Smoothing and Extending Cosmic Time Functions

HANS-JURGEN SEIFERT

Hochschule der Bundeswehr Hamburg, Germany

Received December 1 7, 19 76

Abstract

Any continuous time function on a C^K space-time V (i.e., a scalar on V that increases along any causal curve) can be approximated by smooth C^K time functions. A time function defined on a (bounded) subset of a stably causal V can be extended to a time function on the whole of V .

§(1): *Introduction*

In the heroic era of global general relativity some relativists worked their way through the (only partially ordered) set of causality conditions and came to a halt at the comfortable station "stable causality." The virtue of stable causality is that it is a reasonable notion for almost the weakest causality requirement and, on the other hand, one can work with it also in concrete calculations because of a theorem of Hawking [3] stating that it is equivalent to the existence of a global "cosmic" time function. The very elegant proof of Hawking modifying a method of Geroch $[1]$ constructs a continuous scalar t that increases along any causal curve.

In my thesis $[6]$ I gave (i) a smoothing procedure ("regularization") for t, i.e., one might write the metric globally as $ds^2 = -f^2 dt^2 + g_{\alpha\beta} dx^{\alpha} dx^{\beta}$, where f, $g_{\alpha\beta}$ have the same differentiability class as g_{ab} (see Section 3); (ii) another way of constructing t , which is much more laborious than Hawking's but explicit, and flexible enough so that it can be used to extend a time function given on a (compact) subset of the space time (Section 4).

Meanwhile I have learned that these procedures treating (null) cones and their relations to families of level surfaces of a scalar t are not only useful for proving plausible improvements of Hawking's theorem. For example, in the case of a potential field these methods can help to find suitably adapted coordinates

and to understand the "causal" behavior of particles under the influence of the potential; see [5].

The basic principle of smoothing a time function is the fact that certain approximations of continuous functions f by smooth ones (f_n) also approximate bounds fulfilled by f and/or derivatives of f; e.g., if $f(x + \xi) - f(x) \ge K \cdot \xi$ for all ξ , then for any $\epsilon > 0$ and for suitably large *n*, $df_n/dx \geq K - \epsilon$. Therefore the gradient vector of a suitable smooth approximation t_n of a time function t will lie in an arbitrarily small neighborhood of the light cone. If t in addition is "uniformly" timelike in some sense (see Section 1), we can find a smooth t_n with a timelike gradient and t_n is then the desired smooth time function as constructed in Hawking's proof and is automatically uniform and can be smoothed without further "preparation"; on the other hand, Hawking's definition requires that the level surfaces ($t =$ const) remain spacelike under a slight variation of the metric which widens the null cones. It is compatible with *our* definition that a surface $(t = const)$ is tangent to a null direction in a single point, hence we need the possibility of uniformization to show that the existence of a time function implies stable causality.

The basic idea of constructing extensions of time functions is to take a metric $\hat{\mathbf{g}}$ that has light cones wider than those of \mathbf{g} (as \mathbf{g} is stably causal we always can find such a \hat{g}) and use \hat{g} -null horizons (hence g-spacelike hypersurfaces) as level surfaces for t.

w *The Zoology of Spacelike Hypersurfaces*

In notation and conventions this paper mainly follows the book of Hawking and Ellis $[4]$; *V* denotes a space-time on a smooth, Hausdorff, paracompact, connected manifold possessing a time-oriented C^2 -Lorentz metric of signature $(- + + +).$

On the set of Lorentz metrics on a manifold one can introduce a partial ordering: $g < \hat{g}$ if for any vector $v^a \neq 0$ with $g_{ab}v^a v^b \leq 0$ it holds that $\hat{g}_{ab}v^a v^b$ 0. The causal/timelike futures/pasts and the domains of dependence J^{\pm} , I^{\pm} , D^{\pm} , D are denoted and defined as usual. If it is not obvious with respect to which Lorentz metric the future is taken, this metric g is explicitly denoted: $J^{\dagger}(.;g)$.

 $\widetilde{J}^+(p;g) := \bigcap J^+(p;\hat{g})$, where the intersection has to be taken over all $\hat{g} > g$.

Sometimes an auxiliary Euclidean metric *eab* is used. We distinguish two types of distances (with respect to g and to e):

$$
F_W(A, B) := \sup_{\gamma} \left\{ \int_{\gamma} ds \middle| \gamma = \widehat{xy}, x \in A, y \in B, \gamma \text{ causal curve in } W \right\}
$$

$$
\Delta_W(A, B) := \sup_{x \in A} \left\{ \inf_{\gamma} \int_{\gamma} d\sigma \middle| \gamma = \widehat{xy}, y \in B, d\sigma \text{ is the line element}
$$

corresponding to e_{ab} , γ curve in W

F and Δ denote the maximal g (or e) distance that an element x of A can have from B.

For the definition of causality conditions (chronology, strong/stable causality, global hyperbolicity) see $[4]$.

 $\overline{A}, \overline{A}$, ∂A denote the closure, the interior, and the boundary of A. $A \subseteq CB \Leftrightarrow \overline{A} \subseteq \overset{\circ}{R}$

Definition 2.1

A is an *achronal* set if for all $p \in A$: $I^+(p) \cap A = \emptyset$

A is an *acausal* set if for all $p \in A: J^+(p) \cap A = \{p\}.$

A is a *stably acausal* set if there exists a $\hat{g} > g$ on V and for all $p \in A$. $J^+(p;\hat{g})\cap A = \{p\}.$

A is a *partial Cauchy surface* ifA is acausal and the domain of dependence *D(A)* is a neighborhood of A.

A is *nontimelike (spacelike; stably spacelike, a slice)* if the metric g induces a causal structure on some neighborhood U of A such that A is an achronal (acausal, stably acausal) set (a partial Cauchy surface) in U.

A set is called a *hypersurface* in V if it is an embedded three-dimensional submanifold (with or without edge).

A set A is called a *boundary* if there exists a $W \subset V$ such that $A = \partial W$. A boundary is called *time oriented* if any causal curve crossing over A from W to $V\W$ is future directed.

A family of sets A_i is a *covering* if any $p \in V$ belongs to some A_i .

A covering is *simple* ("decomposition") if any $p \in V$ belongs to exactly one *Ai.*

A simple covering is *parametrized* if the *A i* are the level surfaces of a continuous function $\tau: V \to \mathbb{R}$ or $V \to S^1$.

A time function τ is a continuous function $\tau: V \rightarrow \mathbb{R}$ that increases along any causal curve γ in V. The corresponding level surfaces $\{\tau = \alpha\}$ are denoted by S_{α} ; they form a parametrized simple covering. If τ is increasing along timelike curves and not decreasing along causal curves, r is a *semi-time-function.*

A stable time function τ has stably spacelike level surfaces.

