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Abstract

Any continuous time function on a ck space-time V (i.e., a scalar on V¥ that increases along
any causal curve) can be approximated by smooth C¥ time functions. A time function de-
fined on a (bounded) subset of a stably causal V can be extended to a time function on the
whole of V.

§(1): Introduction

In the heroic era of global general relativity some relativists worked their
way through the (only partially ordered) set of causality conditions and came to
a halt at the comfortable station “stable causality.” The virtue of stable causality
is that it is a reasonable notion for almost the weakest causality requirement and,
on the other hand, one can work with it also in concrete calculations because of
a theorem of Hawking [3] stating that it is equivalent to the existence of a global
“cosmic” time function. The very elegant proof of Hawking modifying a method
of Geroch [1] constructs a continuous scalar ¢ that increases along any causal
curve.

In my thesis [6] I gave (i) a smoothing procedure (“regularization”) for ¢,
i.e., one might write the metric globally as ds? = -f2dt + g, pdx“dx®, where f,
8ap have the same differentiability class as g,; (see Section 3); (ii) another way
of constructing ¢, which is much more laborious than Hawking’s but explicit,
and flexible enough so that it can be used to extend a time function given on a
(compact) subset of the space time (Section 4).

Meanwhile I have learned that these procedures treating (null) cones and
their relations to families of level surfaces of a scalar ¢ are not only useful for
proving plausible improvements of Hawking’s theorem. For example, in the case
of a potential field these methods can help to find suitably adapted coordinates
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and to understand the “causal” behavior of particles under the influence of the
potential; see [5].

The basic principle of smoothing a time function is the fact that certain ap-
proximations of continuous functions f by smooth ones ( f,,) also approximate
bounds fuifilled by f and/or derivatives of f; e.g., if f(x + §) - f(x) > K - £ for all
&, then for any € > 0 and for suitably large n, df, /dx = K ~ e. Therefore the
gradient vector of a suitable smooth approximation ¢, of a time function ¢ will
lie in an arbitrarily small neighborhood of the light cone. If ¢ in addition is “uni-
formly” timelike in some sense (see Section 1), we can find a smooth ¢#,, with a
timelike gradient and ¢,, is then the desired smooth time function as constructed
in Hawking’s proof and is automatically uniform and can be smoothed without
further “preparation”; on the other hand, Hawking’s definition requires that the
level surfaces (# = const) remain spacelike under a slight variation of the metric
which widens the null cones. It is compatible with our definition that a surface
(z = const) is tangent to a null direction in a single point, hence we need the pos-
sibility of uniformization to show that the existence of a time function implies
stable causality.

The basic idea of constructing extensions of time functions is to take a
metric £ that has light cones wider than those of g (as g is stably causal we al-
ways can find such a g) and use g-null horizons (hence g-spacelike hypersurfaces)
as level surfaces for ¢.

8(2): The Zoology of Spacelike Hypersurfaces

In notation and conventions this paper mainly follows the book of Hawking
and Ellis [4]; V denotes a space-time on a smooth, Hausdorff, paracompact,
connected manifold possessing a time-oriented C>-Lorentz metric of signature
(-+++).

On the set of Lorentz metrics on a manifold one can introduce a partial or-
dering: g <g if for any vector v® # 0 with g,,v%v® < 0 it holds that £,,v%v® <
0. The causal/timelike futures/pasts and the domains of dependence J*, I*, D*,
D are denoted and defined as usual. If it is not obvious with respect to which
Lorentz metric the future is taken, this metric g is explicitly denoted: J*(.; g).

JH(p;8) =N J*(p;8), where the intersection has to be taken over all £ > g.

Sometimes an auxiliary Euclidean metric e, is used. We distinguish two
types of distances (with respect to g and to e):

Fy(4,B) := sup{ [ ds|y=xy,x €A,y €B,y causal curve in W}
¥
Jy

y=Xy,y €B, do is the line element

Aw(A,B) := fg% {ir;fJ‘ do
T Yy

corresponding to e,;, ¥ curve in W }
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F and A denote the maximal g (or e) distance that an element x of 4 can have
from B.

For the definition of causality conditions (chronology, strong/stable causal-
ity, global hyperbolicity) see [4].

A, /f, 94 denote the closure, the interior, and the boundary of A.
ACCBe AC ﬁ_

Definition 2.1

A is an achronal setif forallp €A: [T(p) NA = ¢

A is an acausal set if for allp €A: J*(p) N A = {p}.

A is a stably acausal set if there existsag >gon V and forall p € 4:

T (p;g) N A= {p}.

A is a partial Cauchy surface if A is acausal and the domain of dependence
D(A) is a neighborhood of 4.

