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In  this paper I want to discuss some aspects of  the space of  all Lorentz 
metrics. In particular I shall consider what it means to say that a certain 
property is stable or generic and shall give some examples. 

One would like to have a name for the space L of all Lorentz metrics 
g on a four-dimensional manifold M. As Professor Wheeler has already 
introduced the name 'Superspace'  for the space of all positive definite 
metrics on a three-dimensional manifold, I would tentatively suggest 
'Metaspace '  for L. There are a number of  different topologies that can be 
placed on L; which one uses will depend on the properties one wishes to 
consider. The topologies differ in how many derivatives of  a metric have 
to be 'near '  to those of  another metric for the two metrics to be considered 
'near '  to each other and in what region they are required to be near. 

The derivatives of  a tensor field (such as a Lorentz metric) on a manifold 
M are most elegantly described by the bundle of jets over M (see Palais [1]). 
However, I shall use a simple and less sophisticated approach. I put a 
positive definite metric e on M (this can always be done). This metric can 
be used to define covariant derivatives of  tensor fields on M and also to 
measure the magnitude of such tensor fields and their derivatives. Thus 
one can define how near together the derivatives of two metrics are at each 
point of  M. There is also the problem of the regions on which the metrics 
are required to be near. This is really a question of how the metrics behave 
near the edge of the manifold, i.e. near infinity. 

There are three main possibilities: 

1. The metrics can be required to be near only on compact regions of  the 
manifold (Fig. 1). The behaviour near infinity is unrestricted. More 
precisely, if g is a Lorentz metric, U a compact  set of  M and E~ (0 ~< i ~< r) 
a set of  continuous positive functions on M, the neighbourhood 
B(U, ~, g) of g can be defined as the set of  all Lorentz metrics whose ith 
derivatives (0 ~< i ~< r) differ f rom those of  g by less than e~ on U. The set of  
all such B(U, e~, g) for all U, E~ and g form a sub-basis for the C r compact- 
open topology for L, i.e. the open sets in this topology are unions and 
finite intersections of  the B(U, et, g). 

2. The requirement that the sets U should be compact can be removed 
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Figure 1- -A neighbourhood B(U, ~, g) of the metric g in the compact open topology 
consists of all metrics which lie within dx)  o f g  over the compact set U of M. 
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Figure 2 - - A  neighbourhood B(U, ~, g) of the metric g in the open topology consists 
of all metrics which lie within ~(x) of g over the set U of M. Note that U can equal 

M, and that �9 can go to zero at infinity. 

and U can be taken to be M. This means that 'nearby' metrics must be 
nearby everywhere and must have the same limiting behaviour at infinity 
(Fig. 2). One may call this the open topology for L. 

3. Define the set F(U, ~, g) as the set of all metrics whose ith derivatives 
differ from those of g by less than ei and which coincide with g outside 
the compact set U. The neighbourhood B(~,  g) is then defined as the union 
of  the F(U, ~, g) for all compact sets U. The neighbourhoods B(~l, g) 
form a sub-basis for the fine topology on L. As its name suggests, the 
fine topology is finer than the open topology which in turn is finer than the 
compact-open topology. In other words, there are more open sets in the 
fine topology than in the open topology and still more than in the compact-  
open topology. 
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As well as the C r topologies, one can use the Sobolev W r topologies, 
these differ from the C r topologies in that instead of requiring the difference 
between the derivatives to order r of  two nearby metrics to be pointwise 
small, they require the integrals of the squares of these differences to be 
small (the squares and the integrals are here defined with respect to the 
positive definite metric e on M). Clearly a C r tensor field is also a W r 
field and it follows from a fundamental lemma of Sobolev that a W r+a 
field in four dimensions is a C r field. This means that a W r+3 topology is 
finer than the corresponding C r topology which in turn is finer than the 
W r topology. The W r topologies play a fundamental role in the Cauchy 
problem in general relativity. 

_ _ .  
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Figure 3 - -A neighbourhood B(e, g) of the metric g in the fine topology consists of all 
the metrics which lie within E of g over some compact set U and coincide with the 

metric g outside U. 