A uniform time function is stable and fulfils an "anti-Lipschitz property": For any compact set $C \subset V$ there exists a constant $K_C > 0$ such that for all α, β

$$
K_C \cdot \Delta_C(S_\alpha, S_\beta) \leqslant |\alpha - \beta|
$$

(Roughly speaking, τ increases more quickly than at a certain minimum rate along any causal curve.)

A smooth time function τ on a C^k (C^{∞}) manifold is a C^k (C^{∞}) function.

Remark. Any simple covering by acausal hypersurfaces can be locally parametrized and hence corresponds to a local time function. Globally this does not hold: Cut out of the Minkowski space V^2 the two lines $\{x = 3 | 1 \le t \le 2\}$, ${x = -3|-2 \le t \le -1}$ and identify the edges ${x = 3 + 0|1 < t < 2}$ with ${x =$

 $-3 - 0$ |-2 $\lt t \lt -1$ and vice versa. The acausal sets $\{t = \text{const}\}\)$ cannot be parametrized. A covering by slices is a time function if it is parametrized by R (not by $S¹$), but a space-time with a covering by slices parametrized by $S¹$ might still possess a time function: In Minkowski space V^2 identify $\{t = 0\}$ and $\{t = 3\}$ and remove $\{t = 1 | x \leq t\}$, $\{t = 2 | x \geq t\}$; the slices $\{t = const\}$ have a periodic parameter, but the space time is stably causal and hence possesses a time function.

Theorem 2.1. (Covering by slices and causality.)

- (i) If V can be covered by *partial Cauchy surfaces* then V is *strongly causal.*
- (ii) If V can be covered by *time-oriented spacelike boundaries,* then V is *stably causal* and V can be simply covered by time-oriented spacelike boundaries.
- (iii) If V is a *simply connected* manifold and can be covered by *slices,* then V is *stably causal;* if the covering is simple, then there exists a time function possessing these slices as level surfaces.

Remarks and Counterexamples

(iv) If V is covered by partial Cauchy surfaces, V is not necessarily stably causal; example: V^2 is Minkowski space, $\{t = \pm 1; x \ge 0\}$ and $\{t = 0; x \le 1\}$ removed, all pairs of points $(-2; x)$, $(+2; x)$ identified; the lines $\{t = \text{const}\}$ are partial Cauchy surfaces, but V^2 is not stably causal.

(v) If V is strongly causal, there does not necessarily exist a covering by slices; in [6, p. 39 f.] an example of a strongly causal space with no slice at all is given (the result of a discussion with Geroch).

(vi) If a covering by slices exists, one generally cannot find a simple covering by slices. (This is a *con/ecture* of mine based on the example after Lemma 2.2. and similar arguments.)

(vii) In multiply connected space-times a simple covering by time-oriented spacelike boundaries is not necessarily the family of level surfaces of a time function. Example: Remove $\{|t| \leq 1 : x = 0\}$ from Minkowski space V^2 ; the lines $\{t =$ a) for $|a| > 1$ and $\{t = a; x < 0\} \cup \{t = -a; x > 0\}$ for $|a| \leq 1$ form a simple covering but cannot be continuously parametrized.

(viii) If one drops the assumption that V is time-orientable, curious things might happen. For example (Möbius strip), take the unit square $\{|x| \leq 1, |t| \leq \ell\}$ 1) and identify $(t, 1)$ with $(-t, -1)$ for all $|t| < 1$. One obtains a space-time not stably causal but possessing a Cauchy surface $\{t = 0\}$. In fact, V can be covered by Cauchy surfaces, but any two of them intersect. On the other hand there exists a simple covering by slices $\{|t| = \text{const}\}\$ which with one exception are spacelike boundaries. In general, for stably causal non-time-oriented space-times one can find something like a time-function, namely a $\tau: V \rightarrow [0, \infty)$ such that $\pm \tau$ is a monotone continuous parameter along any causal curve γ if one switches the sign when γ meets $\{\tau = 0\}$; see [6, p. 31].

(ix) The existence of a semi-time-function is a causality property stronger than chronology and weaker than stable causality but not comparable with either causality or strong causality: Minkowski space V^2 , all pairs of points (t -1; $x + 1$) and $(t + 1; x - 1)$ identified, possesses a semi-time-function $\tau = t + x$ but is not causal; the example of (iv) is strongly causal but does not possess a semi-time-function τ [as τ must be continuous by definition, τ would have to fulfill: $\tau(0.5; 0.5) \le \tau(1.5; -0.5) \le \tau(-1.5; -0.5) \le \tau(-0.5; 0.5) \le \tau(0.5; 0.5)$.

Sketch of the Proof of Theorem 2.1

(i) The first part is obvious, as the domain of dependence of a partial Cauchy surface S is a neighborhood of any $p \in S$.

(ii) Lemma 2.1 shows that one can find a covering by countably many "collars" of spacelike boundaries.

Lemma 2.2 gives the essential idea of how one can obtain a simple covering by spacelike boundaries from an arbitrary covering (for a more explicit construction, cf. [6, p. 37]). In fact it would be sufficient to get a locally finite covering of V by collars. Then there exists a widening \hat{g} of g such that all these time-oriented spacelike boundaries are $\hat{\mathbf{z}}$ -spacelike boundaries.

Any space-time that can be covered by \hat{g} -spacelike boundaries is \hat{g} -causal (hence g-stably causal), for if a causal curve γ leaves a region A at a point $p \in$ ∂A , then γ cannot reenter A if ∂A is time-oriented; i.e., no closed \hat{g} -causal curve meets the (arbitrarily chosen) point p.

(iii) Part (iii) is a consequence of statement (ii) and Lemmas 2.2. and 2.4.

Lemma 2.1. (Collaring of slices.) Let S be a slice. Then there exists a simple covering of a neighborhood of S by a one-parameter family ("collar") of stably spacelike slices S_{α} (-1 $< \alpha < 1$). If S is a partial Cauchy surface (or, respectively, a time-oriented spacelike boundary), then the S_{α} have this property too and their domains of dependence $D(S_\alpha)$ equal $D(S)$. For any $\epsilon > 0$ we can require $F(S, S_0) < \epsilon$.

Proof. By definition, there is a neighborhood U of S in which $[(U, g)$ taken as space-time] S is an acausal set. There the uniformization procedure of Lemmas 3.4 and 3.5 for a family S_{τ} can be also applied to a single S.

