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Functions 

Abstrac t  

Any continuous time function on a C k space-time V (i.e., a scalar on V that increases along 
any causal curve) can be approximated by smooth C k time functions. A time function de- 
fined on a (bounded) subset of a stably causal V can be extended to a time function on the 
whole of V. 

w In troduct ion  

In the heroic era o f  global general relativity some relativists worked their 
way through the (only partially ordered) set o f  causality conditions and came to 
a halt at the comfortable station "stable causality." The virtue of  stable causality 
is that it is a reasonable notion for almost the weakest causality requirement and, 
on the other hand, one can work with it also in concrete calculations because o f  
a theorem of  Hawking [3] stating that it is equivalent to the existence of  a global 
"cosmic" time function. The very elegant proof  of  Hawking modifying a method 
of  Geroch [ 1 ] constructs a continuous scalar t that increases along any causal 
curve. 

In my thesis [6] I gave (i) a smoothing procedure ("regularization") for t, 
i.e., one might write the metric globally as ds 2 = - f Z d t 2  + g~#dxadx  ~, where f, 
ge~ have the same differentiability class as gab (see Section 3); (ii) another way 
of  constructing t, which is much more laborious than Hawking's but explicit, 
and flexible enough so that it can be used to extend a time function given on a 
(compact) subset of  the space time (Section 4). 

Meanwhile I have learned that these procedures treating (null) cones and 
their relations to families o f  level surfaces of  a scalar t are not only useful for 
proving plausible improvements of  Hawking's theorem. For example, in the case 
of  a potential field these methods can help to find suitably adapted coordinates 
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and to understand the "causal" behavior of particles under the influence of the 
potential; see [5]. 

The basic principle of smoothing a time function is the fact that certain ap- 
proximations of continuous functions f by smooth ones (fn) also approximate 
bounds fulfilled by l and /o r  derivatives o f f ;  e.g., i f f (x  + ~) - f(x)>1 K .  ~ for all 
g, then for any e > 0 and for suitably large n, dfn/dx >~K - e. Therefore the 
gradient vector of a suitable smooth approximation t n of a time function t will 
lie in an arbitrarily small neighborhood of the light cone. If  t in addition is "uni- 
formly" timelike in some sense (see Section 1), we can find a smooth t n with a 
timelike gradient and tn is then the desired smooth time function as constructed 
in Hawking's proof and is automatically uniform and can be smoothed without 
further "preparation"; on the other hand, Hawking's definition requires that the 
level surfaces (t = const) remain spacelike under a slight variation of the metric 
which widens the null cones. It is compatible with our definition that a surface 
(t = const) is tangent to a null direction in a single point, hence we need the pos- 
sibility of uniformization to show that the existence of a time function implies 
stable causality. 

The basic idea of constructing extensions of time functions is to take a 
metric ~ that has light cones wider than those o fg  (as g is stably causal we al- 
ways can find such a ~)  and use g~-null horizons (hence g-spacetike hypersurfaces) 
as level surfaces for t. 

w The Zoology o f  Spacelike Hypersurfaces 

In notation and conventions this paper mainly follows the book of Hawking 
and Ellis [4] ; V denotes a space-time on a smooth, Hausdorff, paracompact, 
connected manifold possessing a time-oriented C2-Lorentz metric of  signature 
(-+++). 

On the set of Lorentz metrics on a manifold one can introduce a partial or- 
dering: g < ~  if for any vector v a q= 0 with gabVaO b ~ 0 it holds that ffaboao b < 
0. The causal/timelike futures/pasts and the domains of  dependence J• I • , D • , 
D are denoted and defined as usual. I f  it is not obvious with respect to which 
Lorentz metric the future is taken, this metric g is explicitly denoted: J+(.;g). 

J+(p;g)  := tq J+(p;ff) ,  where the intersection has to be taken over allff > g .  
Sometimes an auxiliary Euclidean metric eab is used. We distinguish two 

types of distances (with respect to g and to e): 

Fw(A' B) := sup { ~  ds[ 7 = ~'~' x E A'  y E B' "r causal curve in W 

Aw(A,B  ) := sup ~inf f dol3'=x-y,y EB,  dais the line element 

) 

corresponding to eab, 3, curve in W 
J 
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F and A denote the maximal g (or e) distance that an element x of  A can have 
from B. 

For the definition of  causality conditions (chronology, strong/stable causal- 
ity, g_lobal hyperbolicity) see [4]. 

A, A, 8A denote the closure, the interior, and the boundary o fA.  
A C C B ~ c  ~. 

Definition 2.1 

A is an achronal set if for al lp EA: l+(p) (~A = r 
A is an acausal set if for all p EA:  J+(p) (~A = (p). 
A is a stably acausal set if there exists aft  > g  on V and for all p EA. '  

+ / x  

J ( p ; g ) ( ~ A  = (p).  
A is a partial Cauchy surface i fA is acausal and the domain of  dependence 

D(A) is a neighborhood of  A. 
A is nontimelike (spacelike; stably spacelike, a slice) if the metric g induces 

a causal structure on some neighborhood U of  A such that A is an achronal 
(acausal, stably acausal) set (a partial Cauchy surface) in U. 