Having put those topologies on the space of all Lorentz metrics, one can 
define what it means to say that a property of a metric is stable: a property 
P of a metric g is s table  in a given topology on L if in that topology there 
is an open neighbourhood of g, every metric of which has the property P, 
i.e. if every sufficiently nearby metric has the property P. The reason for 
considering stable properties is this. A physical theory is a correspondence 
between certain physical observations and a mathematical model (in this 
case a manifold with Lorentz metric). The accuracy of the observations is 
always limited by practical difficulties and by the uncertainty principle. 
Thus the only properties of space-time that are physically significant are 
those that are stable in some appropriate topology. Other unstable 
properties will not have any physical relevance but may be of mathematical 
inconvenience in that they may provide counter examples to general 
theorems one would like to prove about al l  metrics in a certain region 
of L, i.e. the theorem may hold for a l m o s t  a l l  metrics in the region but fail 
for some particular metrics. One can say that such a theorem holds 
gener ica l l y  or that a property is gener ic  in a region of L if it holds a l m o s t  
eve rywhere  on that region (by 'almost everywhere' I mean that it holds 
on an open dense outset of the region of L). For  physical purposes it is 
sufficient to prove that a theorem holds generically because the metric of 
the mathematical model for space-time is defined with only limited accuracy. 
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A given property may be stable or generic in some topologies and not in 
others. Which of these topologies is of physical interest will depend on the 
nature of the property under consideration as will be seen in the examples I 
shall give. Roughly speaking, if one is concerned with structure in a 
bounded region of space-time then the appropriate topology is the compact 
open but if one is interested in statements about the existence or non- 
existence of something everywhere in space-time, one should use the open 
or the fine topology in order to restrict the behaviour of the metric near 
infinity. As the open topology is coarser than the fine topology it is a 
stronger requirement on a property for it to be stable in the open topology 
than in the fine topology and still stronger for it to be stable in the compact-  
open topology. 

As an illustration I shall discuss stable causality. Ordinary causality can 
be defined as the absence of closed timelike curves. I f  there were such 
curves, one could in theory travel round them and arrive in one's past. 
The logical difficulties that could arise from such time travel are fairly 
obvious: for example, one might kill one of one's ancestors. These diffi- 
culties could be avoided only by an abandonment of the idea of  free-will: 
by saying that one was not free to behave in an arbitrary fashion if one 
travelled into the past. This is not something which it is very easy to accept, 
however, and it seems more reasonable to believe that there are no closed 
timelike curves. As well as actually closed timelike curves, it would seem 
reasonable to exclude 'almost closed' timelike curves, i.e. to require that 
there should be no point p such that every small neighbourhood of p 
intersects some timelike curve more than once. A metric with this property 
is said to satisfy strong causality. However, even strong causality is not 
enough to ensure that space-time is not on the verge of  violating causality 
as is shown by the example of Fig. 4 in which a strip of  two-dimensional 
Minkowski space has been identified along the edges to form a cylinder 
and three 'baffles' have been cut out of  the space to prevent there from 
being any closed or almost closed timelike curves. Nevertheless there are 
timelike curves which pass arbitrarily close to other timelike curves which 
then come arbitrarily close to the first curves. In fact Brandon Carter has 
shown that there is a whole hierarchy of higher causality conditions corres- 
ponding to different numbers of baffles and to different numbers of limiting 
processes. This hierarchy is more than countably infinite: one can define 
an (oo+ l ) t h  causality condition, and (oo+2)th  condition and so on. 
However, one can define an ultimate causality condition which is stronger 
than all this hierarchy and which corresponds to space-time not being on 
the verge of violating causality: a metric g is said to satisfy the stable caus- 
ality condition if, in the C o open topology on L, there is an open neigh- 
bourhood of g no metric of which has closed timelike curves. In other 
words one can vary g by a small amount everywhere, without introducing 
closed timelike curves. One has to use the open rather than the compact 
open topology in the definition since in the compact open topology any 
open neighbourhood of  any metric g contains a metric g in which there 
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are closed timelike curves. This is because a neighbourhood of g consists 
of all the metrics which are near g on a compact set U. However, outside 
U they can differ by an arbitrary amount and so can admit closed timelike 
c u r v e s .  
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Figure 4.--A space which is on the verge of violating causality but contains no dosed 
timelike curves and no almost dosed timelike curves. 

One could also define stable causality using the fine topology. I think 
that this would be definitely weaker than using the open topology, that is, I 
think that a metric which satisfied Carter's ooth causality condition but not 
(say) the (oo +2) th  condition would be stably causal in the fine but not in 
the open topology. The open topology is probably more physical than the 
fine topology since to establish that two metrics actually coincide outside 
some compact set would require an exact measurement which is not 
physically possible. The definition of stable causality with the open 
topology has the further advantage of  being related to another physically 
significant property, the existence of cosmic time functions. By a cosmic 
time function I mean a smooth function t which increases along every 
future directed timelike or null curves. The spacelike surfaces of constant 
value of such a function can be regarded as surfaces of simultaneity in the 
universe though, of  course, they are not unique. One can show (Hawking 
[2]) that a metric admits such cosmic time functions if and only if it is 
stably causal in the C o open topology. It follows incidentally from this 
result that stable causality defined with the C ~ open topology is equiv- 
alent to that defined with the C O open topology. 