Lemma 2.2. (Removal of crossings.) Let S_1 , S_2 be time-oriented boundaries $(S_i = \partial A_i)$ and q some fixed point on S_2 , $q \notin S_1$. Then there exists a timeoriented boundary S'_2 such that $q \in S'_2$ and $S_1 \cap S'_2 = \emptyset$.

Proof. Let $\partial A_{1,\alpha}$ be a collar of ∂A_1 not containing q; then take $S'_2 = \partial (A_2 \cap$ $A_{1,\alpha}$) where $\alpha = -\frac{1}{2}$ if $q \in A_1$, $\alpha = +\frac{1}{2}$ if $q \in V \backslash A_1$.

Example. This procedure does not work if S_1 , S_2 are arbitrary slices. Let η_{ab} be the Minkowski metric on $\mathbb{R}^3(t, x, y)$ and $v^a := (1, -y, x), g_{ab} := \eta_{ab}$ +

 $(v^c v_a)^{-1} v_a v_b$. The circle $\gamma_1 = \{x^2 + y^2 = 1; t = 0\}$ is a null curve; take a spacelike surface intersecting γ_1 in exactly one point and let γ_2 be its edge (which "encircles" γ_1). Let (V^3, g) be the space-time $\mathbb{R}^3 \setminus {\gamma_1, \gamma_2}$; all slices in V^3 have as "ideal edge" γ_1 or γ_2 , none of them both γ_1 and γ_2 . We can find p, q such that for any pairs of slices S_p , S_q containing p or q, respectively, it holds that $S_p \cap$ $S_a \neq \emptyset$ but $S_p \neq S_q$.

Lemma 2.3. (Hawking [2] ; slices in simply connected space-times.) Let V be a simply connected space and S be a slice in V . Then S is a partial Cauchy surface and a time-oriented spacelike boundary.

Proof. (See also [2].) For any hypersurface without edge it holds that a homotopy deformation of a curve (keeping the end points fixed) changes the number of crossings by only an even number. In particular, two points p, q locally separated by S (i.e., joined by a \overline{pq} crossing S once) cannot be joined by a curve γ without crossing S as γ is homotopic to \widehat{pq} in a simply connected V; that is, S is a boundary and S is an acausal set.

Lemma 2.4. (Parametrization of simple coverings.) Let V be a simply connected space and δ a simple covering by slices. Then there exists a time function τ such that the family of level surfaces $\{\tau = \text{const}\}\$ is δ .

Proof. Let $\{\gamma_n\}$ be a sequence of nonextendible causal curves such that the paths of the γ_n form a dense subset of V. We parametrize δ by recursion: Let the γ_i ($i < k$) be those already considered, i.e., they parametrize the subset S_{k-1} := $\{S \in S \mid S \cap \gamma_i \neq \emptyset \text{ for some } i \leq k\}$ of S and the connected subset $V_{k-1} := \cup \{ S \in \S_{k-1} \}$ of V by a parameter τ . Let l be the smallest number $\ge k$ such that $\gamma_l \cap V_{k-1} \neq \emptyset$; if $l \neq k$ we reorder a finite section of the sequence $\{\gamma_n\}$ in the following way: γ_l becomes γ_k and γ_m becomes γ_{m+1} for all $k \le m \le l$. As the S's are boundaries (see Lemma 1.3.), any curve \widehat{pq} intersects S_α if $\tau(p)$ $\alpha \leq \tau(q)$; therefore $\gamma_k^0 := \gamma_k \cap V_{k-1}$ is connected, it might have values $\tau \in$ $]a; b[$; we may parametrize $\gamma_k^{\pm} := J^{\pm}(\gamma_k^0) \cap \gamma_k$ by $]a - 1; a]$ and $[b; b + 1[$ if these parts of γ_k are not empty. Any $S \in \mathcal{S}$ with $S \cap \gamma_k^{\pm} \neq \emptyset$ does not belong to δ_{k-1} and is met by a causal curve γ_k only once, hence it is uniquely parametrized. The new set V_k is again connected. $\delta = \bigcup \delta_n$, $V = \bigcup V_n$.

§(3): A Construction to make Time Functions Uniform and Regular

Theorem 3.1. Let V be a space-time possessing a time function τ , and ϵ be an arbitrary number >0 . Then there exists a uniform time function $\hat{\tau}$ on V; for all $x \in V$ it holds that $|\hat{\tau}(x) - \tau(x)| < \epsilon$, for all α it holds that $F(\hat{S}_{\alpha}, \hat{S}_{\alpha})$ S_{α}) $\leq \epsilon$.

If V is a C^k manifold, $\hat{\tau}$ can be assumed to be a C^k function.

Corollary. Any space-time V possessing a time function is stably causal (as $\hat{\tau}$ admits a widening of the null cones).

Corollary. On any stably causal space-time V one can (globally) write the metric in the form (signature of $g_{\alpha\beta}:$ +++)

$$
ds^2 = -f(x^a)^2 dt^2 + d\sigma_t^2
$$

where $d\sigma_t^2$ is a positive definite (*t*-dependent) line element on the hypersurfaces $t =$ const.

Corollary. Any stably causal space-time V (globally) admits a timelike nonrotating congruence (e.g., $\nabla \tau$).

Proof. The proof of the theorem is a consequence of the following seven lemmas. The requirement $F(\hat{S}_{\alpha}, S_{\alpha}) < \epsilon$ is not explicitly considered there, but it can be obviously fulfilled by choosing sufficiently small sets U in Lemmas 3.5 and 3.7.

Definition 3.1. (1.c. Sets; see also Figure 2)

A set $U \subset V$ is called a local causality set ("l.c. set") if the following conditions hold:

(i) U is homeomorphic to the closed unit cube of \mathbb{R}^n , hence compact, and U has a coordinate system (t, x^{α}) , where t is a (local) time function and the lines x^{α} = const are timelike.

(ii) U is g-geodetic convex.

(iii) The local causality on U is the global causality, i.e., $q \in J^+(p)$, $p, q \in U$ implies that there exists a causal curve \widehat{pq} that lies in U.

In Lemma 3.4 we use a triad of l.c. sets U, U', \tilde{U} , for which we assume the following properties:

(iv) $\tilde{U} \subset\subset U' \subset\subset U$.

(v) U' and \tilde{U} have timelike boundaries that are smooth except for two cone points (past and future end points).

In Lemma 3.6 we further require that for a given $\hat{g} > g$ (\hat{g} being a Lorentz metric with respect to which a given uniform time function τ is still a time function) the following holds:

(vi) A g-causal vector v^a ($g_{ab}v^a v^b \le 0$) after parallel transport [with respect to the flat connection given by the coordinates (t, x^{α}) remains \hat{g} -causal with U.