A set is called a hypersurface in V if it is an embedded three-dimensional 
submanifold (with or without edge). 

A set A is called a boundary if there exists a W C V such that A = ~W. A 
boundary is called time oriented if any causal curve crossing over A from W to 
V\W is future directed. 

A family of  sets Ai is a covering if any p E V belongs to some A i. 
A covering is simple ("decomposit ion") if any p ~ V belongs to exactly one 

Ai. 
A simple covering is parametrized if the A i are the level surfaces of  a con- 

tinuous function T: V-+ IR or V--> S 1. 

A time function T is a continuous function T: V-> IR that increases along any 
causal curve 3' in V. The corresponding level surfaces (z = a)  are denoted by Sa; 
they form a parametrized simple covering. If  T is increasing along timelike curves 
and not  decreasing along causal curves, r is a semi-time-function. 

A stable time function ~ has stably spacelike level surfaces. 
A uniform time function is stable and fulfils an "anti-Lipschitz property":  

For any compact set C C V there exists a constant K c > 0 such that for all a, fl 

Kc �9 Ac(Sa, S~) <~ I ~ - ~1 

(Roughly speaking, T increases more quickly than at a certain minimum rate 
along any causal curve.) 

A smooth time function r on a C k (C =)  manifold is a C k (C =) function. 

Remark. Any simple covering by acausal hypersurfaces can be locally pa- 
rametrized and hence corresponds to a local time function. Globally this does 
not hold: Cut out of  the Minkowski space V 2 the two lines ~x = 311 ~< t ~< 2), 
{x = -3 [ -2  ~< t ~< - 1) and identify the edges (x = 3 + 011 < t < 2) with (x = 
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-3 - 01-2 < t < - 1) and vice versa. The acausal sets ( t  = const) cannot be pa- 
rametrized. A covering by slices is a time function if it is parametrized by R (not 
by $1), but a space-time with a covering by slices parametrized by S 1 might still 
possess a time function: In Minkowski space V 2 identify (t = 0) and (t = 3) and 
remove (t = 1 Ix ~< +2), (t = 2Ix ~> -2) ;  the slices (t = const) have a periodic pa- 
rameter, but the space time is stably causal and hence possesses a time function. 

Theorem 2.1. (Covering by slices and causality.) 
(i) If V can be covered by partial Cauchy surfaces then V is strongly 

causal. 
(ii) If V can be covered by time-oriented spacelike boundaries, then V is 

stably causal and V can be simply covered by time-oriented spacelike 
boundaries. 

(iii) If V is a simply connected manifold and can be covered by slices, then 
V is stably causal; if the covering is simple, then there exists a time 
function possessing these slices as level surfaces. 

Remarks and Counterexamples 

(iv) If V is covered by partial Cauchy surfaces, V is not necessarily stably 
causal; example: V 2 is Minkowski space, (t = +1 ;x t> 0) and (t = 0;x ~< 1) re- 
moved, all pairs of points ( -2 ;x) ,  (+2;x) identified; the lines (t = const) are 
partial Cauchy surfaces, but V 2 is not stably causal. 

(v) If V is strongly causal, there does not necessarily exist a covering by 
slices; in [6, p. 39 f.] an example of a strongly causal space with no slice at all 
is given (the result of a discussion with Geroch). 

(vi) If a covering by slices exists, one generally cannot find a simple covering 
by slices. (This is a con/ecture of mine based on the example after Lemma 2.2. 
and similar arguments.) 

(vii) In multiply connected space-times a simple covering by time-oriented 
spacelike boundaries is not necessarily the family of level surfaces of a time func- 
tion. Example: Remove (Itl ~< 1 ;x = O) from Minkowski space V2; the lines (t = 
a) for lal > 1 and (t =a;x < O) t3 {t = -a;x  > 0) for [al <~ 1 form a simple cov- 
ering but cannot be continuously parametrized. 

(viii) If one drops the assumption that V is time-orientable, curious things 
might happen. For example (MiSbius strip), take the unit square (Ixl ~< 1, Itl < 
1) and identify (t, 1) with (-t ,  - 1) for all Itl < 1. One obtains a space-time not 
stably causal but possessing a Cauchy surface (t = 0). In fact, V can be covered 
by Cauchy surfaces, but any two of them intersect. On the other hand there 
exists a simple coveting by slices (Itl = const) which with one exception are 
spacelike boundaries. In general, for stably causal non-time-oriented space-times 
one can find something like a time-function, namely a r: V ~  [0, oo[ such that 
+r is a monotone continuous parameter along any causal curve 7 if one switches 
the sign when 7 meets (r  = 0); see [6, p. 31]. 
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(ix) The existence of a semi-time-function is a causality property stronger 
than chronology and weaker than stable causality but not comparable with 
either causality or strong causality: Minkowski space V 2, all pairs of points (t - 
1 ;x + 1) and (t + 1 ;x - 1) identified, possesses a semi-time-function r = t + x 
but is not causal; the example of (iv) is strongly causal but does not possess a 
semi-time-function 7- [as r must be continuous by definition, 7- would have to 
fulfill: r(0.5; 0.5) ~< r(1.5;-0.5)  < r ( -  1.5; -0.5) ~< z(-0.5; 0.5) ~< ~-(0.5; 0.5)]. 

