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Inhomogeneous Two-Fluid Cosmologies 
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A new class of expanding cosmological solutions is derived. The matter content 
of these models is a mixture of two interacting simple fluids: the first one, 
homogeneous and isotropic with equation of state p = ( 7 -  1 )p, the dynamics of 
which is given by the FRW equation and the second one an inhomogenous 
dust. The limiting case of two dusts corresponds to the Szekeres' universes of 
class II. A large subclass of the models evolve to a FRW phase for all physically 
meaningful values of the polytropic index y and the curvature parameter k. A 
gauge condition, under which the metric is invariant, is shown to exist for k r 0. 
In particular, it explains why the parabolic model is a peculiar solution in the 
class found by Szekeres. 

1. I N T R O D U C T I O N  

Some time ago, Szekeres [1 ] derived a remarkable set of inhomogeneous 
exact solutions of the Einstein field equations (EFE) without cosmological 
constant. The source of curvature of the models is an expanding, 
irrotational, and geodesic dust. These solutions are divided in two classes 
usually denoted by I and II. Here, we are particularly interested in the 
models of the second class. As shown by Bonnor and Tomimura [2]  
(hereafter referred to as BT paper), some models of this class evolve to 
Friedmann dust models with curvature parameter k = 0, - 1 .  In fact, as 
remarked elsewhere [3] ,  a Friedmannian era is established for all values of 
k. Thus, at least in principle, these solutions may describe an earlier 
inhomogeneous phase of the present universe E4]. 
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The Szekeres' spacetimes have been extended introducing pressure 
terms due to matter [5-8], adding an isotropic radiation (9), including 
dissipative processes in the cosmic fluid [10-12], and cosmological 
constant [13]. However, unlike the class found by Szekeres, the matter 
content of these solutions with pressure does not obey any equation of 
state. Of course, this is a rather undesirable feature of these models. 

In the Szekeres' universes, the scale factor R, of their isotropic 
bidimensional section, has its dynamics driven by the Friedmann dust 
equation. In a certain sense, such property explains the evolutive behavior 
of these models. On the other hand, recently [14] the FRW differential 
equation was solved in unified form, i.e., for all values of k and the 
adiabatic index of the "gamma-law" p = ( 7 -  1 )p. 

By combining these facts we propose, in particular, a possible solution 
to the well-known equation of state problem in the Szekeres background. 
In the next section, a unified approach involving FRW- and Szekeres'-type 
models is developed and a new set of exact inhomogeneous models with 
pressure is derived. The canonical form of solutions is given in Section 3, 
and some special solutions are shown in Section 4. Finally, the evolution of 
a large subclass of models is examined in the Section 5. 

2. U N I F I E D  A P P R O A C H  F O R  FRW A N D  SZEKERES' M O D E L S ,  
CLASS II 

In order to make explicit the relation between the Szekeres'-type 
solutions class II and the FRW ones, they will be derived here in the coor- 
dinate system used in paper BT. 

2.1. FRW Models 

Spatially homogeneous and isotropic cosmological models are locally 
described by the FRW line element. As we see presently, a convenient, 
although unusual, expression for it is the following 

where 

Ms 2 = d t  2 _ A2R2dx2 _ R2(dy 2 + h2dz 2) (1) 

The functions A and h are given by 

A = (a cos z + v sin z) - -  
sin k m y  

q- co cos kl/2y (3) kl/2 

A = A(x, y, z), R = R(t)  and h = h(y) (2) 
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and 

sin kX/2y 
h -  k~/2 = s i n y  

= y  

= sinh y 

if k = l  

if k = 0  

if k = - I  
(4) 

In the above expressions, a, v, and w are arbitrary functions of x, and k is 
the curvature parameter. Expression (3) for A was chosen as it appears in 
the Szekeres' models for k =  +1. Note that unlike the BT paper we are 
using here the method in which the metrics are analytical continuation of a 
given one by variation of the parameter k. They used, for k = - 1 ,  
h = c o s h  y instead of h = s i n h  y. Unified solutions given by analytical 
continuation were obtained, for G6del's like cosmologies [15]. 

By using (3) and (4) and comoving frame ( V " = ~ ) ,  the nontrivial 
EFE for perfect fluid in the metric (1) can be reduced to (Appendix A) 

3 "2 p=~(R +k) (5) 
and 

i~ k 2 k 
p =  - 2  R R 2 R 2 (6) 

where p and p are the mass energy density and pressure, respectively, and 
an overdot means time derivative. 