Lemma 3.1. (Uniform Increase; see also Figure 1.) Let $\hat{g} > g, \tau$ be a \hat{g} time function and U a l.c. set. Then the following conditions are equivalent:

$$
\exists K, K' > 0, \quad \forall \alpha, \beta:
$$

(1) $K \cdot \Delta_U(S_\alpha, S_\beta) \leq |\alpha - \beta|$ (2) $K' \cdot F_U(S_\alpha, S_\beta) \leq |\alpha - \beta|$

Fig. 1. Proof of Lemmas 3.1 and 3.2. The broken lines are \hat{g} -null-lines; the upper hatched area is the domain in which S_2 has to lie if both $x \in S_1$ and $F(x, S_2)$ = K. The lower hatched area is the domain into which the vector *V a* of Lemma 3.2 must point.

If τ is smooth (at least C^1), then these conditions are equivalent to $\exists K'',$ $K^{\cdots} > 0$:

 (3) $e^{ab}\nabla_a\tau\nabla_b\tau \geqslant K''^2$ in U (4) $-g^{ab}\nabla_a \tau \nabla_b \tau \geq K'''^2$ in U

 $(e^{ab}, \Delta_U,$ and F_U were introduced in Section 2)

Proof. Let V be the Minkowski space

$$
g: ds2 = -dt2 + dx2 + dy2 + dz2
$$

$$
\hat{g}: d\hat{s}^{2} = -\theta^{2}dt^{2} + dx^{2} + dy^{2} + dz^{2} \quad \theta > 1
$$

$$
e: d\tilde{s}^{2} = +dt^{2} + dx^{2} + dy^{2} + dz^{2}
$$

And let S_1 and S_2 be two g slices in V. Then it holds that for $c^2 := (\theta^2 - 1)/(\theta^2 + 1)$

$$
c \cdot \Delta(S_1, S_2) \le F(S_1, S_2) \le \Delta(S_1, S_2) \le c^{-1} F(S_1, S_2)
$$

(cf. Figure 1.) If τ is smooth one has

$$
c^2 e^{ab} \nabla_a \tau \nabla_b \tau \leqslant -g^{ab} \nabla_a \tau \nabla_b \tau \leqslant e^{ab} \nabla_a \tau \nabla_b \tau \leqslant -c^{-2} g^{ab} \nabla_a \tau \nabla_b \tau
$$

and

$$
\theta^{-1}(\partial_t \tau)(x) \leq \lim_{\tau \to \tau(x)} \frac{|\tau(x) - \tau|}{F(\{x\}, S_\tau)} \leq (\partial_t \tau)(x)
$$

The proof for Minkowski space can be easily extended to l.c. subsets of V .

Lemma 3.2. (Uniformly timelike vectors.) Let $\hat{g} > g$, τ be a \hat{g} time function and U be a 1.c. set in V. Let v^a be a vector field such that the 3-spaces g-orthogonal to v^a are \hat{g} -spacelike and such that $g_{ab}v^a v^b \leq -K$ for some $K > 0$; then there exists an $l > 0$ such that for any vector field w^a with $e_{ab}w^a w^b \le l^2$ it holds that $v^a + w^a$ is a g-causal vector.

Proof. (By an argument similar to that of Lemma 3.1.) In Minkowski space l can be chosen as $K[(\theta - 1)/(2\theta + 2)]^{1/2}$. (cf. Figure 1.)

Lemma 3.3. (Addition of time functions.)

Let τ' , τ'' be two semi-time-functions and a, b be positive numbers:

- (i) then $\tau := a\tau' + b\tau''$ is a semi-time-function.
- (ii) In any l.c. set in which τ' is a time function, τ is a time function too.
- (iii) In any l.c. set in which τ' is uniform and τ'' is stable, τ is a uniform time function. (Stability of τ holds if both τ' and τ'' are stable; the anti-Lipschitz property holds for τ if it holds for at least one of the $two \tau', \tau''.$
- (iv) τ is not necessarily uniform if τ' is uniform; example: Minkowski space V^2 , $\tau' = t$, $\tau'' = (x + t)^{1/3}$; we might even choose τ'' to be a time function (sin x + t)^{1/3} and τ is still not stable at the origin (0; 0). (I am indebted to Steven Harris for pointing out this fact to me.)
- (v) The statements above become wrong if we consider functions a, b. But for slightly varying coefficients we can obtain some results: Let τ' be a time function with τ'' being uniform in some l.c. set U (anti-Lipschitz constant K) and let f be a Lipschitz continuous function taking values in $[0; 1]$, the Lipschitz constant L being smaller than

$$
K \cdot (1 - \max_{U} f) / \max_{x \in U} |\tau'(x) - \tau''(x)|
$$

Then $\tau = f \cdot \tau' + (1 - f) \cdot \tau''$ is a time function in U that fulfills an anti-Lipschitz property.

Proof. Let $p, q \in U, q \in J^+(p)$. Then $\tau(q) - \tau(p) = [1 - f(p)]$. $[\tau''(q) \tau''(p)] + f(p) \cdot [\tau'(q) - \tau'(p)] + [f(q) - f(p)] \cdot [\tau''(q) - \tau'(q)] \geq (1 - \max f)$ $K \cdot \Delta(p,q) + 0 - L \cdot \Delta(p,q) \cdot \max |\tau'' - \tau'|$.

Lemma 3.4. (Local uniformization; see Figure 2). Let G be an open set such that its domain of dependence $D(\overline{G})$ is contained in the open interior of some 1.c. set U. For any time function τ we can find a metric $\tilde{g} \geq g$ and

Fig. 2. The triad U, U', \widetilde{U} of Lemma 3.4.

a $\tilde{\mathfrak{g}}$ -time-function $\tilde{\tau}$ such that $\tilde{\mathfrak{g}} = \mathfrak{g}, \tilde{\tau} = \tau$ in $V \setminus U$ with $\tilde{\tau}$ being uniform in $G, \widetilde{g} > g$ in G. Furthermore for any prescribed $\epsilon > 0$ one can arrange $\widetilde{\tau}$ to satisfy $|\tilde{\tau}(x) - \tau(x)| < \epsilon \ \forall x \in V$.