A is nontimelike (spacelike; stably spacelike, a slice) if the metric g induces
a causal structure on some neighborhood U of 4 such that 4 is an achronal
(acausal, stably acausal) set (a partial Cauchy surface) in U.

A set is called a hypersurface in V if it is an embedded three-dimensional
submanifold (with or without edge).

A set A is called a boundary if there exists a W C V such that 4 =8W. A
boundary is called time oriented if any causal curve crossing over 4 from W to
V\W is future directed.

A family of sets 4; is a covering if any p € V belongs to some 4;.

A covering is simple (“decomposition”) if any p € ¥ belongs to exactly one
Ai'

A simple covering is parametrized if the A; are the level surfaces of a con-
tinuous function 7: ¥ >R or V- §*.

A time function 7 is a continuous function 7: ¥ = IR that increases along any
causal curve 7y in V. The corresponding level surfaces {7 = &} are denoted by S,;
they form a parametrized simple covering. If 7 is increasing along timelike curves
and not decreasing along causal curves, 7 is a semi-time-function.

A stable time function 1 has stably spacelike level surfaces.

A uniform time function is stable and fulfils an “anti-Lipschitz property”:
For any compact set C C V there exists a constant K > 0 such that for all e,

Ko Ac(Sy, Sp) <|a-f|

(Roughly speaking, 7 increases more quickly than at a certain minimum rate
along any causal curve.)
A smooth time function 7 on a C* (C*) manifold is a C¥ (C*) function.

Remark. Any simple covering by acausal hypersurfaces can be locally pa-
rametrized and hence corresponds to a local time function. Globally this does
not hold: Cut out of the Minkowski space ¥? the two lines {x = 3|1 <r< 2},
{x =-3]-2 <r< -1} and identify the edges {x =3 + 0|1 <7< 2} with {x =
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-3 - 0I-2 <t <-1} and vice versa. The acausal sets {# = const} cannot be pa-
rametrized. A covering by slices is a time function if it is parametrized by R (not
by S'), but a space-time with a covering by slices parametrized by S! might still
possess a time function: In Minkowski space V? identify {z = 0} and {¢ = 3} and
remove {f = 1{x <+2}, {t = 2|x > -2}; the slices {# = const} have a periodic pa-
rameter, but the space time is stably causal and hence possesses a time function.

Theorem 2.1. (Covering by slices and causality.)

(i) If V can be covered by partial Cauchy surfaces then V is strongly
causal.

(ii) If ¥ can be covered by time-oriented spacelike boundaries, then V is
stably causal and V can be simply covered by time-oriented spacelike
boundaries.

(iii) If Vis a simply connected manifold and can be covered by slices, then
V is stably causal; if the covering is simple, then there exists a time
function possessing these slices as level surfaces.

Remarks and Counterexamples

(iv) If Vis covered by partial Cauchy surfaces, V is not necessarily stably
causal; example: V2 is Minkowski space, {t =*1;x >0} and {r=0;x <1} re-
moved, all pairs of points (-2;x), (+2; x) identified; the lines {¢ = const} are
partial Cauchy surfaces, but V2 is not stably causal.

(v) If V is strongly causal, there does not necessarily exist a covering by
slices; in [6, p. 39 f.] an example of a strongly causal space with no slice at all
is given (the result of a discussion with Geroch).

(vi) If a covering by slices exists, one generally cannot find a simple covering
by slices. (This is a conjecture of mine based on the example after Lemma 2.2.
and similar arguments.)

(vii) In multiply connected space-times a simple covering by time-oriented
spacelike boundaries is not necessarily the family of level surfaces of a time func-
tion. Example: Remove {i¢| < 1;x = 0} from Minkowski space V'2; the lines {¢ =
a} for |a| > 1 and {t=a;x <0}V {t =-a;x > 0} for |a| <1 form a simple cov-
ering but cannot be continuously parametrized.

(viii) If one drops the assumption that ¥ is time-orientable, curious things
might happen. For example (Mobius strip), take the unit square {Ix] <1, 7] <
1} and identify (z, 1) with (-¢, - 1) for all |#} < 1. One obtains a space-time not
stably causal but possessing a Cauchy surface {¢ = 0}. In fact, V can be covered
by Cauchy surfaces, but any two of them intersect. On the other hand there
exists a simple covering by slices {|¢| = const} which with one exception are
spacelike boundaries. In general, for stably causal non-time-oriented space-times
one can find something like a time-function, namely a 7: ¥ — [0, e[ such that
17 is a monotone continuous parameter along any causal curve v if one switches
the sign when y meets {7 = 0}; see [6, p. 31].
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(ix) The existence of a semi-time-function is a causality property stronger
than chronology and weaker than stable causality but not comparable with
either causality or strong causality: Minkowski space V2, all pairs of points (¢ -
I;x+ 1)and (z + 1;,x - 1) identified, possesses a semi-time-function 7 =7+ x
but is not causal; the example of (iv) is strongly causal but does not possess a
semi-time-function 7 [as 7 must be continuous by definition, 7 would have to
fulfill: 7(0.5;0.5) < 7(1.5;-0.5) <7(-1.5;-0.5) < 7(-0.5;0.5) < 7(0.5; 0.5)] .