Sketch of  the Proof o f  Theorem 2.1 

(i) The first part is obvious, as the domain of dependence of a partial 
Cauchy surface S is a neighborhood of any p ~ S. 

(ii) Lemma 2.1 shows that one can find a covering by countably many 
"collars" of spacelike boundaries. 

Lemma 2.2 gives the essential idea of how one can obtain a simple cov- 
ering by spacelike boundaries from an arbitrary covering (for a more explicit 
construction, cf. [6, p. 37]). In fact it would be sufficient to get a locally finite 
covering of V by collars. Then there exists a widening ~ o fg  such that all these 
time-oriented spacelike boundaries are g"-spacelike boundaries. 

Any space-time that can be covered by g%spacelike boundaries is g"-causal 
(hence g-stably causal), for if a causal curve 7 leaves a region A at a point p E 
OA, then 7 cannot reenter A if OA is time-oriented; i.e., no closed g"-causal curve 
meets the (arbitrarily chosen) point p. 

(iii) Part (iii) is a consequence of statement (ii) and Lemmas 2.2. and 2.4. 

Lemma 2.1. (Collaring of slices.) Let S be a slice. Then there exists a sim- 
ple covering of a neighborhood of S by a one-parameter family ("collar") 
of stably spacelike slices S,~ (- 1 < a < 1). I fS  is a partial Cauchy surface 
(or, respectively, a time-oriented spacelike boundary), then the S,~ have 
this property too and their domains of dependence D(Sa) equalD(S). For 
any e > 0 we can require F(S, So) < e. 

Proof By definition, there is a neighborhood U of S in which [(U, g) taken 
as space-time] S is an acausal set. There the uniformization procedure of Lemmas 
3.4 and 3.5 for a family S r can be also applied to a single S. 

Lemma 2.2. (Removal of crossings.) Let $1, S~ be time-oriented bound- 
aries (Si = OAi) and q some fixed point on $2, q ~ Sa. Then there exists a time- 
oriented boundary S; such that q E S ;  and Sa f3 S;  = ~b. 

Proof. Let OAt, ~ be a collar of OA1 not containing q; then take S;  = ~(A2 ~ 
Aa,a) wherea = - � 8 9  i fq  @AI ,a  = +�89 i fq  E V\A1. 

Example. This procedure does not work if $1, $2 are arbitrary slices. Let 
r/a b be the Minkowski metric on 1R3(t,x,y) and v a := (1; -y;x),gab := r/ab + 
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(OCVC) -1 [aU b. The circle '~1 = ( X2 "[" y2 = 1 ; t = 0} is a null curve; take a spacelike 
surface intersecting ~1 in exactly one point and let 7z be its edge (which "encir- 
cles" 71). Let (V 3, g) be the space-time ]1t3\{71, 3'2}; all slices in V 3 have as 
"ideal edge" 71 or 3"2, none of them both 71 and 72. We can find p, q such that 
for any pairs of slices Sp, Sq containing p or q, respectively, it holds that Sp N 
sq r r but Sp 4= Sq. 

Lemma 2.3. (Hawking [2] ; slices in simply connected space-times.) Let V 
be a simply connected space and S be a slice in V. Then S is a partial 
Cauchy surface and a time-oriented spacelike boundary. 

Proof. (See also [2] .) For any hypersurface without edge it holds that a 
homotopy deformation of a curve (keeping the end points fixed) changes the 
number of crossings by only an even number. In particular, two points p, q 
locally separated by S (i.e., joined by a p"-q" crossing S once) cannot be joined by a 
curve 3' without crossing S as 3' is homotopic to ~ "  in a simply connected V; that 
is, S is a boundary and S is an acausal set. 

Lemma 2.4. (Parametrization of simple coverings.) Let V be a simply con- 
nected space and S a simple covering by slices. Then there exists a time 
function r such that the family of level surfaces {r = const} is ~. 

Proof. Let (')'n) be a sequence of nonextendible causal curves such that the 
paths of the 3'n form a dense subset of V. We parametrize $ by recursion: Let 
the 7i (i < k) be those already considered, i.e., they pararnetrize the subset 
$k-1 := {S E $ IS r 7i 4= q5 for some i < k} of S and the connected subset 
Vk_ 1 := U {S E g k-l} of V by a parameter r. Let l be the smallest number >~ k 
such that 71N Vk_ 1 4= r ; if I =~ k we reorder a finite section of the sequence (3'n) 
in the following way: 7l becomes 7k and 7m becomes 7m+1 for all k ~< m < l. 
As the S's are boundaries (see Lemma 1.3.), any curve ~'~ intersects S~ if r(p) 
o~ ~< r(q); therefore ~,~ := ~'k n Vk_ 1 is connected, it might have values r E 
] a; b [; we may parametrize 7~ := je(~,~) A 7k by ] a - 1 ;a] and [b; b + 1 [ if 
these parts of ' rk  are not empty. Any S E $ with S n 7~ 4= r does not belong to 

k-1 and is met by a causal curve 7g only once, hence it is uniquely parame- 
trized. The new set V k is again connected. $ = USn, V = UVn. 

w A Construction to make Time Functions Uniform and Regular 

Theorem 3.1. Let V be a space-time possessing a time function r, and e be 
an arbitrary number >0.  Then there exists a uniform time function ~ on 
V; for all x E V it holds that [ ~(x) - r(x)[ < e, for all a it holds that F(~c~, 
S~) < e. 