Proof. The proof consists of nine steps. First a few definitions. We shall use a triad U, U', \widetilde{U} , as described in Definition 3.1. such that $G \subset\subset \widetilde{U}$. $R^{\pm}_{\alpha} := \partial \widetilde{U} \cap I$ $\partial J^{\pm}(S_{\alpha} \cap V \setminus U')$; T_{α} is the strip of $\partial \tilde{U}$ lying between R_{α} and R_{α}^{+} ; $\chi(\alpha)$:= min $\{\Delta(x, y)|x \in R_{\alpha}^{\text{+}}, y \in R_{\alpha}^{\text{+}}\}; \chi(\tau)$ is defined for $\tau \in [\tau_-, \tau_+]$, where $R_{\tau_-}^{\text{+}}$ and R_{7+}^+ are the two cone-points of $\partial \tilde{U}$; $\chi(\alpha)$ measures the "width" of T_α .

(A) It holds that

$$
\chi := \inf \left\{ \chi(\tau) | \tau_{-} \leq \tau \leq \tau_{+} \right\} > 0
$$

(the R^{\pm}_{α} are compact sets continuously depending on τ , hence $\chi = 0$ would imply the existence of a null curve joining two points on some δ_{τ}).

(B) In any strip T_{τ} we can find a slice C_{τ} that is stably spacelike. $\{T_{\tau}$ is a globally hyperbolic three-dimensional Lorentz space since the R^{\pm}_{τ} are nowhere timelike (see [7]); global hyperbolicity is a stable property (see [1]) and equivalent to the existence of a stably spacelike Cauchy surface C .

(C) If for two values $\alpha < \beta$ the corresponding C_{α} , C_{β} intersect, we can find new C'_α , C'_β fulfilling the requirements of step B for C_τ ($\tau = \alpha$, β) and C'_α \subset $I^{-}(C'_{\beta})$ (construction by exchanging some parts):

$$
C_{\alpha}^{\pm} := C_{\alpha} \cap J^{\pm}(C_{\beta}), \qquad C_{\beta}^{\pm} := C_{\beta} \cap J^{\pm}(C_{\alpha})
$$

$$
C_{\alpha}':= C_{\alpha}^{-} \cup C_{\beta}^{-}, \qquad C_{\beta}':= C_{\alpha}^{+} \cup C_{\beta}^{+}
$$

As $T_{\alpha} \subset I^{-}(T_{\beta})$, $T_{\beta} \subset I^{+}(T_{\alpha})$ we have $C'_{\alpha} \subset T_{\alpha}$, $C'_{\beta} \subset T_{\beta}$. C'_{α} , C'_{β} do not cross over but are still "in contact" along $H = C_{\alpha} \cap C_{\beta}$. This can be removed by a slight shifting of C' in a small neigborhood of the compact set H (see also Lemma 2.2).

(D) There exists a finite sequence τ_n with corresponding C_n (n = 0, 1, ... N), C_0 and C_N being the cone points of $\partial \tilde{U}$; for $k \leq l$ it holds that $\tau_k \leq \tau_l$, $C_k \subset I^{-1}(C_l)$; for any $\alpha \in [\tau_-, \tau_+]$ at least two C_m , $C_n(\tau_m < \alpha < \tau_n)$ are contained in T_{α} . (This step is obvious.)

(E) One can find a metric \bar{g} on $U: \bar{g} \geq g, \bar{g} = g$ on $U \setminus U', \bar{g} > g$ on \tilde{U} such that all C_n are stably spacelike also with respect to \overline{g} . (This step is obvious.)

(F) One can assume (possibly after a suitable finite supplementation of the set $\{C_n\}$) that the surfaces C_τ of linear interpolation between the C_n are \bar{g} -spacelike. (Let v^a be a smooth timelike vector field on $\partial \tilde{U}$ and t be the parameter along its integral curves. In the coordinate representation $C_n \equiv \{t = f_n(p)\}$; $p \in S^2$ (the orbit space of the integral curves)} we can interpolate: Let $\tau_k < \tau <$ τ_{k+1} ; then

$$
C_{\tau} = \{t = f_k(p) + [f_{k+1}(p) - f_k(p)](\tau - \tau_k)/(\tau_{k+1} - \tau_k); p \in S^2\}
$$

The maximal distance between the C_n is assumed to be so small that the v^a -Lieshifted tangents to the C_k remain \bar{g} -spacelike in the strip between C_{k-1} and C_{k+1} .)

(G) Now we can introduce a uniform time function $\bar{\tau}$ on \tilde{U} by fixing its level surfaces: $\bar{S}_{\tau} := \partial J^{-}(C_{\tau}; \bar{g}) \cap \tilde{U}$. The \bar{S}_{τ} are spacelike, $\bar{S}_{\alpha} \cap \bar{S}_{\beta} = \emptyset$ for $\alpha \neq \emptyset$ β ; $\overline{S}_{\alpha} \cap \partial \widetilde{U} = C_{\alpha}$; there exists an $M \in \mathbb{R}$ such that $\Delta_{\tilde{U}}(\overline{S}_{\alpha}, \overline{S}_{\beta}) \leq M \cdot \Delta_{\partial \tilde{U}}(C_{\alpha}, \overline{S}_{\beta})$ C_{β}), which implies the uniformity-see Lemma 3.1. (In Minkowski space, $M = 1$.)

(H) Finally, we have to link $\bar{\tau}$ in \tilde{U} and τ in $V\setminus U'$. In order to get a welldefined function also near the cone points of $\partial \tilde{U}$, we join the corresponding cone points of $\partial \tilde{U}$ and $\partial U'$ by a smooth timelike curve $\gamma(t)$ with a parameter which at the endpoints continuously joins to the values of τ on $\partial U'$ and of $\bar{\tau}$ on $\partial U; C_{\alpha} := {\gamma(\alpha)}$. The semispacelike surfaces

$$
\overline{S}_{\tau} := \begin{cases} S_{\tau} & \text{in } V \setminus U' \\ \overline{S}_{\tau} & \text{in } \widetilde{U} \\ \partial J^{-}((S_{\tau} \setminus U') \cup C_{\tau}) & \text{in } U' \setminus \widetilde{U} \end{cases}
$$

correspond to a semi-time-function $\bar{\tau}$ on the whole of V. We can find a function f fulfilling the conditions in Lemma 3.3.(v) such that $f = 0$ in G and $f = const$ 0 in $V\backslash \tilde{U}$. According to Lemma 3.3. (ii) and (v), $\tilde{\tau} = f \cdot \tau + (1 - f)\bar{\tau}$ fulfils all the properties required.

