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Solutions to Einstein's Field Equations with 
Kantowski-Sachs Symmetry and String Dust Source 

D. R. Matravers ~'2 

Received July 17, 1987 

Einstein's field equations are solved with a two-parameter family of classical 
strings as the source for the gravitational field. The solutions have Kan- 
towski-Sachs symmetry. The singularities of the solutions and the kinematical 
properties of the string world sheets are discussed. 

INTRODUCTION 

Among the theories which involve strings, superstring theory and cosmic 
string theory receive the most attention at present. There is, however, 
another aspect of string theory that has been given little attention. This is 
the classical general relativistic theory of strings described by Stachel [1], 
where strings, surface-forming simple bivector fields, are treated as 
generalizations of structureless point particles in a strictly classical way. 

Stachel assumes an arbitrary underlying spacetime geometry, and he 
discusses the properties of the energy momentum tensor of a perfect dust of 
such strings; he derives the conversation laws and the equations of motion 
of the string dust by analogy with the more common particle description. 
In this paper the approach is pursued further and the existence of con- 
sistent solutions to Einstein's field equations with a string dust source is 
demonstrated. The solutions are chosen to have Kantowski-Sachs [2] 
symmetry and the source is a two-parameter family of surface-forming 
simple bivector fields, also called string dust or a thickened string. 
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THE STRING ENERGY M O M E N T U M  TENSOR 

In suitable local coordinates, metrics with Kantowski-Sachs symmetry 
can be written in the form 

ds 2 = dt 2 _ X 2 dr 2 _ y2(d02 + f 2  d~b 2) ( 1 ) 

where X =  X( t ) ,  Y =  Y(t ) ,  and f =  sin 0 or sinh 0 depending on the Lie 
algebra chosen. To use the index notation the coordinates are labeled {xi};~ 
i, j, k = 0, 1, 2, 3 with 

t = x ~ r = X 1, 0 = X 2, ~b = x 3 (2) 

A simple bivector is an antisymmetric tensor of rank 2 that can be written 
as the alternating product of two vectors 

S i j= A i B  j -  A J B  i (3) 

For  a bivector field to be surface-forming it must satisfy 

* s i / ~ s  ij) = 0 (4) 

where 

* Su= ~ijkzS ~t (5) 

and e~kz is the Levi-Civita symbol in four dimensions. The bivector is called 
timelike (spacelike, null) if it spans a timelike (spacelike, null) surface 
element. 

The energy momentum tensor associated with a string field is defined 
[1]  to be 

Ti j = ( _ g)1/2 #SikSkj ,  # >>- 0 (6) 

where S ij is a timelike surface-forming simple bivector field which is 
normalized so that 

SiJSo. = - 2  (7) 

and It is a scalar field. 
The symmetries of the Kantowski-Sachs metric suggest the following 

vectors to span the bivector field 

A'=  (~, fl, 0, 0) (8) 

B ' =  (~, z, 0, 0) (9) 
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where the c~, fl, ~z, v are functions of differentiability class C 2 in the local 
coordinates, chosen so that the vector fields are timelike and spacelike, 
respectively. Without loss of generality the vector fields spanning the bivec- 
tor field may be normalized to be unit vectors. Condition (7) implies that 
the vectors must be orthogonal. The two conditions, once imposed on the 
vector fields, reduce the arbitrariness of the components 

p=~/x (lO) 

= c~/X (11 ) 

and 

~2 =~2__ 1 (12) 

Substitution into (3) and into (6) yields 

S Ol= - S  10= 1/X 

To~ ( -  g)m #, T11= ( -  g)1/2 # 

(13) 

(t4) 

the other components of both tensor fields are all zero. 
The conservation equations which Stachel [ 1 ] proved to be equivalent 

to the condition that a simple bivector field be surface forming, are 

~ ? i [ (  _ g)1/2 #S~j] = 0 (15) 

where Oi denotes the partial derivative operator with respect to the local 
coordinates. Integration of these equations yields 

#=FLY 2 (16) 

where F is an arbitrary function of integration which can at most be depen- 
dent on 0 and ~b. From the field equations which follow shortly it will be 
seen that # may only be dependent on t and, hence it follows that F must 
be a constant. 