Sketch of the Proof of Theorem 2.1

(i) The first part is obvious, as the domain of dependence of a partial
Cauchy surface S is a neighborhood of any p € S.

(ii) Lemma 2.1 shows that one can find a covering by countably many
“collars” of spacelike boundaries.

Lemma 2.2 gives the essential idea of how one can obtain a simple cov-
ering by spacelike boundaries from an arbitrary covering (for a more explicit
construction, cf. [6, p. 37]). In fact it would be sufficient to get a locally finite
covering of ¥ by collars. Then there exists a widening & of g such that all these
time-oriented spacelike boundaries are g-spacelike boundaries.

Any space-time that can be covered by g-spacelike boundaries is g-causal
(hence g-stably causal), for if a causal curve 7y leaves a region 4 at a point p €
04, then 7y cannot reenter 4 if 34 is time-oriented; i.e., no closed g-causal curve
meets the (arbitrarily chosen) point p.

(iif) Part (iii) is a consequence of statement (ii) and Lemmas 2.2. and 2.4.

Lemma 2.1. (Collaring of slices.) Let S be a slice. Then there exists a sim-
ple covering of a neighborhood of S by a one-parameter family (“collar)
of stably spacelike slices S, (-1 <a <1).If§ is a partial Cauchy surface
(o1, respectively, a time-oriented spacelike boundary), then the S, have
this property too and their domains of dependence D(S,) equal D(S). For
any € > 0 we can require F(S, §g) <e.

Proof. By definition, there is a neighborhood U of S in which [(U, g) taken
as space-time] S is an acausal set. There the uniformization procedure of Lemmas
3.4 and 3.5 for a family S, can be also applied to a single S.

Lemma 2.2. (Removal of crossings.) Let Sy, S, be time-oriented bound-
aries (S; = 04;) and g some fixed point on S, ¢ & S;. Then there exists a time-
oriented boundary S such that g €S and §; N S5 = .

Proof. Let dA, 4 be a collar of 34 not containing g; then take S5 = 3(A4,
Ay q) wherea=-1ifg€A4,,a=+LifgeV\4,.

Example. This procedure does not work if S,, S, are arbitrary slices. Let
N5 be the Minkowski metric on R>(¢, x, ) and v® := (1;-¥;X), & = Nap +
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(v°v,) " v,vp. The circle v; = {x? + y% = 1;¢ =0} is a null curve; take a spacelike
surface intersecting 7 in exactly one point and let v, be its edge (which “encir-
cles” ;). Let (V2, ) be the space-time R3*\{y,, v,}; all slices in ¥ have as
“ideal edge” 7, or ¥z, none of them both v, and ,. We can find p, g such that
for any pairs of slices Sp,, S, containing p or g, respectively, it holds that Sp N
Sq #F ¢ butS, #5,.

Lemma 2.3. (Hawking [2] ; slices in simply connected space-times.) Let ¥
be a simply connected space and S be a slice in V. Then S is a partial
Cauchy surface and a time-oriented spacelike boundary.

Proof. (See also [2].) For any hypersurface without edge it holds that a
homotopy deformation of a curve (keeping the end points fixed) changes the
number of crossings by only an even number. In particular, two points p, g
locally separated by S (i.e., joined by a pq crossing S once) cannot be joined by a
curve y without crossing S as v is homotopic to pq in a simply connected V; that
is, § is a boundary and S is an acausal set.

Lemma 2.4. (Parametrization of simple coverings.) Let ¥ be a simply con-
nected space and § a simple covering by slices. Then there exists a time
function 7 such that the family of level surfaces {7 = const} is § .

Proof. Let {7v,} be a sequence of nonextendible causal curves such that the
paths of the y,, form a dense subset of V. We parametrize § by recursion: Let
the v; (i < k) be those already considered, i.e., they parametrize the subset
Sk-1 = {SESISNy; # ¢ for some i <k} of § and the connected subset
Vi1 :=U{SE€84_1} of V by a parameter 7. Let I be the smallest number > k
such that y; N Vy_; # ¢;if I # k we reorder a finite section of the sequence {v,}
in the following way: y; becomes v, and 7, becomes vy, forallk <m <I.
As the S’s are boundaries (see Lemma 1.3.), any curve pq intersects S, if 7(p) <
a < 1(q); therefore v := vx N Vj_, is connected, it might have values 7 €
la; b[; we may parametrize v} :=J*(y%) Ny, by la- 1;a] and [b;b + L[ if
these parts of y; are not empty. Any S €8 with S Ny} # ¢ does not belong to
8 4_;and is met by a causal curve v, only once, hence it is uniquely parame-
trized. The new set V7, is again connected. § =US,,, V=UV,,.