(I) In order to obtain a $\tilde{\tau}$ with $|\tilde{\tau} - \tau| < \epsilon$ one can modify the described construction in the following way. Replace the pair U' , \tilde{U} by a finite sequence $U_k(U_0 = U', U_1 = \tilde{U}, U_N \neq \emptyset, U_{N+1} = \emptyset)$ fulfilling (iv) and (v) of Definition 3.1 such that all cone-points are outside $D(\bar{G})$ (the smooth parts of ∂U_k for $k \ge 2$ might intersect G) and such that any $p \in U_k \backslash U_{k+1}$ can be joined with $V \backslash U_k$ by

a future-directed as well by a past-directed causal arc, along each of them τ changes only by an amount smaller than $\epsilon/3$ (i.e., no time function can differ more than $2\epsilon/3$ from τ within \bar{U} if it coincides with τ on every ∂U_k). If one uses $\cup \partial U_k$, $k = 1, \ldots, N$ instead of $\partial \widetilde{U}$ (then the C_{τ} consist of N connected components) and constructs the C_{τ} such that $|\tau(x) - \alpha| < \epsilon/3$ for any $x \in C_{\alpha}$, then $|\bar{\tau} - \tau| \leq \epsilon$ holds on U'.

Lemma 3.5. (Global uniformization.) If there exists a time function τ on V then there exists a uniform time function $\hat{\tau}$ such that $|\tau - \hat{\tau}| < \epsilon$ on V.

Proof. Take a (countable, locally finite) covering of V with sets G_n fulfilling the requirements in the statement of Lemma 3.4. we can construct a sequence (g_k, τ_k) by recursion: First we set $g_0 := g$ and $\tau_0 := \tau$ and then define (g_k, τ_k) to be (g, τ) as constructed in the preceding lemma with g, τ, G, ϵ replaced by $g_{k-1}, \tau_{k-1}, G_k, \epsilon \cdot 2^{-k}$. Evidently, $\{g_n, \tau_n\}$ converges in the compactopen topology since for any compact set $A \subset V$ after finitely many steps the sequency $\{g_n, \tau_n\}$ becomes constant on A. Let $x \in G_k$ and $x \in U'_1$ ($i > k$) then τ_i is the combination of two g_k -semi-time-functions hence of g-stable time functions τ_{l-1} , $\overline{\tau}_l$ one of which (τ_{l-1}) is anti-Lipschitz; according to Lemma 3.3 (v) τ_l is uniform. Therefore lim τ_n is a uniform time function.

Lemma 3.6. (Local regularization), Let τ be a uniform time function on $V, \epsilon > 0$, and U, \tilde{U} be 1.c. sets (see Definition 3.1). Then one can find a $\tilde{\tau}$, defined on \tilde{U} , which (i) is a C^{∞} function of the coordinates, (ii) is a uniform time function, and for which (iii) $|\tau(x) - \tilde{\tau}(x)| < \epsilon$.

Proof. (Convolution with mollifiers.) $||x^a||$ denotes the Euclidean norm of coordinate values:

$$
\delta_n := \begin{cases} 0, & ||x^a|| \ge n^{-1} \\ \exp\left[\frac{-n^2}{(n^2 - ||x^a||^2)}\right] \cdot \left\{\int \exp\left[\frac{-n^2}{(n^2 - ||\xi^a||^2)}\right] d^4 \xi^a \right\}^{-1}, & ||x^a|| < n^{-1} \\ \tau_n(x^a) = \int \delta_n(x^a - \xi^a) \tau(\xi^a) d^4 \xi^a \end{cases}
$$

where the integration is formally taken over \mathbb{R}^4 ; for all $n > \lceil \min \{||x^a - y^a|| \mid x \in$ $\tilde{U}, y \notin U$ }]⁻¹ the supp (δ_n) is contained in a (coordinate) domain, where τ is defined, hence τ_n is defined on \tilde{U} . The following holds:

(A) $\tau_n \rightarrow \tau$ (uniform convergence in \tilde{U}) as

$$
\sup_{x} \lim_{n} |\tau_{n}(x) - \tau(x)| = \sup \lim_{n} \left| \int [\tau_{n}(x^{a}) - \tau(\xi^{a})] \delta_{n}(x^{a} - \xi^{a}) d^{4} \xi^{a} \right|
$$

$$
\leq \lim_{n} \left[\max \{ |\tau(x^{a}) - \tau(\xi^{a})|; ||x^{a} - \xi^{a}|| \leq n^{-1} \} \right] = 0
$$

(since τ is continuous).

(B) $\tau_n \in C^{\infty}(\tilde{U})$. (C) τ_n is a time function:

$$
\tau_n(y^a) - \tau_n(x^a) = \int \delta_n [y^a - \xi^a - (y^a - x^a)] \tau(\xi^a + (y^a - x^a)) d^4 \xi^a
$$

$$
- \int \delta_n (x^a - \xi^a) \tau(\xi^a) d^4 \xi^a = \int \delta_n (x^a - \xi^a) [\tau(\xi^a + (y^a - x^a)) - \tau(\xi^a)] d^4 \xi^a
$$

If $y \in J^+(x) \setminus \{x\}$, i.e., $y^a - x^a$ is a g-causal vector in x hence is a \hat{g} -causal vector in any $\xi \in \tilde{U}$ [see Definition 3.1 (vi)], we can further estimate

$$
\cdots \geq K \int \delta_n (x^a - \xi^a) \| y^a - x^a \| d^a \xi^a = K \| y^a - x^a \|
$$

(K refers to Lemma 3.1; Δ is replaced by the Euclidean coordinate distance, g by \hat{g}).

Lemma 3.7. (Global regularization.) Let τ be a uniform time function on *a* C^k space-time V, and $\epsilon > 0$, then one can find a uniform time function $\hat{\tau}$ that is a C^k function on V and $|\tau(x) - \hat{\tau}(x)| < \epsilon$ for all $x \in V$. ($1 \le k \le \infty$).

Proof. For a pair of countable locally finite coverings of V by 1.c. sets $\widetilde{U}_n \subset\subset U_n$ one can obtain a sequence of functions φ_n ("partition of unity") such that

$$
\widetilde{U}_m \subset \subset \operatorname{supp} \varphi_m \cap U_m, \quad 0 \leq \varphi_m^{(x)} \leq 1 \text{ for all } x \in V, m \in \mathbb{N}
$$

$$
\varphi_m \in C^k(V)
$$

If we combine local (smooth) time functions τ_m of Lemma 3.6 in the U_m ,

$$
\hat{\tau} := \sum_m \varphi_m \tau_m
$$

we obtain a C^k function on V, but we cannot be sure that $\hat{\tau}$ really is a time function, i.e., that $\nabla \hat{\tau}$ is timelike:

$$
\nabla \hat{\tau} = \sum_{m} \varphi_{m} \nabla \tau_{m} + \sum_{m} (\tau_{m} - \tau) \nabla \varphi_{m} =: v^{a} + w^{a}
$$

 v^a is timelike, w^a generally is not. However, we can apply Lemma 3.2 in order to show that $\nabla \hat{\tau}$ is timelike if we make w^a very small by choosing τ_m sufficiently close to τ .