If  V is a C k manifold, ~ can be assumed to be a C k function. 
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Corollary. Any space-time V possessing a time function is stably causal 
(as ~" admits a widening of the null cones). 

Corollary. On any stably causal space-time V one can (globally) write the 
metric in the form (signature o f g ~ :  +++) 

ds 2 = - f (xa)2  dt2 + dot z 

where dot  2 is a positive definite (t-dependent) line element on the hyper- 
surfaces t = const. 

Corollary. Any stably causal space-time V (globally) admits a timelike 
nonrotating congruence (e.g., Vr). 

Proof. The proof of thetheorem is a consequence of the following seven 
lemmas. The requirement F(So,, S~) < e is not explicitly considered there, but 
it can be obviously fulfilled by choosing sufficiently small sets U in Lemmas 3.5 
and 3.7. 

Definition 3.1. (1.c. Sets; see also Figure 2) 

A set U C V is called a local causality set ("l.c. set") if the following condi- 
tions hold: 

(i) Uis homeomorphic to the closed unit cube of IR n, hence compact, and 
Uhas a coordinate system (t, x~), where t is a (local) time function and the lines 
x ~ = const are timelike. 

(ii) U is g-geodetic convex. 
(iii) The local causality on Uis the global causality, i.e., q EJ+(p) ,  p, q E U 

implies that there exists a causal curve ~ that lies in U. 
In Lemma 3.4 we use a triad ofl.c, sets U, U', L 7, for which we assume the 

following properties: 
(iv) 6 CC V' CC ~. 
(v) U' and LThave timelike boundaries that are smooth except for two cone 

points (past and future end points). 
In Lemma 3.6 we further require that for a given ~ > g (~ being a Lorentz 

metric with respect to which a given uniform time function r is still a time func- 
tion) the following holds: 

(vi) A g-causal vector v a (gabvav b ~ 0) after parallel transport [with respect 
to the flat connection given by the coordinates (t, x~)] remains ~-causal with U. 

Lemma 3.1. (Uniform Increase; see also Figure 1.) Le t~  >g ,  r be a~  
time function and U a l.c. set. Then the following conditions are equivalent: 

3K, K '  > 0 ,  Va,/3: 

(1) K .  &u(S~,S~)<~ Io~- ~l 
(2) K "  Fu(Se,, S~) <<. l a - ~ I 
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lemma 3.1 

lemma 3.2 

Fig. 1. Proof of Lemmas 3.1 and 3.2. The broken lines are if-null-lines; the 
upper hatched area is the domain in which S 2 has to lie if both x ~ S1 and 
F(x, $2) = K. The lower hatched area is the domain into which the vector 
V a of Lemma 3.2 must point. 

I f  7- is smooth  (at least C1), then  these condi t ions  are equivalent  to 3 K " ,  

K ' "  > 0: 

(3) eabVaT-\Tb'r ~>K ''2 in U 

(4) -gab VaT-\] b T- >~ K '''2 in U 

(e al', A u ,  and F U were in t roduced  in Sect ion 2) 

Proof .  Let V be the Minkowski  space 

g: ds  2 = - d t  2 + d x  2 + d y  2 + d z  2 

ff: d'~ 2 = - 0 2  d t  2 + d x  2 + d y  2 + d z  2 0 > 1  

e: d'd 2 = + d t  2 + d x  2 + d y  2 + d z  2 

And  let S1 and $2 be two ff slices in V. Then  it  holds that  for 
c 2 := (02 - 1)/(02 + 1) 

C" A(S1, $2) • F(S1, $2) • A(S1, $2) < c - I F ( S ~ ,  $2 )  

(cf. Figure 1.) I f  r is smooth  one has 

c2 eabVaT-VbT ~ -gabVaTVbT- ~ eabVaT-VbT <~- -c -2g  ab VaT-VbT- 
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and 
I r ( x )  - r l  

O-a (~ tr ) (x )  <<- lim <- (~ tr ) (x )  
r-*r(x) F (  {x}, Sr)  

The proof  for Minkowski space can be easily extended to 1.c. subsets of  V. [] 

Lemma 3.2. (Uniformly timelike vectors.) Let ff > g ,  r be a ff time func- 
tion and U b e  a 1.c. set in V. Let v a be a vector field such that the 3-spaces 
g-orthogonal to v a are gA-spacelike and such that  ga~ va~ b <~ - K  for some 
K > 0; then there exists an I > 0 such that for any vector field w a with 
eabwaw b < l 2 it holds that  v a + w a is a g-causal vector. 