8(3): A Construction to make Time Functions Uniform and Regular

Theorem 3.1. Let V be a space-time possessing a time function 7, and € be
an arbitrary number >0. Then there exists a uniform time function 7 on
V; for all x € V it holds that | 7(x) - 7(x)| < ¢, for all & it holds that F(S,,
Sa) <e.

If Vis a C* manifold, 7 can be assumed to be a C* function.
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Corollary. Any space-time V possessing a time function is stably causal
(as 7 admits a widening of the null cones).

Corollary. On any stably causal space-time ¥ one can (globally) write the
metric in the form (signature of g, g: +4+)

dS2 - _f(xa)ZdtZ + d0t2

where do,? is a positive definite (z-dependent) line element on the hyper-
surfaces ¢ = const.

Corollary. Any stably causal space-time V (globally) admits a timelike
nonrotating congruence (e.g., V7).

Proof. The proof of the theorem is a consequence of the following seven
lemmas. The requirement F(S,,, S,) < €is not explicitly considered there, but
it can be obviously fulfilled by choosing sufficiently small sets U in Lemmas 3.5
and 3.7.

Definition 3.1. (l.c. Sets; see also Figure 2)

A set U C Vis called a local causality set (“l.c. set”) if the following condi-
tions hold:

(i) Uishomeomorphic to the closed unit cube of IR”, hence compact, and
U has a coordinate system (¢, x*), where ¢ is a (local) time function and the lines
x% = const are timelike.

(i) U is g-geodetic convex.

(iii) The local causality on U is the global causality, i.e.,q €J*(p),p,g €U
implies that there exists a causal curve g that lies in U.

In Lemma 3.4 we use a triad of L.c. sets U, U’ L7, for which we assume the
following properties:

(ivy UcC U' cC U.

(v) U'and U have timelike boundaries that are smooth except for two cone
points (past and future end points).

In Lemma 3.6 we further require that for a given £ > g (£ being a Lorentz
metric with respect to which a given uniform time function 7 is still a time func-
tion) the following holds:

(vi) A g-causal vector v? (g,,v?v? < 0) after parallel transport [with respect
to the flat connection given by the coordinates (¢, x*)] remains g-causal with U.

Lemma 3.1. (Uniform Increase; see also Figure 1.) LetZ >g,7beag
time function and U a l.c. set. Then the following conditions are equivalent:

3K, K'>0, Va,B:

(1) K- Ay(Sq, Sp) <la- Bl
(2) K" Fy(Sq,85) <la- B8]
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" lemma 3.2
Fig. 1. Proof of Lemmas 3.1 and 3.2. The broken lines are g-null-lines; the
upper hatched area is the domain in which S, has to lie if bothx €8, and

F(x, §,) = K. The lower hatched area is the domain into which the vector
V2 of Lemma 3.2 must point.

If 7 is smooth (at least C'), then these conditions are equivalent to3 K",
K" >o0:

(3) eV, 7Vp7=K"?in U
(4) -g°°V,7V,7=2K"?in U

(€®?, Ay, and Fy; were introduced in Section 2)

Proof. Let V be the Minkowski space
grds*=-dt* +dx* +dy? + dz?
g:ds?=-0%dr* +dx? +dy* +dz? 6>1
e: d5? = +dt® + dx® + dy* + dz*

And let S; and S, be two g slices in V. Then it holds that for
¢ =0%-1D/O*+1)

¢ A(S1, S2) SF(S1,8:) SA(Sy, S2) <™ F(S4, S2)
(cf. Figure 1.) If 7 is smooth one has

c?e®V, 1V, 7 < -g®P V1V, T < eV, 1V, T < - 2g%V,1V,pT
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and
1@< fim T <)
4 T77(X) F({x},S,.) ’
The proof for Minkowski space can be easily extended to l.c. subsets of V. L

Lemma 3.2. (Uniformly timelike vectors.) Let g > g, 7be a g time func-
tion and U be a L.c. setin V. Let v? be a vector field such that the 3-spaces
g-orthogonal to v? are g-spacelike and such that g, v?v? < -K for some
K > 0; then there exists an / > 0 such that for any vector field w? with
epw?w? <I? it holds that v? + w? is a g-causal vector.

