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Abstract  

Using the technique of Pad~ (2, 2) approximant we present, in this paper, an approximate 
analytical solution to the field equations of general relativity for time-independent, spheri- 
cally symmetric systems in which the pressure P and density p are related by a polytropic 
equation of state: P = Kp 1 + 1In. The boundary values of coordinate radius ~1, for polytropic 
indices n = 0, 1.0 (0.5) 3.0, are given in Table I. Table II contains the values of other phys- 
ical parameters, u(~ 1) (mass), Pc/ff (the density concentration), and 2 GM/c2R (the ratio of 
gravitational radius to the coordinate radius) for n = 0 and 1. 

w Introduction 

Several authors have considered the effects of general relativity in a variety 
of astrophysical problems, for example, Tooper [1] has studied in some detail 
the structural features of relativistic polytropic fluid spheres in static equilibrium 
under their own gravitation. We find that in this and other cases of cognate in- 
terest, the method of numerical integration (Runge-Kutta method) or the varia- 
tional technique provides a solution to the relativistic equilibrium equations, as 
in nonrelativistic situations. 

No analytical solutions of the relativistic equations (1) and (2) are so far 
known for given n and o, except for the case n = 0 [1]. Our present method, 
that is, Pad6 (2, 2) approximation technique, would enable us to obtain approxi- 
mate analytical solutions of the above equations under post-Newtonian approxi- 
mation [2] for any arbitrary polytropic index n and parameter o. 

1 Work done at Azerbaijan State University, Baku, USSR (1977-79). 
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In the above works, we find that the method of numerical integration (or the 
variational technique) provides a solution to the relativistic equilibrium equa- 
tions, as in nonrelativistic situations. Our present method, that is, Padd (2, 2) 
approximant would enable us to obtain approximate analytical solutions of the 
relativistic equations (1) and (2) under the post-Newtonian approximations [2] 
for any arbitrary n. The aim of the present work is to introduce a new and 
powerful technique with which the solutions-specifically, the boundary values 
of physical parameters-are determinable for given n. The usefulness of Padd's 
technique lies mainly in its greater compactness and simplicity and the physical 
insight it yields. 

w The Field Equations o f  Equilibrium and Their 
Approximate A nalytieal Solutions 

The dimensionless forms of the field equations of general relativity for a 
polytropic sphere in static equilibrium under its own gravitation are given by 
[1]. 

1- 2a(n+ l) U~ -1 ~2 dO dU 
l + a O  - ~  + U+ a~O - ~  =0 

and 

(1) 

dU = ~2 O n (2) 
at 

where symbols have their usual significance. The pair of foregoing relativistic 
Lane-Emden equations satisfies the following boundary conditions: 

0 (~) = 1, U(~) = 0 at ~ = 0 (3) 

A method of constructing the relativistic Lane-Emden function would be to 
start with a series expansion, near the origin ~ = 0, of the form 

0 = ~ an~ 2n (4) 
n = O  

satisfying the boundary conditions (3) (an'S are constants). Consequently, the 
solution of (2), including terms up to ~11, is found to be 

~a [ 3Aa~ 
U(~) = --~ 1 + 5 

1 3 +Ba])+ +2Balaz + Ca])  ~ 6 ~2 + ~-(Aa2 -~(Aa3 

3 1 + - -  (Aa4 +Ba~ + 2Bala3 + 3Ca]a2 +Da 4) ~ 
11 

(s) 
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where 

A =n, B = n ( n -  1_____~), C = n ( n -  1 ) ( n -  2) ,  D = n ( n -  1 ) ( n -  2 ) ( n -  3) 

2! 3! 4! 

Substituting (2), (4), and (5) in (1) and equating the coefficients of  like powers 
in ~, we can successively determine the coefficients a l ,  a2, a3, and a4. Thus, the 
series including the first five terms, in post-Newtonian approximation,  is written 

a s  

n(3 + 10o) ~4 30a(n 2 - 4On) + 15(8n 2 - 5n) ~6 1 + 40 ~2 + 6 2 
0(~) = 1 6 10 63 10 • 105 

+ - 2 8 o ( 1 3 1 8 n  a + 6027n 2 - 3400n) + 70(122n 3 -  183n 2 + 7On) ~s (6) 

6 4 102 1764 

The nonrelativistic case [3] obtains on putting o = 0 in (6) [or in (5)] .  Let us 
express the series (6) as a Padd (2, 2) approximant  (in the form of a rational 

function): 

1 + A ' ~  2 + B ' ~  4 
0 = ( ~ )  = 

1 + C'~ 2 + D'~ 4 

where A ' ,  B',  C' ,  and D'  are constants. Equalizing (6) and (7), we have 

rr(12208n 2 + 80346n - 208600)- 1246n 2 + 6657n - 8750 
A '  = 

252 {a(240n + 3000) - 51n + 150} 

(7) 

a(18416n 3 + 44964n 2 - 5 8 1 4 8 0 n  + 6 7 2 0 0 0 )  - 1 2 9 0 n  3 + 1 0 8 4 9 n  2 - 2 9 1 0 0 n  + 24500 
a ~ = 

