosmological term has been studied from the point 
of  view of  cosmology and elementary particle physics and its origin is partially 
clarified because we have established the relation connecting it with the mass of  
the universe. But we have failed to make A correspond to a mass term in particle 
physics because of the negative value of  n. In the hadron era, the approximation 
o f p  = 0 holds fairly well [13] and there will be a possibility of  overcoming the 
difficulty by taking other metrics. 

Since we accept the Brans-Dicke theory, it is natural that Ge ~ H 2 is valid, 
but it is interesting to notice that n = -1 gives the results of  equation (3.13), 
which have been derived by Dirac concerning with the large-number hypothesis. 

Thus the investigation of  the cosmological term from cosmology and particle 
physics might give a clue to solving the problems in the large-number hypothesis 
and Mach's principle. 
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