From (5) and (6), the scale-factor R obeys the FRW differential 
equation 

where 7 is the adiabatic index of the usual equation of state p =  ( 7 -  1)p. 
A first integral of (7) can be written as 

k 2  = ( R o / R ) ~ , - 2  _ k (8)  

where R 3~- 2 is a suitable integration constant. 
Substituting '(8) into (5), we obtain for the energy density and pressure 

P =R~ (9) 

p=  eo ~ (10) 
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This class of spacetimes defined in the comoving frame, are confor- 
really fiat, the flow of matter is nonrotating and shear-free, and the 
expansion parameter is O=3(R/R). Thus, at least locally (1) and the 
standard FRW line element are equivalent. 

The general solution of (7), given by Assad et al. [-14], can be rewrit- 
ten as 

2Ro 2Ro I (~._R~3y-211/2(R~37/2 
t - to=3--~_2(1-k) ' /ZF1-3- -~_  2 1 - k  \RoJ \Roo] F2 (11) 

where t o is a new integration constant, FI and F 2 are two hypergeometric 
functions 

_ [ - 3 y - 1  3 l - k ]  

[ -37 -1  3 _ k ( R ~ 3 ' - 2  ] 
F2 = F L 3 - 7 ~ -  2' 1; 5; 1 \RoJ 

( l l a )  

( l l b )  

The adiabatic index V in (7 ) - ( l ib )  is not restricted to any interval, in 
particular, vacuum solutions derived by using a cosmological constant are 
recovered taking 7 = 0 ,  i.e., p = - p .  In this case, by (9) and (10) the 
cosmological constant is A = 3/R2o. The constant to in (11) is adjustable for 
each y in order to fix the time scales used in the literature. 

2. Szekeres'-Type Models  

Consider now the line element of Szekeres' cosmological models as 
given in the BT paper 

ds 2 = dt 2 - Q2dx2 - R2(dy 2 + h2dz 2) (12) 

where 

Q = A R + T R o  R = R ( t )  T = T ( x , t )  and A = A ( x , y , z )  (13) 

Note that due to the factor constant Ro, the functions A and T are dimen- 
sionless. The functions R and T are arbitrary and will be determined by the 
EFE. The function h is given again by (4), but to the function A a new 
term is added (cf. Eq. 3) 

/'sin kmy/2)  2 
A = 4~ \ kl/2 } + (a cos z + v sin z) - -  

sin kmy  
kl/2 + co COS kl/2y (14) 
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where e is a new arbitrary function of x. For  the sake of brevity we prefer 
to define the function A but, in fact, it can be obtained integrating some of 
the field equations (Appendix A). 

Taking the limit k ~ 0, the function A is reduced to 

A = ~y2 + (o- cos z + v sin z) y + co (15) 

which seems not to coincide with the expressions given in BT for the 
parabolic case. However, transforming to new variables y'  = y  sin z and 
z ' =  y cos z, the line element of the section t = const., x = const., takes a 
new form, viz. d l '2=  dy '2+ dz 'z and the function A can be rewritten as 

A = c~(y'Z + z'2) + vy' + az'  + o.~ (16) 

which is the expression of the BT paper for k = 0. Equation (14) for k = _+1 
is the same one given in BT, only if e = 0, but, as remarked before, the case 
k = - 1  as given there cannot be obtained by analytic continuation as in 
(14). 

The general form of Q function in (13) is invariant under the following 
gauge transformation 

A ~ A ' = A + 6  (17) 

r ~  T ' =  T - 6 ( R / R o )  (18) 

where 6 is an arbitrary function of x. In particular, as will be seen later, for 
k =  _+1 the ~ function in (14) can always be ruled out through a specific 
gauge. 

In the comoving frame the nontrivial EFE for perfect fluid in the 
background (12)-(14) can be rewritten as (Appendix A) 

3 A R ( R  2 + k)  + 2RRo/~i/'+ TRo([~ 2 + k)  - 4~R 
P = ( A R  + TRo) R 2 (19) 

J~ k 2 k 
p = - 2 R  R 2 R 2 (20) 

/~2 + k \  2cz 
R +RJ'- r + - - - U - )  = eo (21 ) 

These equations show that, with T = 2 ( x ) R ,  where 2 is an arbitrary 
function, (19)-(21) reduce to (5) and (6) and, as expected, locally FRW 
models are recovered. 