15120(a(240n + 3000)- 51n + 150} 

o(12208n 2 + 81858n - 57400)- 1246n 2 + 4515n - 2450 
C r = 

252{a(240n + 3000)-51n + 150} 

a(18416n 3 + 108384n 2 - 23300n)- 1290n 3 +4815n 2 - 2850n 
O' = 

15120{~(240n + 3000)- 51n + 150} 

(8) 

In view of  the boundary conditions (3), solution of  the quadratic equation [nu- 

merator  of  (7)] 

B'r? 2 + A'r~ + 1 = 0 Q/= ~2) (9) 

would define the boundary value ~1 of  ~ which are given in tabular form (Table 
I) for n = 0, 1.0 (0.5) 3.0 and o = 0.00 (0.002) 0.01, 0.04. Specific solution re- 
sults for n = 0 are 

1 + 4 o  = ( 6 / 1/2 (10) 
0 = 1 6 ~2, ~1 \1  + 4o1 
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Table I. 

0.00 

0.002 
0.004 
0.006 
0.008 
0.010 
0.040 

SHARMA 

BoundaryValues~lofthePhysicalParameter 

0 1.0 1.5 2.0 2.5 3.0 

2.44949 3.14572 3.68684 4.40921 5.44374 6.9211 
2.44949* 3.14159* 3.65375* 4.35287 5.35528 6.89685* 
0.00000 1.31 x 10 .3 9.05 • 10 .3 1.29 • 10 -3 1.652 X 10 .2 3.52 • 10 .3 
2.43975 3.14283 3.68566 4.41182 5.50207 7.22884 
2.43012 3.16202 3.72320 4.48823 5.87617 7.16213 
2.42061 3.20456 3.80088 4.64509 8.72166 7.13619 
2.41121 3.25414 3.92448 4.91605 - - 
2.40192 3.37635 4.10686 5.39870 - 7.11364 
2.27429 2.67646 - - 4.28534 7.08592 

which coincides with Tooper 's  value, if  we introduce post-Newtonian approxi- 
mation in his expression (3.4). 

The upper entry in ~1 of  each of  the columns of  Table I refers to the value 
(for o = 0 and n = 0) obtained by our analytical method;  the middle entry pre- 
sents Chandrasekhar's values [3],  as marked by an asterisk (*); and the lower 

entry gives the relative errors (~ana - ~num/~num)~=~ a (suffixes "ana" and "num" 
denote the value obtained by analytical and numerical methods, respectively) 
between these. Likewise for 0, we can express the mass function U(~) [equation 
(5)] as a Padd (2, 2) approximant:  

~a 1 + Er~ + Frl 2 
U22(~)-  3 I + G ~ + H ~  2 (11) 

and determine the coefficients E, F,  G, and H with the help of  (5); for the case 
n = 1, the Padd (2, 2) approximant in final form is given by 

~3 
U~2(0  = 3 

166320(4880 + 13) - 252(22330o + 633) ~2 + (651800 + 2647) ~4 

166320(488o + 13) + 1260(2662o + 45) ~2 + 35(3076o + 17) ~4 
(12) 

For  n = 0 (homogeneous liquid case), we have from (5), 

U(~) = ~3/3 (13) 

the same expression as obtained by Tooper. Numerical values of  Pc/P, 2 GM/e2R, 
and U(~I) for n = 0 and 1, o = 0.00(0.002) 0.01, 0.04 as calculated with the help 

of formulas 

-~ 3 u(~l) 

2GM 2o(n + 1) g ( ~ l )  

c2 R ~1 

(14) 

(15) 



Table II. 

0.000 

0.002 
0.004 
0.006 
0.008 
0.010 
0.040 

RELATIVISTIC SPHERICAL POLYTROPES 

Characteristics of Physical Parameters U(~), Pc~F, and 2 GM/c2R 

0 1 
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U(~) oe/-ff 2GM/c2R U(~) Oc/Y 2GM/c 2 R 

4.89898 1.00000 0.00000 3.14572 3.300 0.00000 
4.89898* 1.00000" 0.00000" 3.14159* 3.290* 0.00000" 
0.00000 0.00000 0.00000 1.31 • 10 -3 3.31 • 10 -3 0.00000 
4.84077 1.00000 0.00794 3.10339 3.334 0.00790 
4.78368 1.00000 0.01574 3.06678 3.436 0.01552 
4.72774 1.00000 0.02344 3.02658 3.624 0.02267 
4.67287 1.00000 0.03100 2.97890 3.856 0.02929 
4.61907 1.00000 0.03846 2.86581 4.477 0.03395 
3.92118 1.00000 0.13794 2.65818 2.404 0.15891 

and (12) (using ~1 from Table I), respectively, appear in Table II. The suffix "1"  
means the boundary value. In this table, the upper and middle entries in U(~I),  
Pc/-P, and 2GM/c 2 R (for n = 0 and 1 ; o = 0.00), respectively, refer to the au- 

thor 's  and Tooper 's  values [marked by an asterisk (*)] .  The relative error be- 
tween these two is shown in the lower entry. Calculations for other values o f n  
can be similarly done. 
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