For an explicit construction we introduce the following constants: \mathbb{N}_m := ${n \in \mathbb{N} | U_n \cap U_m \neq \emptyset}; N_m$ is the (finite!) cardinal number of \mathbb{N}_m ; $\psi_m :=$ min $\{\varphi_m(x); x \in \widetilde{U}_m\}$ (by assumption $\psi_m > 0$); $M_m^2 := \max \{e^{ab} \nabla_a \varphi_k \nabla_b \varphi_k\}$; $k \in \mathbb{N}_m$, $x \in U_m$ }; K''_m is a constant of uniformity for τ on \widetilde{U}_m [refers to Lemma 3.1 (3) and Lemma 3.6 (C)]; l_m is the constant l of Lemma 3.2 corresponding to a $K = K_m$; $\epsilon_m := \max \{ |\tau_m - \tau|; \text{ on } \tilde{U}_m \}; \tau_m$ is a regularization of τ according to Lemma 3.6. in \tilde{U}_m .

If $\epsilon_m^{-1} \ge \max \{ N_k \cdot M_k \cdot l_k \cdot \psi_k^{-1} | k \in \mathbb{N}_m \}$ [which can be arranged according to Lemma 3.6 (A)] then Lemma 3.2 implies that $\nabla \hat{\tau}$ is timelike.

w *Extension of Time Functions*

Theorem 4.1. Let A be a compact subset of a stably causal space-time V and τ be a stable time function defined on A. Then there exists an extension of τ onto the whole of V. [That is, $\frac{\partial}{\partial \zeta} > g$, $\frac{\partial}{\partial \zeta}$ causal metric on $V; p$, $q \in A, q \in J^+(p;\tilde{g}) \setminus \{p\}$ implies $\tau(q) > \tau(p)$. Note that it is not required that some \tilde{g} -causal curve $\tilde{p}\tilde{q}$ lies in A.]

Proof. The stability of causality and time function enables us to extend τ onto a neighborhood of A (step A). Then we shall construct a countable family of spacelike boundaries S_α of the form $\tilde{J}^-(Q_\alpha;\bar{g})$, where $\bar{g} > g$ and Q_α contains the level surface $\{\tau = \alpha\}$ on A (step B). This extension of τ onto a dense subset of V (by constructing the level surfaces of τ) can be completed to a continuous τ on V (step C).

Remarks. The stability of the time function is essential for step A; example: Minkowski space $V^2\setminus\{(0, 0)\}, A = \{(-1, -1); (+1, +1)\}, \tau(-1, -1) = +1,$ $\tau(+1,+1) = -1$ is a time function that obviously cannot be extended onto V^2 . The condition that A has to be compact can be weakened at the cost of very tedious modifications; one has to require bounds on τ , otherwise τ might become infinite in finite regions of V (example: In the maximal analytic extension of Reissner and Nordström's vacuum solution the time of an observer in asymptotically flat parts cannot be extended onto the whole of V ; any extension must become infinite before one crosses an inner horizon: "infinite blue shift").

Step A. First we introduce a one-parameter family of metrics g_{θ} : $g < g_{\theta}$ < \tilde{g} , where $g_{\alpha} < g_{\beta}$ if $\alpha < \beta$; $\theta \in [a, b]$, where $a := \min \{\tau(x)|x \in A\} - 1, b :=$ max $\{\tau(x)|x \in A\}$ + 1; the cones of g_{θ} -null directions depend continuously on θ (local continuity of null cones). By assumption, τ is a g_{θ} -time-function for all θ :

$$
\widetilde{J}_{\theta}^+(p) := \bigcap_{\theta \leq \eta} J^+(p;g_{\eta})
$$

 $\widetilde{J}_{\theta}^{*}(B)$ for compact sets B is closed $(\partial \widetilde{J}^{+} \subset \widetilde{J}^{+})$ and upper semicontinuous: $q \notin$ $\widetilde{J}_{\theta}^{\dagger}(B)$ implies that there exists a neighborhood U of B such that $q \notin \widetilde{J}_{\theta}^{\dagger}(U)$; see $[7, 6]$. The latter property can be shown as follows: Since B is compact and $\tilde{J}^-(q)$ is closed, there exists an $\eta > \theta$ such that $J^-(q) \cap B = \phi$; in some normal neighborhood \tilde{U} of q, $\tilde{U} \cap B = \phi$ we can find a $U(q)$ such that $\tilde{J}_{\theta}(U(q))\tilde{U} \subset$ $J_{\eta}(q)$, roughly speaking, the g_{η} light rays starting at q "overtake" the g_{θ} light rays starting in $U(q)$ within U .

Therefore any level surface $S_\alpha = \{x \in A | \tau(x) = \alpha\}$ can be extended as a g_θ . spacelike set \widetilde{S}_α having no edge within some neighborhood of A such that $\widetilde{S}_\alpha \cap$ $\tilde{J}_{\theta}^{\dagger}({x \in A | \tau(x) > \alpha}) = \phi$. Finitely many of such sets \tilde{S}_{α} can be chosen such that their domains of dependence cover some neighborhood U of A . Then one can choose some extension $\bar{\tau}$ of τ as a continuous function onto some compact neighborhood \tilde{A} of A such that $S_{\alpha} \subset \partial J^-(\bar{S}_{\alpha};\tilde{g})$ and the dimension of the level surfaces \overline{S}_{α} is 3.

Let σ be a continuous function on V, $\sigma \equiv a$ on A, $\sigma \equiv b$ on $V\setminus \widetilde{A}$ and $\rho :=$ max $(\sigma, \bar{\tau})$ possessing level surfaces $R_{\alpha} = {\rho = \alpha}$; it holds that $S_{\alpha} \subset \partial \widetilde{J}_{\theta} (R_{\alpha})$ for all θ [otherwise a \hat{g} -causal curve runs from some $p \in S_\alpha$ to some $q \in R_\alpha$, hence $\alpha = \tau(p) < \tau(q) \leq \rho(q)$ which contradicts $\alpha = \rho(q)$.

Step B. (See Figure 3.) Let $\{\tau_{2n}\}$ be a dense subset of [a; b] and $\{p_{2n+1}\}$ be a sequence of points dense in $V\setminus A$. We shall construct a sequence C_{τ_n} of nonintersecting stably spacelike boundaries by recursion.