Proof. (By an argument similar to that of  Lemma 3.1.) In Minkowski space 
l can be chosen as K[(0 - 1)/(20 + 2)] 1/2. (cf. Figure 1.) [] 

Lemma 3.3. (Addition of  time functions.) 
Let r ' ,  r "  be two semi-time-functions and a, b be positive numbers; 

(i) then r := ar' + br"  is a semi-time-function. 
(ii) In any 1.c. set in which r '  is a time function, r is a time function too. 
(iii) In any 1.c. set in which r '  is uniform and r"  is stable, r is a uniform 

time function. (Stability o f  r holds if  both  r '  and r"  are stable; the 
anti-Lipschitz property holds for r if it holds for at least one of  the 
tWO 7 3, r t t . )  

(iv) r is not necessarily uniform if r '  is uniform; example: Minkowski 
space V 2, r '  = t, r "  = (x + t) 1/3 ; we might even choose r "  to be a time 
function (sin x + t) q3 and r is still not  stable at the origin (0; 0). (I am 
indebted to Steven Harris for pointing out this fact to me.) 

(v) The statements above become wrong if we consider functions a, b. 
But for slightly varying coefficients we can obtain some results: Let 
r '  be a time function with r "  being uniform in some 1.c. set U(anti-  
Lipschitz constant K )  and let f b e  a Lipschitz continuous function 
taking values in [0; 1 [, the Lipschitz constant L being smaller than 

K "  (1 - m a x f ) / m a x  I t ' (x)  - r"(x)[ 
U x E U  

Then r = f .  r' + (1 - f )  " r "  is a time function in U tha t  fulfills an 
anti-Lipschitz property.  

Proof. Le tp ,  q E U, q EJ+(p) .  Then r(q)  - r (p )  = [1 - f ( p ) ] .  [r"(q) - 
r " (p) ]  + f ( p ) "  [ r ' ( q ) - r ' ( p ) ]  + [ ; ( q ) - f ( p ) ]  �9 [ r " ( q ) -  r ' (q)]  ~>(1-  m a x f ) "  
K "  A ( p , q )  + 0 - L �9 A ( p , q ) -  max [ r " -  r'l. u 

Lemma 3.4. (Local uniformization; see Figure 2). Let G be an open set 
such that its domain of dependence D ( G )  is contained in the open interior 
of  some 1.c. set U. For any time function r we can find a metric g ~> g and 



824 SEIFERT 

Fig. 2. The triad U, U', U of Lemma 3.4. 

a g-time-function ~ such that g = g, ~ = r in V\U with ~ being uniform in 
G, g > g in G. Furthermore for any prescribed e > 0 one can arrange ~ to 
satisfy [~(x) - r(x)[ < e Vx ~ V. 

Proof. The proof consists of nine steps. First a few definitions. We shall use 
a triad U, U',/_Y, as described in Definition 3.1. such that G c c  ~r. R~ :-- a~rN 
aJ• A V\U'); T a is the strip of ~U lying between R~ and R~; • :--- 
min {A(x,y)lx ER~ ,y  ER~}; • is defined for r E  [r_, r§ where R~_ and 
R~+ are the two cone-points of OU; X(a) measures the "width" of Ta. 

(A) It holds that 

X := inf (• r_ ~< r ~< r+} > 0 

(the R ~ are compact sets continuously depending on r, hence • = 0 would imply 
the existence of a null curve joining two points on some $ r). 

(B) In any strip T r we can find a slice Cr that is stably spacelike. (] 'r  is a 
globally hyperbolic three-dimensional Lorentz space since the R r are nowhere 
timelike (see [7] ); global hyperbolicity is a stable property (see [1 ] ) and equiv- 
alent to the existence of a stably spacelike Cauchy surface C.} 

(C) If for two values a </3 the corresponding Ca, C~ intersect, we can find 
new C~, C~ fulffflling the requirements of step B for Cr (r = ~, t3) and C~ C 
I-(C'r (construction by exchanging some parts): 

:= n . r •  := n . r •  

:= u . -  § ' . -  Ca U C~ 
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As Ta C I-(Tfl), Tfl C I+(Ta) we have C~ C Ta, C~ C T 0. C~, C~ do not cross 
over but are still "in contact" along H := Ca O C 0. This can be removed by a 
slight shifting of C' in a small neigborhood of the compact set H (see also 
Lamina 2.2). 

(D) There exists a finite sequence rn with corresponding Cn (n = 0, 1 , . . .  , 
N), Co and CN being the cone points of 33; for k < l it holds that rk < 7Z, 
Ck C 1-(C1); for any a @ [r_, r+] at least two Cm, Cn(zm < a < rn) are con- 
tained in :ira. (This step is obvious.) 

(E) One can find a metric ff on U: g >~ g, g = g on U \U', ff > g on 3 such 
that all Cn are stably spacelike also with respect to oY. (This step is obvious.) 

(F) One can assume (possibly after a suitable finite supplementation of the 
set (Cn}) that the surfaces Cr of linear interpolation between the Cn are 
g-spacelike. (Let v a be a smooth timelike vector field on Ob~and t be the param- 
eter along its integral curves. In the coordinate representation C n .  {t = fn(P); 
p E S 2 (the orbit space of the integral curves)} we can interpolate: Let rk < z < 
rk +~ ; then 

C r .  (t = fk(P) + [fe+l (P) - fk(P)] (r - rk)/(Zk+l - rk);P ~ S 2 } 

The maximal distance between the Cn is assumed to be so small that the va-Lie - 
shifted tangents to the Ce remain g-spacelike in the strip between Ck-1 and 
Ck+l .) 