2. THE FIELD EQUATIONS AND THEIR S O L U T I O N S  

The two cases of Kantowski-Sachs metrics can be handled together if 
a parameter k is introduced, where k = 1 for f(O) = sin 0 and k = - 1  for 
f(O) = sinh 0. If the parameter k is set equal to 0 then the field equations 
are those of a locally rotationally symmetric Bianchi-type 1 metric, i.e., 
f(O) = 1 in the metric (1) [3].  

842/20/3-6 
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The field equations are 

2 ( X $ ' ) / ( X Y )  + (k + ~2)/y2 = # 

2 Y / Y + ( k +  I72)/r2 = # 

~ / x  + ~'/r + ( Y i , ) / ( x r )  = o 

(17) 

(18) 

(19) 

Since X and Y are functions of t only, it follows that # is also a 
function of t only. Subtraction of (18) from (17) and integration of the 
resulting equation gives 

a l  }= X (20) 

where a is an integration constant. Substitution of this into (19), changing 
the independent variable to Y, and integration gives 

~2 = c -  b / Y  

where c and b are constants of integration. The explicit solutions for Y, X, 
and # are given by 

f dr 
t =  ( c _ b / y ) l / 2  +t  o (21) 

X =  a ( c -  b /Y)  1/2 (22) 

I~= C / Y  2 (23) 

where C =  (k + c), which confirms the result in (16). The vacuum solutions 
are given by C = 0, i.e., c = - k .  

The final integration depends on the choice of the constants. If b = 0 
or c = 0, the integration is easy. 

Solution ia: (b = O) 

Y =  (2( t - to) 

X =  a(2 

where 

# = C[s - to)] -2 

(24) 

(25) 

(26) 

(22 = c (27) 

Solution ib: (c = O, b < O) 

Y= [ (3 /2 ) ( -b )  1/2 ( t -  to)] 2/3 (28) 

X =  a ( - b )  1/2 y-1  (29) 

# = k Y  -2 (30) 
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The remaining solutions are clearest if expressed in terms of a 
pa rame te r  ~(t). Recall tha t /~  = C / Y  2 and so need not  be writ ten out  each 
time. 

Solution ii: (b > O, c > O) 

Y =  d 2 cosh 2 a (31) 

X =  a ~  tanh a (32) 

t = t o + (d2 /~ ) ( a  + �89 sinh 2a)  (33) 

where (27) has been used and d 2 =  (b / c ) ,  ~ 2 =  c. 

Solution iii: (b < O, c > O) 

Y =  d 2 sinh 2 a (34) 

X =  as coth  2 a (35) 

t = to + (d2/~?)(�89 sinh 2G - a)  (36) 

d 2 = - ( b / c ) ,  ~22 = c 

Solution iv: (b < O, c < O) 

Y =  d 2 sin 2 a (37) 

X =  ag2 cot a (38) 

t = t o + (d2/g?)(a - �89 sin 2a)  (39) 

d 2 = (b / c ) ,  g22= - c  

3. S O M E  P R O P E R T I E S  O F  T H E  S O L U T I O N S  

Singularity Structure 

Solutions (i), (iii), and  (iv) have density singularities at t ime t =  to, 
which are cigar- type [-4] for solutions (iii) and  (iv). Solut ion (ii) does not  
have a density singularity anywhere,  but  it does have a conformal  
singularity at t =  to [5] .  