Let k be odd, p_k lying between C_{τ_n} and C_{τ_k} , i.e., the connected component V_k of $V\cup_{n\leq k} C_{\tau_n}$ that contains p_k has the boundary $C_{\tau_n}\cup C_{\tau_n}$ in V. We assume $p_k \in V_k \subset J_{\theta_q}^-(C_{\tau_q}), p_k \notin J_{\theta_p}^-(C_{\tau_p}), \theta_g > \theta_h$. C_{τ_h} is of the form $J_{\theta_h}(Q_h)$, where Q_h is the union of R_{τ_h} , of p_h (if h is odd), and of finitely many points q^i_h [$i < h$; $q^i_h \in I^+(p_i) \setminus \widetilde{J}_{\theta_h}^+(R_{\tau_h} \cup p_h)$].

Now we can choose some value $\tau_k: \tau_g > \tau_k > \tau_h$ and a $\theta_k: \theta_g > \theta_k > \theta_h$ such that $p_k \notin J_{\theta_k}(R_{\tau_k})$ and $S_{\tau_k} \cap J_{\theta_k}(p_k) = \emptyset$ [this can always be arranged since R_{τ_k} is compact and $p_k \notin \widetilde{J}_{\theta_h}(R_{\tau_h})$ using the fact that J^+ is closed and upper semicontinuous; cf. step A].

Fig. 3. The construction of C_{τ_n} . One can see there why two simpler methods do not work in general: If one would take sets of the form $C^*_{\tau_{\alpha}} =$ $J^-(Q_n)$ instead of $\widetilde{J}^-(Q_n)$ one could not find an acausal boundary C_{τ_k} through p_k that does not intersect $C^*_{\tau_{\sigma}}$; if one would use the same metric g_{θ} for all sets C'_{τ_n} instead of different g_{θ_n} 's, then C'_{τ_n} and C'_{τ_n} would have common *go-null-generators.*

Note that S_{τ_k} is empty for $\tau_k < a + 1$ or $\tau_k > b - 1$, hence the condition $S_{\tau_k} \cap \widetilde{J}_{\theta_k}(p_k) = \emptyset$ can trivially be fulfilled if A does not intersect V_k . Finally we choose for any of the q_h^i a point

$$
q_k^i \in [I^+(q_h^i) \setminus \widetilde{J}_{\theta_k}^*(p_k \cup S_{\tau_k})] \cap \widetilde{J}_{\theta_g}(C_{\tau_g})
$$

and a point

$$
q_k^h \in [I^+(q_h) \setminus \widetilde{J}_{\theta_k}^+(p_k \cup S_{\tau_k})] \cap \widetilde{J}_{\theta_g}^-(C_{\tau_g})
$$

Such a choice is always possible; see argument above. For $Q_k := \{p_k\} \cup R_{\tau_k} \cup$ $\cup_i \{q_k\}, C_{\tau_k} := J_{\theta_k}(Q_k)$ fulfils all the requirements we assumed for a $C_{\tau_i}(i \leq k)$ in the beginning of our recursion step.

It remains to be shown that C_{τ_k} fits together with the C_{τ_i} . In fact, C_{τ_k} cannot intersect C_{τ_h} : $Q_k \cap Q_h = \emptyset$; if two generators of C_k or, respectively, of C_h intersect in a point r, then in any neighborhood of r one can find a point $r^* \notin$ $\widetilde{J}_{\theta_k}(Q_k)$ [hence $r^+ \notin \widetilde{J}_{\theta_k}(Q_k)$] and $r^+ \in \widetilde{J}_{\theta_k}(Q_k)$ as the g_{θ_k} null cone in r is wider than the g_{θ_k} null cone, but this contradicts our construction of Q_k and the transitivity law for causal ordering. For the same reason C_{τ_k} does not intersect $C_{\tau_{\sigma}}$.

For an even k , we can carry out the same procedure with the compact set $R_{\tau_k} \cap \partial \widetilde{J}_{\theta_k}(R_{\tau_k})$ (which essentially is S_{τ_k}) instead of p_k .

Step C. The C_{τ_k} of step B cover a dense subset W of V; since they do not intersect, they define a function τ on W; can τ be continuously extended onto V ?

Let p be an arbitrary point and γ a timelike curve through p. $W \cap \gamma$ is a dense set of γ since the C_{τ} are spacelike, τ is a monotone increasing function on $W \cap \gamma$; especially, the two limits

$$
\tau_{\pm} = \lim_{q+p} \{ \tau(q) | q \in I^{\pm}(p) \cap W \}
$$

exist. If τ^+ were strictly greater than τ^- one could find a τ_{2n} : $\tau^ \lt \tau_{2n}$ $\lt \tau^+$; the corresponding $C_{\tau_{2n}}$ (cf. step B) must show up in a neighborhood of p since $C_{\tau_{2n}}$ is a boundary of a set $J_{\theta_{2n}}(C_{\tau_{2n}})$ containing $C_{\tau_{n}}$ and is contained in $J^-(C_{\tau_{n}})$. Therefore $\tau_{+} = \tau_{-}$. For $p \in V\&W$ we define $\tau(p) = \tau_{-}$.

In a stably causal space V the sets of the form $U = I^+(p^-) \cap I^-(p^+) [p^+ \in$ $\gamma \cap I^{\pm}(p)$ form a basis for the neighborhoods of p, and for any time function τ it holds that on U: sup $\tau = \tau(p^+)$, inf $\tau = \tau(p^-)$; this implies that τ is continuous in p .

Acknowledgments

This paper is based on a section of my thesis. I would like to thank W. Kundt for stimulating this research and him and the other members of the Hamburg

relativity group for helpful discussions. I am also grateful to R. Geroch and S. Hawking for illuminating hints and S. Harris for stimulating questions and critical remarks.

References

- 1. Geroch, R. P. (1970). J. *Math. Phys.,* 11,437.
- 2. Hawking, S. W. (1967).Proc. *R. Soc. LondonA,* 300, 187.
- 3. Hawking, S. W. (1968). *Proc. R. Soc. London A,* 308,433.
- 4. Hawking, S. W., and Ellis, G. F. R. (1973). *The Large Scale Structure of Space-Time* (Cambridge, University Press, Cambridge).
- 5. Miitler zum Hagen, H. (1974). *Proc. Cambridge Philos. Soc.,* 75,249; and (1970). "Eigenschaften yon statischen Feldern," Thesis, Hamburg.
- 6. Seifert, H.-J. (1968). "Kausale Lorentzräume," Thesis, Hamburg.
- 7. Seifert, H.-J. (1971). *Gen. Rel. Gray.,* 1,247.