As the pressure p in (20) is a function of t alone, the usual equation of 
state cannot be imposed without loss of generality. In fact, an algorithm 
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involving a definite choice of p has been often used in the literature in order 
to generate exact inhomogeneous solutions [5-9]. In the majority of cases 
some functional relationship uniting R and p has been considered, but they 
do not lead to any equation of state. We propose now an alternative point 
of view about the matter content that seems to avoid this problem. 

Initially we remark that (20) for pressure p is the same one of FRW 
models (cf. Eq. 6). Moreover, the energy density p given in (19) can be 
rewritten as 

P = PFRW "b Ap (22) 

where PVRW is given by (5) and 

2RRoRJ' -  2TRo(R 2 + k) - 4aR 
Ap = (AR + TRo) R 2 (23) 

Therefore, the EFE imply that the matter content of these models can be 
seen as a mixture of two interacting simple fluids: the first one 
homogeneous and isotropic and the second one, an inhomogeneous dust, 
the energy density of which is given by (23). Now, it seems natural to 
impose for the isotropic component the usual equation of state 
P = ( 7 -  1)PvRw. Of course, as for dust p = 0, the Szekeres' universes are a 
limiting case in which the mixture is reduced to two dusts. 

As in the FRW models, the function R also obeys (7) and, substituting 
it into (21), we find the final form of the differential equation of T 

4 - 37 (24) 
R ~ +  R T +  (3-7Z2-2)- RT=2~Ro 

the solution of which, as shown in Appendix B, is given by 

T=fl  -~o F3+#~,Ro)  F4+--~- Ro ( F 3 - 1 )  (25) 

where fl and # are two new arbitrary functions of x, and F3, F4 are two 
hypergeometric functions 

[ 1 1 37 L 2  k (R~37-2 ] 
F3=F "37- 2 '37 - -2 ;2 (37- -2 ) '  \Ro] J (25a) 

2(-~7 7 2); 2-'~ 22 2) ;k \RoJ  (25b) 

The inhomogeneous solutions are completely specified by (14) for the 
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function A, (25) for T, and by the solution of R given in ( l la ,  b). Of 
course, Pww and p are defined in (9) and (10) and the density of the 
inhomogeneous dust is established substituting T, R, and A in (23). 

If k-r 0, the functions A and T can be rewritten as 

and 

where 

A = (a cos z + v sin z) - -  
sin k l/2y 2~ 

kl/2 + ~ COS k~/2y + ~ (26) 

T=~(R)  (._.R._~ ~ (37- 4)/2 2~ (__R_~ ~ (27) 
F3 + ~ \RoJ F 4 -  k \Ro/ 

c5 = co - (2c(k) and fl--/~ + (2ct/k) (28) 

By comparing (26) and (27) with (17) and (18), we can see the existence of 
a specific gauge in which the function 6 is given by 6 = 2~/k. Thus, if k-r 0, 
the arbitrary function ~ can be eliminated of the expression (14) and (25) 
without loss of generality. This means that if ~ r 0, the parabolic models 
are a special class of solutions, and as the gauge is 7-independent, this is 
valid for any value of 7. In particular, this explains why the Szekeres' 
parabolic model (k = 0, 7 = 1) has, for instance, an anomalous behavior if 

~a 0, but not if c~ = 0 (see BT). 

3. THE CANONICAL F O R M  OF THE SOLUTIONS 

By using the BT notation we exhibit a canonical form for all models 
presented in the preceding section. The parabolic case is determined taking 
the limit k --* 0 in all expressions with the term fl(R/Ro) of the T function 
absorbed in AR. For k_+ 1, the gauge freedom has been used in order to 
eliminate the c~ function. 

