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A bs tract 

We describe a process by which energy literally can be mined from a black hole. We argue 
that the only limit placed by fundamental considerations on the rate at which energy can 
be extracted from a black hole by this process is dE/dt ~< 1 in Planck units G = c = r 1. 
This is far greater than the rate dE/dt ~ 1/M 2 at which the black hole spontaneously loses 
energy by Hawking radiation. 

Black holes are not b l ack - they  radiate. This process was discovered by 

Hawking [ 1 ] in 1974. However, for realistic black holes, the rate is negligibly 

small. For a solar mass black hole the radiation comes out with a temperature 

o r a l 0  -7 ~ and the energy loss rate is only dE/dt ~ 10 -20 ergs/sec. Never- 

theless, this process is remarkable in that it allows the conversion o f  the mass of  

the black hole to energy. Does there exist a more efficient mechanism for this 

conversion? Is there some energy source associated with the black hole which 
could be tapped? 

The early calculations of  particle creation by black holes contained hints 

that vast amounts o f  energy near the black hole might be available for rapid 
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extraction. The formal expression for the "out"  state vector for particle crea- 
tion from a Schwarzschild black hole described an outgoing thermal spectrum of 
particles appearing to originate from the white hole horizon of the extended 
vacuum Schwarzschild space4ime [2]. Some of these particles escape to infinity, 
giving rise to the Hawking radiation. However, most of the particles-in particu- 
lar, essentially all of  the particles in high angular momentum modes-get  "re- 
flected back" into the black hole by the large barrier appearing in the effective 
potential for radial motion. Thus, if this state vector were interpreted literally, 
it would suggest the existence of a huge energy density of  particles just outside 
the black hole horizon. Indeed, the temperature and energy density of  the 
particles would become infinite on the horizon. Thus, a literal interpretation of 
the state vector would suggest that if some means could be found to allow these 
particles to escape through the potential barrier to infinity, an enormous energy 
loss rate by the black hole could be obtained. 

A number of authors, in effect, took this literal interpretation soon after 
Hawking's work. They predicted that the quantum stress energy of the particles 
is infinite on the horizon and its back-reaction would convert the horizon to a 
singularity. However, this literal interpretation of the state vector clearly cannot 
be correct since the classical space-time geometry is well behaved on the horizon. 
Hence, the stress-energy of a quantum field cannot become singular there for 
any physically reasonable incoming state, as subsequent calculations have ex- 
plicitly shown [3]. Indeed, the regularized quantum field energy density near a 
large black hole is very small and negative, and inertial observers find the state 
of the field near the horizon to be essentially the vacuum [4]. Thus, it might 
appear that the formal expression for the "out"  state vector gives completely 
misleading results near the horizon and that the "particles" it describes at the 
horizon are fictitious mathematical entities without any physical significance. 
The small, negative, true stress-energy of the quantum field near the horizon 
would appear to be of no use for energy extraction. 

However, a remarkably similar situation occurs in flat space-time. There it 
has been shown [5] that an accelerated observer would see the vacuum state of 
a field as a state in which he was surrounded by a thermal bath of particles with 
temperature equal to his acceleration divided by 2rr, in Planck units. In exactly 
the same way, a stationary particle detector outside a Schwarzschild black hole 
would respond as though it were bathed by thermal particles at temperature 
T = Toh/X, where Toh is the temperature of  the Hawking radiation at infinity, 
and X = (1 - 2M/r) ll: is the red-shift factor. Thus, it turns out that particles 
described by the "out"  state vector of  a Schwarzschild black hole are very real 
to stationary observers. We shall refer to this effective thermal bath as "accelera- 
tion radiation." In the case of  flat space-time, energy is required to maintain 
accelerated motion, and one cannot use acceleration radiation to extract net 
energy from the Minkowski vacuum. However, since no energy is needed to keep 
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a detector stationary in the Schwarzschild geometry, the possibility now exists 
that energy can be extracted from this acceleration radiation. 

Recently, we showed that indeed this can be done [6]. I f  we lower an open 
box to near the horizon, hold it stationary there, close the box door, and remove 
it back to our laboratory far from the black hole, it will come back filled with 
thermal radiation at the temperature Tbh/X , where X is the red-shift factor at 
the radius at which we closed the box. We must do work to lift the full box 
back to infinity, but because of the effective buoyancy force a produced by 
the temperature (and, hence, pressure) gradient of the acceleration radiation, 
we showed that a net energy 

e = Tbhs(Tah/X) V (1) 

is gained in the process, where s (T )  is the entropy density of thermal radiation 
at temperature T and V is the volume of the box. We also showed how this pro- 
cess can be understood from the inertial point of view. In the inertial viewpoint, 
the energy is extracted from the black hole by the radiation of negative energy 
into the black hole by the walls of the box via the "radiation by moving mir- 
rors" effect [7]. 