Proof. (By an argument similar to that of Lemma 3.1.) In Minkowski space
I can be chosen as K [(8 - 1)/(20 + 2)]Y2. (cf. Figure 1.) =

Lemma 3.3. (Addition of time functions.)

Let 7', 7"’ be two semi-time-functions and &, b be positive numbers;

(i) then 7 :=ar’ + b7" is a semi-time-function.

(i) In any lLc. set in which 7’ is a time function, 7 is a time function too.

(iii) In any lLc. set in which 7’ is uniform and 7" is stable, 7 is a uniform
time function. (Stability of 7 holds if both 7" and 7"’ are stable; the
anti-Lipschitz property holds for 7 if it holds for at least one of the
two 7', 7")

(iv) 7 is not necessarily uniform if 7’ is uniform; example: Minkowski
space V2, 7" =1¢, 7" = (x + £)/3; we might even choose 7'’ to be a time
function (sin x + £)/? and 7 is still not stable at the origin (0; 0). (Lam
indebted to Steven Harris for pointing out this fact to me.)

(v) The statements above become wrong if we consider functions a, b.
But for slightly varying coefficients we can obtain some results: Let
7' be a time function with 7"’ being uniform in some l.c. set U (anti-
Lipschitz constant K') and let f be a Lipschitz continuous function
taking values in [0; 1], the Lipschitz constant L being smaller than

K-(1- mng)/xmea)lcj 17'(Ge) - 7" (o)l

Thenr=f 7 +(1- f)- 7" is a time function in U that fulfills an
anti-Lipschitz property.

Proof. Letp,q €U,q€J*(p). Then 7(q) - 7(p) = [1 - AD)]. [7"(q) -
'(P)] +f(p) - [7(@) - 7] + [f(@) - f®)] - [7"(@) - 7'(@)] = (1 - max )"
K-A(p,q)+0 - L-A(p,q)-max |7 - 7. -

Lemma 3.4. (Local uniformization; see Figure 2). Let G be an open set
such that its domain of dependence D(G') is contained in the open interior
of some L.c. set U. For any time function r we can find a metric g>> g and
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Fig. 2. The triad U, U’, U of Lemma 3.4.

a g-time-function 7 such that & = g, 7 = r in ¥\U with 7 being uniform in
G, g > g in G. Furthermore for any prescribed ¢ > 0 one can arrange 7 to
satisfy |7(x) - 1)l <e Vx EV.

Proof. The proof consists of nine steps. First a few definitions. We shall use
atriad U, U', U, as described in Definition 3.1. such that G CC U.R::=3UN
3J*(S, N V\U'); T, is the strip of 8U lying between R} and Ry; x(a) :=
min {A(x, y)lx €ER;,y €ERL}; x(7) is defined for 7 € [7_, 7], where R;_ and
R, are the two cone-points of 3U; x(a) measures the “width” of T,.

(A) It holds that

x =inf {x(Dr_.<7<7,} >0

(the R are compact sets continuously depending on 7, hence x = 0 would imply
the existence of a null curve joining two points on some & ;). .

(B) In any strip T, we can find a slice C; that is stably spacelike. {7, is a
globally hyperbolic three-dimensional Lorentz space since the R; are nowhere
timelike (see [7]); global hyperbolicity is a stable property (see [1]) and equiv-
alent to the existence of a stably spacelike Cauchy surface C'}

(C) If for two values a < § the corresponding C,,, Cg intersect, we can find
new Cy, Cj fulfilling the requirements of step B for C; (r = a, §) and Co C
I7(Cp) (construction by exchanging some parts):

C:‘;‘ =C, mJi(Cg), C[;; =Cg mJi(Ca)
Co =CaUCG, Cp:=CaUC§
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As T CI7(Tp), Tg CI'(Ty) we have Co C T, Cy C Tp. Cqy, Cp do not cross
over but are still “in contact” along H := C,, N Cg. This can be removed by a
slight shifting of C" in a small neigborhood of the compact set H (see also
Lemma 2.2).

(D) There exists a finite sequence 7,, with corresponding C, (n =0, 1, .. .,
N), Cy and Cy being the cone points of 8(7; for k <1it holds that 7, <7,

Cy CIT(Cy); forany a € [r_, 7,] at least two C,,, C,(1,,, <a<7,) are con-
tained in 7. (This step is obvious.) R

(E) One can find ametricgon U:g=g,g=gon U\U',2>g on Usuch
that all C,, are stably spacelike also with respect to g. (This step is obvious.)