Kinematical Properties 

Ins tead  of considering the bivectors,  we follow Stachel [-6] and con- 
sider the cor responding  congruences  of  two-dimens ional  subspaces of  the 
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Kantowski-Sachs metrics. The metric tensor breaks into two degenerate 
orthogonal submetric tensors 

with 

gij = ao + bu (40) 

a u = diag(1, - X  2, 0, 0) 

the timelike-subspace metric, corresponding to the string, and 

b o. = diag[0, O, - y2,  _ yZ f2 (O)]  

the spacelike-subspace metric, clearly orthogonal to the timelike one. 
For notational convenience Stachel [-6] defines the .Christoffel 

derivatives 

1 a{u;k } = ~(akj;~ + aik;j + au;~) (41) 

where the semicolon on the right-hand side denotes the covariant 
derivative in the spacetime. From these the following kinematical quantities 
are defined [6]  

Acceleration A k(u) = a Pi a q  b r k a { pq;r } ( 42 ) 

p p r (43) Rotation R~tjk ] = a ~b [jb k ] a { p q ; r }  

Rate of deformation Hk(u)=aPgbq~b)a{pq;r}  (44) 

where the brackets and parentheses applied to indices refer to the anti- 
symmetric and symmetric parts, respectively. 

Rotation of the spacelike congruence of subspaces is 

t _ _  p q r Ri[jk] = b i a[ j  ak] a{pq;r} (45) 

Note that because gu;k=0 it follows that a{u,k } =-b{ij ;e}.  The Stachel 
quantities can be used to define an expansion and shear by analogy with 
the definitions in the particle case (Stachel does not do it) i.e., by 
separating out trace and trace-free parts of the rate of deformation tensor. 
The expansion vector is defined to be 

Eg = b~Hg(u ) (46) 

and the shear tensor by 

ak(ij) = H k ( U ) -  ~Ekbi j  (47) 
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The Kantowski-Sachs timelike subspaces are acceleration- and rotation- 
free; also R';~jkj = 0, which is to be expected because both the subspaces are 
surface-forming. The rate of deformation has two nonzero components 

9 0 ( 2 2  ) = - -  Y ~ ~  (48) 

Ho(33 ) = --YFf2(O) (49) 

The expansion vector has one nonzero component, Eo = 2I'/Y, and the 
nonzero components of the shear tensor a r e  0 - 0 ( 2 2 ) f 2 ( 0 ) - - 0 - 0 ( 3 3  ) = 1yyf2(O). 
The shear is defined by s2= �89 which gives 

= k /r (5o) 

For the solutions with a string dust source 

i /Y= (1/Y)(c- b/Y) 1/: (51) 

so as time passes the expansion vector and shear decrease for solutions (i), 
(iii), and (iv). For  solution (ii) the behavior is less obvious. When 0- = 0 the 
shear and expansion are zero, and their values increase with Y until 
Y= 3(b/c) after which they decrease again tending to zero as Y tends to 
infinity. The behavior of all these quantities is consistent with the 
kinematical interpretations that Stachel has assigned to them. 

4. W O R L D  T U B E S  O F  S T R I N G  D U S T  

Stachel [1]  gives the boundary conditions for a string dust world 
tube, with timelike boundary F(x i) = constant, as 

T~jFi = 0 (52) 

and he points out that these conditions are equivalent to one of the 
following 

[ SjiFi = 0 (53) 

II SjF~ = Vj and S~sVj = 0 (54) 

From (13) it follows that 

So 1 = X -  1, $1 ~ = X (55) 

and 'the remaining components are zero. 
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Consider first a boundary F(r, t ) =  constant. In this case 

F.i = (OF/Ot) 6~ ~ + (OF~Or) 6~ 1 

It follows that 

(56) 

Vj = SfF,, = Xbj'(Of/Ot) + X- 'S f (Of /Or)  (57) 

For  condition I to hold, Vj must be the zero vector, and for condition II 

Sk12.(OF/Ot) + Sk~ - '(OF/Or) = 0 (58) 

so no solutions exist for function F. 