(G) Now we can introduce a uniform time function ~ on 3 by fixing its 
level surfaces: Sr := OJ-(Cr;g)  C'l U. The Sr are spacelike, Sa Cl ~q0 = r for a 4: 
j3; Sa (3 ~ 3  = Ca;there exists an M E IR such that Ao(Sa, SO) <~ M .  2xo &(C~, 
CO), which implies the uniformity-see Lamina 3.1. (In Minkowski space, M = 1 .) 

(H) Finally, we have to link gin Uand ~- in V\U'. In order to get a well- 
defined function also near the cone points of 3L?, we join the corresponding 
cone points of ~3  and OU' by a smooth timelike curve 7 (0  with a parameter 
which at the endpoints continuously joins to the values of r on OU' and of ~ on 
03; Ca := {7(a)}. The semispacelike surfaces 

I r in V\U'  

Sr := Sr i n U  

J- ( (Sr \U'  ) U Cz) in U ' \U  

correspond to a semi-time-function ~-on the whole of V. We can find a function 
f fulfilling the conditions in Lemma 3.3.(v) such that f =  0 in G and f =  const > 
0 in V\U. According to Lemma 3.3. (ii) and (v), ~'=f" r + (1 - f)~: fulfils all the 
properties required. 

(I) In order to obtain a ~'with [~'- rl < e one can modify the described 
construction in the following way. Replace the pair U', 3 by a finite sequence 
U k ( U  0 = U', U 1 = 3 ,  U N =/= r  UN + 1 = r  fulfilling (iv) and (v) of Definition 3.1 
such that all cone-points are outside D(G) (the smooth parts of ~Uk for k >~ 2 
might intersect G) and such that any p E Uk\Uk+ 1 can be joined with V\Uk by 
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a future-directed as well by a past-directed causal arc, along each of them ~- 
changes only by an amount  smaller than e/3 (i.e., no time function can differ 
more than 2 e/3 from r within ~7 if it coincides with r on every B Uk). If  one uses 
U a U k, k = 1 . . . . .  N instead of ~ U (then the C r consist of  N connected compo- 
nents) and constructs the Cr such that I t (x )  - al < e/3 for any x E Ca, then 
I ~ -  rl < e holds on U'.  �9 

Lemma 3.5. (Global uniformization.) I f  there exists a time function r on 
Vthen  there exists a uniform time function ~ such that I t  - $'1 < e on V. 

Proof. Take a (countable, locally finite) covering of  V with sets G n fulfill- 
ing the requirements in the statement of  Lemma 3.4. we  can construct a se- 
quence (gk, rk) by recursion: First we set go :=g  and T0 := r and then define 
(gg, "rg) to be (g, r) as constructed in the preceding lemma with g, r, G, e re- 
placed by  gk_l, Tk-1, Gk, e �9 2 -k.  Evidently, (gn,  "rn) converges in the compact- 
open topology since for any compact  set A C V after finitely many steps the se- 
quency (gn, rn) becomes constant on A. Let x E Gk and x E U~(I > k) then r t  
is the combination of  two gk-semi-time-functions hence of  g-stable time func- 
tions rl-1, Tt one of  which (rl_l) is anti-Lipschitz; according to Lemma 3.3 (v) r l 
is uniform. Therefore lim Tn is a uniform time function. �9 

Lemma 3.6. (Local regularization), Let r be a uniform time function on 
11, e > 0, and U, U b e  1.c. sets (see Definition 3.1). Then one can find a ?, 
defined on U, which (i) is a C ~ function of  the coordinates, (ii) is a uni- 
form time function, and for which (iii) I t (x )  - ~(x)l < e. 

Proof. (Convolution with mollifiers.) IIx a II denotes the Euclidean norm of  
coordinate values: 

I e IIx a II/> n -1 
8 n := _n 2 -n  2 

�9 I l x a l l  n -1 xP [ ( n 2 -  I~-xa 112)] { fexp[ (nZ_ ' ] -~a l l2 ) ]d4~a}- l '  < 

rn(X a) = f6n(X  a -  ~a)r(~a)d4 ~ a 

where the integration is formally taken over ~ 4 ;  for all n > [min ([Ix a - ya II Ix 
U , y  ~ U)]  -~ the supp (Sn) is contained in a (coordinate) domain, where r is de- 
fined, hence rn is defined on U. The following holds: 

(A) r n -> r (uniform convergence in 0 )  as 

sup lim [ rn(X)-  r(x)l = sup lim f [ T n ( X  a)  - T(~a)] t~n(X a - ~a)d4~a 
x n , d  

~<lim [max ( I r ( x  a) - r(~a)l; [Ix a - ~all ~<n-1)] = 0 
n 

(since ~" is continuous). 
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(B) "~n e c : ( 8 ) .  
(C) rn is a time function: 
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f "  
Zn(Y a) - Tn(Xa) = J 6 n  [ya _ ~a _ ( y a  _ xa)]  ,r(~a + ( y a  _ x a ) ) d 4 ~ a  