3.1. Parabolic Models (k = 0) 

A =~y2 + (a cos z +  v sin z) y +co 

(R~3~ 4)/2 4~ / R \  3v 

T=#\RoJ  + (37_  2)(37 + 2) ( ~o ) 

R(t)=R o 1+ \ Ro ]] Q = A R + T  

--1 
(29) 

(30) 

(31) 
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3 
P = DFRW -t- Ap /)FRW = R---~ (R~ (32) 

(37 - 6) p(R/Ro)- 37/2 _ 12c~(37 + 2)-I(R/Ro) 
3p - R2 { A( R/Ro) 3 + #( R/Ro)3,/2 + [ 4~( R/Ro)3, + 1/(37 _ 2)(37 + 2)] } 

(33) 

P = ( 7 -  1)Pww (34) 

3.2. Elliptic and Hyperbolic Models (k = _+1) 

A = (a cos z + v sin z)(k -1/2 sin k1/2y) + co cos kt/2y 

( R )  [3@--2 1 3"y-l-2 , ( R )  3'-2] 
r = f i  ~o F + 3 7 - 2 ; 2 ( 3 7 - 2 ) ' k k R o J  

(_ff__R"~(37-4)/2 El- 37-4 3 7 - 4  9 7 -  1 0 .  

+ # \ R o ]  L2(-~y -- 2)' 2~-7-- 2) ; 2(37 - 2) ' 

P = PvRw + Ap P = (7 - 1) PFRW 

2RoRRJ ~-  2RoT(R/Ro) 3~ 2 
A p -  

(AR + TRo) R 2 

(35) 

k(R~  37-2 ] 
kRo] 

(36) 

(37) 

(38) 

where the function R is given in (11). 
All solutions can be put in parametric form defining the conformal 

time by dt= Rdr. In this case, the scale-factor R(r) takes the form [14] 

R ( Q = R o ( k  1~2sink1~2 ~ z)2/3~-2 (39) 

where the k-dependent range of z is given by 0 4 z ~< 2rc/137 -21 if k = 1 and 
0 ~<z < oe if k = 0 , - 1 .  The functions t(z) and T(x, r) are obtained, in 
general, substituting (39) into (11) and (25), respectively. 

For any value of k, by a transformation in x, one arbitrary function 
can be made constant, and as to can be adjusted freely, the models depend 
on four arbitrary functions and one positive constant Ro. Note also that 
only two arbitrary functions,/1 and # if k = _+ 1, c~ and g if k = 0, are related 
with these inhomogeneous models. In fact, if k =  _+1 and /3, # are con- 
stants, the solutions (35)-(38) generalize the Kantowski-Sachs models and 
Bianchi VI-type ones, respectively [163. If k = 0  and e, # are constants, 
Bianchi I-type models have been extended. 
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4. SPECIAL S O L U T I O N S  

The existence of the FRW-type component implies that from a 
cosmological point of view, the most interesting cases of the models presen- 
ted in the latter section are just 7 = 0  (vacuum plus dust), 7 = 1 (two dusts), 
and ~ = 4/3 (radiation plus dust). 

4.1. Parabolic Models (k = O) 

In this case, the solutions with 7 = O, l and 4/3 are trivially obtained 
by using (30)-(34). We observe that, considering the usual one fluid 
description, the Szekeres' parabolic model is reobtained taking 7 = 1. 

4.2. Elliptic and Hyperbolic Models (k = +1)  

In general, the hypergeometric functions are not reducible to elemen- 
tary functions. However, this occurs if 7 = 0, 1, and 4/3 (Appendix C). 

(i) 7 = 0  (vacuum plus dust) 

- [ ( R o o )  - k -57~ ~ +  /~ [(Roo) - k ]  m(40)  

p =A +Ap A =3/R 2= - p  (41) 

Ap = -6#Ro/QR 2 (42) 

R = Ro cosh(t/Ro) if k = 1 (43) 

Ro sinh(t/Ro) if k = - 1  

(ii) ~=  1 (two dusts) 

In parametric form we have [-see (39)] 

T= #kl/2 c~ km r 3--~flk ( r k'/2 2) + 1 - ~ cot k 1/2 (44) 

( 7 R=Ro  k-msinkl /2-~ t = - ~  [ 'c-(sinkl/2z/km)] (45) 

P = R--~ + Ap p = 0 (46) 

Ap = 3Ro(fiR- TRo)/QR 3 (47) 

w h e r e O ~ < r ~ < 2 ~ i f k =  +1 a n d O ~ < z < ~  i f k = - l .  
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As in the case k = 0, the Szekeres' models can be recovered if we adopt 
the one fluid description in which the energy density (46) takes the form 

p = 3R0(A + f l) /QR 2 (48) 

Equations (44) and (48) may  be compared to the respective results of BT 
paper. There, the numerical factor 3 in (44) was absorbed into the /~ 
function and, for k =  +1, the same occurred with a negative sign 
explaining, in the latter case, the positive sign in (48). 