Thus, the acceleration radiation near the horizon of a black hole literally 
can be mined. By putting the high angular momentum modes of the acceleration 
radiation near the horizon into a box, we can bring them through the potential 
barrier to our laboratory. As our example given in [6] shows, even a modest 
amount of black hole mining is well beyond the capabilities of present tech- 
nology. However, we argue, now, that fundamental considerations limit the 
energy extraction rate only by dE/dt  < 1 in Planck units G = c =4i = k = 1. 

The energy extraction rate depends on two basic factors: (i) the time which 
elapses per "scoop" in the mining process and (ii) the energy gain per scoop. 
In calculating these factors, we initially will assume only that we can lower the 
bucket to a proper distance D ~ M  from the horizon. Note that in this approxi- 
mation, we have X ~ D[4M. 

There are two distinct contributions to the amount of time which elapses 
at infinity per scoop of the mining process: (a) It takes a finite amount of time 
to lower the box to near the horizon and bring it back. (b) The box must be held 
stationary for a finite amount of time at its minimum distance, D, from the 
horizon in order to fill up with acceleration radiation. However, contribution 
(a) really refers to the transport time of the mined energy to our laboratory at 
infinity rather than the time it takes to extract energy by mining. Furthermore, 
it is not necessary that we use only a single box and have to wait for it to go 
back and forth between the black hole and our laboratory. If we use a continu- 
ous "bucket brigade," the energy transport rate to infinity will not be limited 

1As explained in detail in [6], this buoyancy force is essential to prevent violations of the 
generalized second law of thermodynamics. 
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by (a). Thus, we shall not include contribution (a) in our estimate of the time 
needed for energy extraction. Since the round trip time to go a proper distance 
D from the horizon varies for small D only as t ~ M In (M/D) - th i s  being tree 
even if the velocity of the box is much less than the speed of light, as must be 
the case to prevent additional energy from being radiated into the black hole 
by the walls of the box-ou r  final formula for the limit on the energy extraction 
would be reduced only by a factor of ~ln (M/D) if we included contribution (a). 

There are two requirements which lead to a minimum time contribution to 
(b). First, the locally measured frequency of the ambient acceleration radiation 
is co ~ T = Tbh/X ~ 1/Mx, so the box must be held stationary for at least proper 
time "r ~ 6o -1 ~ M x  in order that the acceleration radiation properly establish 
itself. Second, the box must be opened for at least the light travel time across 
its shortest dimension. Since the temperature drops rapidly with height, there is 
no advantage to taking the proper height, L, of the box to be greater than 

This also yields the limit r ~> M• The corresponding "time at infinity" is t = 
r/• ~ M. Thus, a minimum time ~M is required for one "scoop" in the mining 
process, independent of how close to the black hole we do our mining. 

The energy gain per scoop is limited by D. At the proper distance D to the 
horizon, we have T = T~h/• ~ 1/1). It appears reasonable to assume that the 
entropy density of  thermal matter at this temperature is at least s(T)  ~ T 3 

1//) 3 , i.e., at least the entropy of ordinary black body radiation. As mentioned 
above, we must take the height of the box to be L < MX ~ D. However, the 
horizontal dimensions of the box may be taken as large as M. Thus, by equation 
(1) the energy mined from the black hole in one "scoop" is limited only by 

1 2 1 M 
e < Tt, h Vs( I /D)  ~ M  D ~ = D- T (2) 

Thus, the energy loss rate from the black hole is limited only by 

dE e _ < l  M 1 
d - 7 ~ t  ~ M D  2 D 2 (3) 

independent of the mass of the black hole, as compared with the energy loss 
rate due to Hawking radiation, 

1 
aa (4) 

Note, incidentally, that in two space-time dimensions we lose the factor M 2 in 
the volume of the box and the factor 1/D 2 in the entropy density of thermal 
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radiation. Hence, we obtain dE/dt <~ 1/3I 2 for the mining process, whereas 

equation (4) continues to hold for the Hawking radiation in two dimensions. 

Thus, in two dimensions no advantage is gained by  mining [8].  This is consistent 

with the fact that  there is no angular momentum barrier in two dimensions, so 

all the acceleration radiation escapes to infini ty as Hawking radiation anyway, 
and thus there is no need to mine it. 

It  is clear that the energy extraction rate in the mining process, equation (3), 
can be much larger than the Hawking radiation rate, equation (4), provided 
only that  D ~ M .  How small may D be? Although no known materials can with- 
stand the huge acceleration needed to be held stat ionary just outside the hori- 
zon, the fundamental  energy conditions on matter  (in particular, the dominant 
energy condit ion) do not  place any restrictions on how small D can be. Thus, 
it appears that the only fundamental  l imitation 2 on D is that  it  be larger than 

the Planck length, D > 1. (There are many reasons why D < 1 should not  be 
achievable.) For D = 1, equation (3) becomes, 

c/R s 1 (5) 
dt 

In cgs units, the energy loss rate (5) is dE/dt  <~ 10 s9 erg/sec, which is greater 
than the combined energy loss rate o f  all stars in the observable universe. Thus, 
i f  there exists a more practical process than the one described above for allowing 
the acceleration radiation near the horizon of  a black hole to escape to infinity, 
black holes would have the potential  to provide remarkably explosive energy 

outbursts. 
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