_ ; ~ n ( X  a - ~a)7(~a)d4~a  = j ~ n ( x a  _ ~ a ) t T ( ~ a  + ( y a  _ x a ) ) _  T(~a)]d4~a 

I f y  E J+(x ) \ { x } ,  i.e., y a  _ x a is a g-causal vector in x hence is a if-causal vector 
in any ~ E U [see Definition 3.1 (vi)], we can further estimate 

�9 . .  >>Kf6n(Xa - ~a)llya - xal[d4~ a = K l l Y  a - xall 

(K refers to Lemma 3.1 ; A is replaced by the Euclidean coordinate distance, g by 

if), 
L e m m a  3. Z (Global regularization.) Let T be a uniform time function on 
a C k space-time V, and e > 0, then one can find a uniform time function 
that is a C g function on Vand l~'(x) - ?(x)t < e for all x E V. (1 ~< k ~< oo). 

Proof. For a pair of  countable locally finite coverings of  V by 1.c. sets 
O'n CC Un one can obtain a sequence of  functions ~0 n ("partition of  unity")  such 
that 

Um CC supp ~orn fq Urn, 0 ~< ~O(m x) ~< 1 for all x E V, m E IN 

~rn e Ck(V)  

If  we combine local (smooth) time functions ~'rn of  Lemma 3.6 in the Urn, 

:= E trim Tm 
m 

we obtain a C k function on V, but we cannot be sure that ? really is a time func- 
tion, i.e., that V? is timelike: 

V~ = E ~rn VTm + E (7"m - 7")VtPm =:  Oa + wa 
m rn 

v a is timelike, w a generally is not. However, we can apply Lemma 3.2 in order 
to show that V? is timelike if we make w a very small by choosing Trn sufficiently 
close to T. 

For an explicit construction we introduce the following constants: N m := 
{n E INIU n N U m ~ r  is the (finite!) cardinal number oflXl m ; ~0 m := 

min {~om(x);x E Lrm) (by assumption ~m > 0 ) ; M ~  := m a x  {eabVa~kVb~.k;  
t t  

k @ N m ,  x E Urn); Krn is a constant o f  uniformity for r on Urn [refers to 
Lemma 3.1 (3) and Lemma 3.6 (C)] ;lm is the constant l of  Lemma 3.2 corre- 
sponding to a K = Km ;em := max {It m - r [; on Urn }; ~-m is a regularization of  
7- according to Lemma 3.6. in Urn. 
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If e;~ /> max (Nk �9 Mk "lk " r ;c 1 I k E ~I m) [which can be arranged according 
to Lemma 3.6 (A)] then Lemma 3.2 implies that V~ is timelike. �9 

w Extension of  Time Functions 

Theorem 4.1. Let A be a compact subset of a stably causal space-time V 
and r be a stable time function defined on A. Then there exists an exten- 
sion of r onto the whole of V. [That is, 3 g > g, g causal metric on V; p, 
q EA,  q E J+(p;g-')\ {p} implies r(q) > r(p). Note that it is not required 
that some g-causal curve ~-~ lies in A.] 

Proof. The stability of causality and time function enables us to extend r 
onto a neighborhood of A (step A). Then we shall construct a countable family 
of spacelike boundaries Sa of the form J - (Q~;g) ,  where g > g and Qa contains 
the level surface ( r  = a) on A (step B). This extension of r onto a dense subset 
of V (by constructing the level surfaces of r) can be completed to a continuous 
r on V (step C). 

Remarks. The stability of the time function is essential for step A; exam- 
ple: Minkowski space g2\{(0, 0)}, A = {( -1 , -1) ;  (+1, +1)}, r ( - 1 , -  1) = +1, 
r (+l ,  +1) = - 1 is a time function that obviously cannot be extended onto V 2. 
The condition that A has to be compact can be weakened at the cost of very 
tedious modifications; one has to require bounds on r, otherwise r might be- 
come infinite in finite regions of V (example: In the maximal analytic extension 
of Reissner and Nordstr6m's vacuum solution the time of an observer in asymp- 
totically fiat parts cannot be extended onto the whole of V; any extension must 
become infinite before one crosses an inner horizon: "infinite blue shift"). 

Step A. First we introduce a one-parameter family of metrics go : g < go < 
g, where ga <g# if ol </3; 0 E [a; b] ,  where a := rain ( r (x) lx  EA )  - 1, b := 
max (r(x) lx  EA)  + 1 ; the cones ofg0-null directions depend continuously on 
0 (local continuity of null cones). By assumption, r is a go-time-function for all 
0: 

J~(P)  := n J+(p;gn) 
0<rl 

�9 I~ (B) for compact sets B is closed (OJ+ C J§ and upper semicontinuous: q 
J~(B) implies that there exists a neighborhood U of B such that q q~ J~(U);  see 
[7, 6]. The latter property can be shown as follows: Since B is compact and 

J - (q )  is closed, there exists an , / >  0 such that J~(q) n B = ~b; in some normal 
neighborhood U o f q ,  U O B  = ~b we can find a U(q) such thatY~(U(q))\UC 
J~(q), roughly speaking, the ~gn light rays starting at q "overtake" the go light 
rays starting in U(q) within U. 
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Therefore any level surface S~ = {x EAIr(x) = a} can be extended as ag o- 
spacelike set Sa having no edge within some neighborhood of A such that Sa (3 
J ~  ({x  E A I r(x) > a}) = r Finitely many of such sets S~ can be chosen such 
that their domains of dependence cover some neighborhood U ofA.  Then one 
can choose some extension ~-of r as a continuous function onto some compact 
neighborhood .d of A such that Sa C OJ-(Sa ;if) and the dimension of the level 
surfaces Sa is 3. 