(F) One can assume (possibly after a suitable finite supplementation of the
set {C,,}) that the surfaces C; of linear interpolation between the C,, are
g-spacelike. (Let v® be a smooth timelike vector field on 80 and ¢ be the param-
eter along its integral curves. In the coordinate representation C,  {t = f,(p);

p € S? (the orbit space of the integral curves)} we can interpolate: Let 7, < 7 <
Tr+1; then

Cr 5 {t=1i(0) + [fier1 (P) - Fe@)(7 - 1)/ (Thesr - T);0 €S}

The maximal distance between the C, is assumed to be so small that the v?-Lie-
shifted tangents to the Cy remain g-spacelike in the strip between Cy_; and
Ck+1 ) -

(G) Now we can introduce a uniform time function 7 on U by fixing its
level surfaces: S, :=3J7(C;2) N U. The S, are spacelike, S, N Sg=¢ fora#
8;5, NaU = C,; there exists an M € R such that Ap(Sy, Sp) <M - Ay(C,
Cp), which implies the uniformity—see Lemma 3.1. (In Minkowski space, M = 1.)

(H) Finally, we have to link 7in & and 7 in V\U". In order to get a well-
defined function also near the cone points of aU, we join the corresponding
cone points of aU and oU’ by a smooth timelike curve () with a parameter
which at the endpoints continuously joins to the values of 7 on 90U’ and of 7 on
aU; C, = {v(a)}. The semispacelike surfaces

S, in V\U'
5, =<3, in U

3 (S \UHUC,) inU\U
correspond to a semi-time-function 7 on the whole of V. We can find a function
f fulfilling the conditions in Lemma 3.3.(v) such that f=01in G and f = const >
0in V\U. According to Lemma 3.3. (i) and (v), 7=f - 7+ (1 - )7 fulfils all the
properties required.

(I) In order to obtain a 7 with |7 - 7| < one can modify the described

construction in the following way. Replace the pair u',u by a finite sequence
Up(Up=U" U, =U, Uy # ¢, Up +1 = @) fulfilling (1v) and (v) of Definition 3.1

such that all cone-points are outside D(G) (the smooth parts of 8Uy for k> 2
might intersect G') and such that any p € Up\Uy+; can be joined with V'\Uy by
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a future-directed as well by a past-directed causal arc, along each of them 7
changes only by an amount smaller than €/3 (i.e., no time function can differ
more than 2¢/3 from 7 within U if it coincides with 7 on every dUy). If one uses
UoUi,k=1,...,Ninstead of oU (then the C, consist of N connected compo-
nents) and constructs the C; such that |7(x) - al < €/3 for any x € C,, then

|7- 7| <eholds on U’ L]

Lemma 3.5. (Global uniformization.) If there exists a time function 7 on
V then there exists a uniform time function 7 such that |7- 7| <eon V.

Proof. Take a (countable, locally finite) covering of V with sets G,, fulfill-
ing the requirements in the statement of Lemma 3.4. We can construct a se-
quence (g, Tx) by recursion: First we set g, :=g and 74 := 7 and then define
(gx, 1) to be (g, 7) as constructed in the preceding lemma with g, 7, G, € re-
placed by g¢_;, Tx_1, G, € - 27%. Evidently, {g,, 7,} converges in the compact-
open topology since for any compact set 4 C V after finitely many steps the se-
quency {g,, 7,} becomes constant on 4. Let x € G and x € U;(I > k) then 1,
is the combination of two g;-semi-time-functions hence of g-stable time func-
tions 7;_;, 7; one of which (7,.,) is anti-Lipschitz; according to Lemma 3.3 (v) 7;
is uniform. Therefore lim 7,, is a uniform time function. =

Lemma 3.6. (Local regularization), Let 7 be a uniform time function on
V,e>0,and U, Ube lc. sets (see Definition 3.1). Then one can find a 7,
defined on U, which (i) is a C* function of the coordinates, (ii) is a uni-
form time function, and for which (iii) | 7(x) - 7(x)| <e.

Proof. (Convolution with mollifiers.) llx?|| denotes the Euclidean norm of
coordinate values:

5, = > » , » A
P [(n2 - ITx"IIZ)] ' U P [(n2 - ||z“||2)] d4‘§a} - fl<n”
Ta(x?) = J-an(xa - E9)7(8%)d e
yhere the integration is formally taken over IR*; for all # > [min {[|x? - y?|||x €
U,y € U}]™" the supp (8,) is contained in a (coordinate) domain, where 7 is de-

fined, hence 7, is defined on U. The following holds:
(A) 7, ~> 7 (uniform convergence in U) as

Jiratny - rens, e - eyaee

<lim [max {|7(<*) - 7(E“); Ix* - £*l <n7'}] =0

sup lim [7,(x) ~ 7(x)| = sup lim
X n

(since 7 is continuous).
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(B) 1, €C™(D).
(C) 7, is a time function:

Ta(¥9) - To(x%) = an e -8 - (- xrE" + (¥ - x))d g

—fﬁn(x“ - EDr(E)d*E” =f5n(xa - EDTE+ (- xM) - T(ED]dE

If y € J*(x)\x}, i.e., ¥® - x? is a g-causal vector in x hence is a g-causal vector
in any & € U [see Definition 3.1 (vi)], we can further estimate

: '>Kj5n(xa - £y - x?d*E* =Kl y® - x°|

(K refers to Lemma 3.1; A is replaced by the Euclidean coordinate distance, g by
£). =
Lemma 3.7. (Global regularization.) Let 7 be a uniform time function on

aC* space-time ¥, and € > 0, then one can find a uniform time function 7
that is a C¥ function on ¥ and |7(x) - 7(x)| < e forallx € V. (1 <k < o),

_ Proof. For a pair of countable locally finite coverings of ¥ by l.c. sets
U,, CC U, one can obtain a sequence of functions ¢, (“partition of unity”) such
that

U,, CC supp ¢y, N U, 0<oP<1forallxeV,meN
Ym € Ck(V)
If we combine local (smooth) time functions 7,,, of Lemma 3.6 in the U,,,,

7= Z PmTm
m

we obtain a C¥ function on V, but we cannot be sure that 7 really is a time func-
tion, i.e., that V7 is timelike:

V7 = Z Om VT t Z (Tm ~ Vo, =10 + W
m m

v? is timelike, w? generally is not. However, we can apply Lemma 3.2 in order
to show that V7 is timelike if we make w? very small by choosing T Sufficiently
close to 7.

For an explicit construction we introduce the following constants: IN,,,
{neNU,NnU,, F @}; N,, is the (finite!) cardinal number of ]Nm i W =
min {g,,(x); x € U,,,} (by assumption ¢, > 0); M2, := max {e*® Vaor Vpbis
k€N, x€ Um} K, is a constant of uniformity for 7 on U [refers to
Lemma 3.1 (3) and Lemma 3.6 (C)] ;1,,, is the constant / of Lemma 3.2 corre-
sponding to a K =K 5 €, = max {7, - 7l;0n Up,}; 7y is a regularization of
7 according to Lemma 3.6. in U,,,.
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If ¢, = max {Ny - My ‘It - Yi' |1k € N, } [which can be arranged according
to Lemma 3.6 (A)] then Lemma 3.2 implies that V7 is timelike. L]

§(4): FExtension of Time Functions

Theorem 4.1. Let A be a compact subset of a stably causal space-time V
and 7 be a stable time function defined on 4. Then there exists an exten-
sion of 7 onto the whole of V. [That is,3 g > g, & causal metric on V; p,
qE€A,qEJ(p;8)\{p} implies 7(g) > 7(p). Note that it is not required
that some g-causal curve pq lies in 4.]

Proof. The stability of causality and time function enables us to extend 7
onto a neighborhood of 4 (step A). Then we shall construct a countable family
of spacelike boundaries S,, of the form J~(Q,;g), where g > g and Q,, contains
the level surface {7 = a} on 4 (step B). This extension of 7 onto a dense subset
of ¥V (by constructing the level surfaces of 7) can be completed to a continuous
7on V (step C).

Remarks. The stability of the time function is essential for step A; exam-
ple: Minkowski space V2\{(0, 0)}, 4 = {(-1,-1); (+1, +1)}, 7(-1,-1) = +1,
7(+1,+1) =~1 is a time function that obviously cannot be extended onto V2.
The condition that 4 has to be compact can be weakened at the cost of very
tedious modifications; one has to require bounds on 7, otherwise 7 might be-
come infinite in finite regions of ¥ (example: In the maximal analytic extension
of Reissner and Nordstrom’s vacuum solution the time of an observer in asymp-
totically flat parts cannot be extended onto the whole of V; any extension must
become infinite before one crosses an inner horizon: “infinite blue shift™).

Step A. First we introduce a one-parameter family of metrics g5: g <gg <
g, where g, <gg if a <B;0 € [a;b], where @ :=min {7(x)lx €4} - 1,5 :=
max {7(x)|x €A} + 1; the cones of gy-null directions depend continuously on
0 (local continuity of null cones). By assumption, 7 is a gg-time-function for all
0:

To)= N T(p:gn)
o<n

T (B) for compact sets B is closed (3J* C J*) and upper semicontinuous: q &
J 5 (B) implies that there exists a neighborhood U of B such that ¢ & J i a(U); see
17, 6] . The latter property can be shown as follows: Since B is compact and
J(q) is closed, there exists an 7 > 0 such that J;(q) N B = ¢;in some normal
neighborhood U of ¢, U N B = ¢ we can find a U(q) such that J;(U(@)\U C
J7(q), roughly speaking, the gy, light rays starting at g “overtake” the gy light
rays starting in U(g) within U.
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Therefore any level surface S, = {x €A417(x) = a} can be extended as a g5-
spacelike set S, having no edge within some neighborhood of 4 such that S N
+({x €A|7(x) > a}) = ¢. Finitely many of such sets S, can be chosen such
that their domains of dependence cover some neighborhood U of 4. Then one
can choose some extension 7 of 7 as a continuous function onto some compact
neighborhood A of 4 such that Sy C 3J7(S,;£) and the dimension of the level

surfaces S, is 3.

Let o be a continuous functionon ¥V, 6 =gonAd,c=b on V\4 and p :=
max (o, 7) possessing level surfaces R, = { p = a}; it holds that S, C 3J5(R,)
for all  [otherwise a g-causal curve runs from some p € S, to some g ER,,
hence a = 7(p) < 7(g) < p(g) which contradicts a = p(q)].

Step B. (See Figure 3.) Let {7,,} be a dense subset of [a; 5] and {p,,,+,}
be a sequence of points dense in ¥\ 4. We shall construct a sequence C;,, of non-
intersecting stably spacelike boundaries by recursion.

Let & be odd, py, lying between C,. g and C;,, i.e., the connected compo-
nent Vy of V\U, <y C, that contains s Py has the boundary G, UG, inV.
We assume py € Vi, CJ, (C ) Pr & Jeh(C',.h) g >0,.Cyp, éofthe form
Jg h(Qh) where Q, is the union of Rq,. of py (if h is odd), and of finitely many
points ¢}, [i <h;q}, EI+(P1)\JG,,(RT,, Upp)].

Now we can choose some value Tk Tg > >Tpandafy: 0, >0, >0,
such that py & J5 «Rrp)and S, ﬂJe k(pk) @ [this can always be arranged
since R, is compact and py & Jo »(Rr,,) using the fact that J *is closed and
upper semicontinuous; cf. step A].

D3
p2i

Fig. 3. The construction of C;, . One can see there why two simpler
methods do not work in general: If one would take sets of the form C *n =
J(Qy,) instead of J- (@;,) one could not find an acausal boundary C
through py, that does not intersect C¥_; if one would use the same metnc
&g for all sets CT instead of different gy, ’s, then C; 5 and Cr ;, would have
common gg -null-generators
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Note that S, is empty for 7, <a+1or7g >b - 1, hence the condition
Srp N Je k(pk) ¢ can trivially be fulfilled if 4 does not intersect V. Finally
we choose for any of the ¢}, a point

ak € '@\ 5, (0 Y S7)] njo_g(crg)
and a point
ak € [I@\5,(Px Y S:)] NT5,(Cr)

Such a choice is always possible; see argument above. For Oy = {py} U R, U
U {g%}, C, . =J5 (@) fulfils all the requirements we assumed for a C; J(i<Kk)
in the beginning of our recursion step.

It remains to be shown that C;. fits together with the C;. In fact, €, can-
not intersect Cr,,: Qr N Qy = ¢;if two generators of Cy, or, respectively, of C,
intersect in a pomt r, then in any nelghborhood of r one can find a point r* &
Js (Qr) [hence rt¢ Jeh(Qk)] and r EJgh(Qh) as the gg, null cone in r is
wider than the g4, null cone, but this contradicts our construction of @ and
the transitivity law for causal ordering. For the same reason C;, does not inter-
sect C;

For an even k, we can carry out the same procedure with the compact set
R, N aJg «&r,) (which essentially is S, ) instead of py.

Step C. The C;, of step B cover a dense subset W of V; since they do not
intersect, they define a function 7 on W; can 7 be continuously extended onto
V?

Let p be an arbitrary point and 1y a timelike curve throughp. W yisa
dense set of v since the C, are spacelike. 7 is a monotone increasing function on
W N y; especially, the two limits

7, =lim {r(g)lg e (py N W}
q*p

exist. If 7+ were strictly greater than 7~ one could find a 7,,: 77 <7,, <77; the
corresponding Cv,,, (cf. step B) must show upina neighborhood of p since C;
is a boundary of a Set J5 ,n(Cr,,) containing C;_ and is contained in J~(C, N}
Therefore 7, = 7_. For p € V\W we define T(p) =7_

In a stably causal space V the sets of the form U = I ()N I(®Hr* e
v N I*(p)] form a basis for the neighborhoods of p, and for any time function
7 it holds that on U: sup 7 =7(p*), inf 7 = 7(p 7); this implies that 7 is contin-
uous in p. »
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