The region in L on which stable causality holds is the interior of  the 
region on which ordinary causality holds. Since the region on which 
ordinary causality is violated is open, the union of this region with the 
region on which stable causality holds is an open dense set in L. It thus is 
generic for a metric either to violate causality or to be stably causal. 
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I would conjecture (but have not proved) that it is generic for a metric 
satisfying ordinary causality also to satisfy stable causality, i.e. that the 
stably causal metrics are dense in the causal metrics. 

A rather different kind of stability occurs in the Cauchy Problem for 
General Relativity. I f  the solutions of the Einstein equations did not depend 
continuously in some sense on the initial data, it would be physically useless 
to make predictions since one could never know the initial data exactly. 
It turns out that there is a sense in which this dependence is continuous but 
there seem to be one or two slightly odd features which I shall try to 
describe. 

In order to discuss the stability of the Cauchy Problem I shall adopt the 
approach of Choquet-Bruhat and Geroch [3]. An initial data set (S, IV) is 
defined to be a three-dimensional manifold S together with two symmetric 
tensor fields h ab and x "b on S. The fields h and X are required to obey 
four constraint equations which can be expressed as tensor equations in S 
with covariant derivatives defined by the three-dimensional metric h. 
The Cauchy Problem for empty space then consists of finding a develop- 
ment (M, g, 0) for (S, W). A development (M, g, 0) is a four-dimensional 
manifold M, a Lorentz metric g which satisfies the empty space Einstein 
equations and an imbedding 0 : S ->M which is such that O(S) is a Cauchy 
surface for M in the metric g and such that the first and second funda- 
mental forms of O(S) are h and X respectively. One can define initial data 
sets and developments for the Einstein equations with matter in a similar 
way. The manifold M is diffeomorphic to S • R 1 and the imbedding 0 
can be chosen to identify S with S x 0. The metric g of the development can 
be unique only up to isometries which leave O(S) pointwise fixed, i.e. two 
metrics are equivalent if there is a diffeomorphism 0 : M - > M  which 
carries one metric into the other. The Cauchy Problem thus becomes a 
problem of finding a map from the set of initial data sets to the set of  
equivalent classes under diffeomorphisms of metrics on S • R 1. One would 
like to know whether this map is unique and continuous in an appropriate 
topology. In fact Choquet-Bruhat and Geroch have shown that there is a 
unique maximal development of Sobolev class W r if the initial data is of 
class W r and r >I 5 (by the initial data being of class W r I mean that h is a 
W r tensor field on S, and X, which represents first derivates of g, is a 
W r-1 field). I have slightly improved this result by lowering r to 4. I 
discovered something rather curious, however: I was not able to prove that 
a C o0 initial data set had a C o~ development. I could prove that it had a W r 
and therefore a C r-3 development for every r but it seemed possible that 
these developments might get smaller as r got larger (Fig. 5), and that 
there might not be any region on which g was CoD. 

To describe the sense in which the Cauchy Problem is stable I shall define 
L to be the space of equivalent classes of metrics on S x R 1, that is, L is 
the quotient of L by the group of diffeomorphisms of S • R 1 which leave 
S • 0 fixed. The space L inherits topologies from L in a natural way under 
the quotient map ~r : L -~/, which assigns a metric to its equivalence class, 
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i.e. a set Vis open in L if and only if ~r-l(V) is open in L. The topologies 
in the space I of  pairs (h, X) of initial data fields on S can be defined in a 
manner similar to those for L. Since X represents first derivatives, the 
derivative conditions on it should be one order lower than those on h. 
Thus by two sets of initial data being near in the W r topology, I shall 
mean that the h's are near in the W r sense and the x's are near in the 
[/V r -1  sense. 

W4 Development of S 

Figure 5.--The Cauchy development of a surface S with C ~ Cauchy data. 

One would not expect the map from the initial data I to the metrics ~, 
to be continuous in general in the open or fine topology since one would 
expect that a small change in the initial data might produce a small change 
in the limiting value at infinity of  the metric of the development. I have 
been able to prove that the map from the W r initial data I to the W r 

metrics • is continuous in the W r-1 compact-open topologies in both 
spaces. It may be continuous in the W r topologies but I have not been 
able to prove this. 

One can also ask whether various properties of the developments are 
stable or generic in terms of the topologies on the space of initial data L 
To conclude I shall give some results for the case where S is compact. 
These follow from theorems in Hawking [4], and Hawking and Penrose 
[5]. Since S is compact, it has no edge and so the compact-open, the open 
and the fine topologies on I are all equivalent. 

1. It is generic for the maximal development to be geodesically 
incomplete. 

2. If  the maximal development can be imbedded in a larger space-time 
for which S is not a Cauchy surface, then it is generic for all such extensions 
either to be geodesically incomplete or to violate causality. 

3. There is an open region of  I for which all such extensions are geo- 
desically incomplete. 
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