Let o be a continuous function on V, a --- a o n A ,  o -- b on V\.xi and p := 
max (o, 7) possessing level surfacesR~ = {P = ~}; it holds that Sa C 0-10-(Re) 
for all 0 [otherwise a g"-causal curve runs from some p E Sa to some q E R~, 
hence a = r(p) < r(q) <. P(q) which contradicts a = p(q)] .  

Step B. (See Figure 3.) Let {r2n} be a dense subset of  [a; b] and {P2n+l )  

be a sequence of points dense in V\A.  We shall construct a sequence Crn of non- 
intersecting stably spacelike boundaries by recursion. 

Let k be odd, Pk lying between Crg and Crh, i.e., the connected compo- 
nent V k of V\Un< k CZ. n that contains pk has the boundary C r t.J Crh in V. 
We assume Pk E Ilk C J~ (C r ), Pk ~ Jo. (Cr- ), Og > O h. Cz- ~ of the form 
J0- h (Qh), where Qh.is thegunio g of Rrn, onf Phn( if h is odd), and of finitely many 
points q~ [i < h; q~ EI+(pi)\JJh(Rrh U ph)].  

Now we can choose some value rg: rg > rk > rh and a 0k: Og > Ok > Oh 
such that Pk ~ Jffk(Rr,)  and Srk C3 jffk(pg) = r [this can always be arranged 

since Rrl c is compact and Pk ~ Jgh(Rrh) using the fact that J+ is closed and 
upper semicontinuous; cf. step A]. 

Fig. 3. The construction of Czn. One can see there why two simpler 
methods do not work in general: If one would take sets of the form C*.  = 
J-(Qn) instead of J-(Qn) one could not f'md an acausal boundary Cz2 
through Ptc that does not intersect C~- �9 if one would use the same metric 

t g ~  r go for all sets Crn instead of different gOn'S, then Crk and C'rh would have 
common go-null-generators. 
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Note that STk is empty for rk < a + 1 or rk > b - 1, hence the condition 
Srk n.lffe(Pk) = r can trivially be fulfilled i fA does not  intersect Vk. Finally 
we choose for any of  the q/h a point 

q/x �9 [I+(q~)\,l+o~(pk U S~.k) ] n Ygg(c  ) 
and a point 

q~ C [I*(qh)kJ*ok(p k U Srk)] 0 Jffg(Crg ) 

Such a choice is always possible;see argument above. For Qk := {Pk} U Rrk U 
Ui {q/x}, Crk := Jffk(Qk) fulfils all the requirements we assumed for a Cri(i ( k )  
in the beginning of  our recursion step. 

It remains to be shown that Crk fits together with the Crr In fact, Crk can- 
not  intersect Crh : Qk N Qh = r ; if two generators o f  Ck or, respectively, of  Cn 
intersect in a point r, then in any neighborhood o f t  one can find a point r § 
J0-k(ak ) [hence r § ~ Jffh(Qk)] and r + E,10 h(Qh) as the go k null cone in r is 
wider than the gon null cone, but this contradicts our construction of  Qk and 
the transitivity law for causal ordering. For the same reason Crk does not  inter- 
sect C~g. 

For an even k, we can carry out the same procedure with the compact set 
Rrk  N OJffk(R~) (which essentially is Szk ) instead of  P \ ,  

Step C. The Crk of  step B cover a dense subset W of V; since they do not 
intersect, they define a function r on IV; can r be continuously extended onto 
V? 

Let p be an arbitrary point and 7 a timelike curve through p. W N 7 is a 
dense set of  7 since the Cr are spacelike, r is a monotone increasing function on 
IV N 7; especially, the two limits 

r+_ = lira {r(q)~q EI+-(p) n W} 
q §  

exist. I f r  + were strictly greater than r -  one could find a r2n: r -  < r2n < r+; the 
corresponding Cr2n (cf. step B) must show up in a neighborhood o fps ince  Cr2n 
is a boundary of  a set Jffzn(Cr.n) containing Cr and is contained in J-(C r +). 
Therefore r+ --- r_. For p E V\~W we define r (p )  -=  r_. 

In a stably causal space V the sets of  the form U = l*(p-) cq I-(p § [p+- E 
~, A/-+(p)] form a basis for the neighborhoods of  p, and for any time function 
r it holds that on U: sup r = ~'(p§ inf r = r(p-); this implies that r is contin- 

uous in p. �9 
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