A s e c o n d  p o s s i b i l i t y  is to c h o o s e  0 = 01, a c o n s t a n t  (~b = c o n s t a n t  a n d  
F(O) = constant lead to a similar analysis). In this case 

F i = 6 i  2 (59) 

SO 

S f F , = S f = O  (60) 

and condition I is satisfied, which suggests that a timelike boundary can be 
found. To complete the analysis it is interesting to examine the matching 
conditions across the boundary in more detail using the Darmois con- 
ditions [7].  The conditions require that the first and second fundamental 
forms, calculated as functions of the common coordinates on the matching 
hypersurface S, are identical. Further, 27 must be covered by the same 
domain of the common coordinates in both representations. 

Consider a region U in which the energy momentum tensor is that of 
string dust. The metric, for k - -  1, is given by 

g/j = diag(1, - X  "2, - yz, _ y2 sin 2 0) (61) 

where Y and X are given by (21) and (22) with 

O~<O<Tr and O~<~b<2z (62) 

and recall that a, b, c are integration constants. 
On the 3-surface choose 

u' = t, u 2= r ,  u 3 = ~  (63) 

Then the first fundamental form is given by 

g~# = diag(1, - X  2, - y2 sin 2 01 ) (64) 
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with 

u 1 - u o  I = f ( c - b / Y )  1/2dy (65) 

X =  a(c - b /Y)  1/2 (66) 

Now consider the vacuum region 0. The metric is again given by (21) 
and (22) except that c = - k  so there is one fewer parameter. Rescale the 
coordinate ~b by 

q~ = he (67) 

where h is a constant and leaves the other coordinates unchanged. The 
metric becomes 

g0 = diag(1, -)72, - ~2, _ ~2 sin 2 0) (68) 

where the overbar is used to indicate that c = - k .  Redefine 

Y = h  I F  (69) 

then (21) with c =  - k  becomes 

t - to = f ( - k h  -2 - h - 3b/~')1/2 d~" (70) 

where a bar over the parameter  is used to denote that the metric refers to 
the vacuum region. If the parameters in the vacuum region, h, a, b, are 
chosen to be related to those in the non-vacuum region as follows 

h = ( - k / c )  m,  ~ = a h  1, f = h 3 b  (71) 

and the coordinates u t, u 2, and u 3 are related to the coordinates t, r, r in 
the region U by 

u I = t, u 2 = r, u 3 = q~ (72) 

then the first fundamental form on F(O) = 01 is given by (64-66). It is easily 
shown that the second fundamental forms match. However, as a result of 
the transformation (67) the domains of the two sets of coordinates on the 
common hypersurface are not the same, and so the Darmois  conditions are 
not satisfied. The problem arises from the global character of the matching 
conditions which is not addressed by conditions (52). While this does not 
prove that the Kantowski-Sachs  string dust solutions cannot be matched 
to a vacuum solution, the physically interesting case F(r, t ) =  constant is 
eliminated, as are the obvious boundar ies- -0  or ~b constant. 
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This result can be strengthened.  Stachel [1 ] shows that  open strings 
can only end on a b o u n d a r y  if the end points  move  at the speed of light, 
i.e., if the nonnormal ized  form of the string bivector  becomes null. F r o m  
(8) and (9) the condi t ion for this to happen  is that  

(c~T - 7r/~) 2 = 0 (73) 

which can only be satisfied if the bivector  becomes degenerate,  in the sense 
that  the vectors A i and B i are parallel. Consequent ly  the strings are 
unbounded.  

In this pape r  it has been shown that  the Stachel [1 ]  string dust  
( thickened string) theory is self-consistent in so far as there exist solutions 
to Einstein's field equat ions  with an unbounded  string dust source, which 
can play the role of the metr ic  for this discussion. This does not  complete  
the picture because the existence of solutions with a bounded  string dust 
source enclosed in a t imelike world tube needs to be established. An 
a pp roach  to this further  problem,  using a source suggested by Stachel 's 
rota t ing string source in a cylindrically symmetr ic  spacetime, is being 
investigated. 
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