(iii) y = 4/3 (radiation plus dust) 

T =  fir + I~ (49) 

R = Ro sin kl/Z'c/k 1/2 t = Ro[(1 - cos k1/Z'c)/kl/2]) (50) 

p = (3/RZ)(Ro/R) 4 -k- A ;  p = R 2 / R  4 (51) 

Ap = 2Ro[flk 1/2 cot kl/Zz - (flz + p) k cscZkl/Zz]/QR 2 (52) 

where 0~<r~<TZ if k =  1, and 0~<z< oe if k =  -1 .  

5. KINEMATICAL QUANTITIES AND EVOLUTION 

As in the Szekeres' universes, our models have no killing vectors, are 
type D in the Petrov classification, the 3-spaces are conformally flat, and 
the flow of matter is irrotational and geodetic. The expansion and shear 
parameters are 

k AR + ~Ro (53) 
0 = 2 ~-t- A R +  TR o 

and 

a2 1 3Rg { R J ' -  TR']  2 
= 2 a~'v~r~v = ---R 7- \ A R  + TRo,] (54) 

In the framework of the two-fluid interpretation, (53) can be rewritten as 

O=OFRw-k- AO (55) 

where 0FRW = 3(/~/R) and 

R o ( R T -  TR ~ (56) 
AO =---~ \ A R  + TRoJ 
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Now, by using (54) and (56) 

Cr 2 = �89 2 (57) 

is easily obtained. Thus, the shear tensor and the "anomalous" part of 
expansion AO are closely related and depend strongly on the 
inhomogeneous dust, since T proportional to R implies AO = a ~ v =  O. 

The asymptotic behavior (in time) of the models can be studied using 
the canonical form of solutions and taking into account (55)-(57). 

If the isotropic component obeys the "strong energy condition" 
(~ > 2/3), the models are always singular in the early times. In this case, as 
in the FRW models, the solutions are essentially parabolic near the 
singularity (R ~ Ro). In the course of time, if k = 0, - 1 ,  the scale factor 
expands indefinitely, thus the asymptotic behavior must be studied for 
large values of the cosmological time (R,>R0). However, if k =  1 and 
7 > 2/3, Ro is a maximum value of R. Then, if a FRW phase is expected, the 
correct limit to consider is R--* Ro. In what follows, the parameter ~ is 
restricted to the physical interval (1 ~<7~<2). All limits were computed 
retaining the leading terms in the respective expressions. 

5.1. Approach to Singular Point 

By using (30) we find that for R ~ Ro, A R  + T R  o ~ # R o ( R / R o )  (3~-4)/2 

Therefore, after a trivial variable change, the (12) takes, in this limit, the 
following form 

ds 2 ~ d t  2 - Rao(R /Ro)  3~-4 d x  '2 - R2(dy '2 + dz  '2) (58) 

which is homogeneous and anisotropic. In fact, from (55) and (56), a 
suitable anisotropy scale is measured by AO/OvRw ~ (7--2)/2 in this limit. 
The anisotropy strength diminishes as 7 increases, in particular, if 7 = 2 the 
model is isotropic in the early times. 

By using (32) and (33) we can readily obtain, with the same degree of 
accuracy 

A p  3~g-7 6 ( - ~ ]  3~ (59) lim 
R ~ R o  

and 

lim p,-~ ~ (60) 
R,~ R o ~1~-'~ 

From (60), (32), and (34), we find p ~ p regardless of the value of 7. Then, 
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near the singularity, the mixture behaves as a simple fluid obeying the stiff 
equation of state. Note that in this limit, the density of the inhomogeneous 
dust given in (59) is negative. However, the net energy density 
P = PVRW + Ap is always positive in accordance with the weak energy con- 
dition. In fact, since near the singularity the dust concept is meaningless, 
the mixture is to be regarded, for all values of 7, as a macroscopic represen- 
tation of stiff matter in this limit. This interpretation was suggested in [-9] 
for a mixture of isotropic radiation (7 = 4/3) and dust with negative 
density. 

5.2. Behavior at large values of R 

As in the course of time the contributions of the curvature terms are 
not negligible, the models are separately examined. 

5.2.1. Parabolic Models (k = 0) 

If ~ = 0 ,  from (30) and (13) it is easily obtained that, for R > R 0 ,  
Q = A R  + TRo ~ AR. Then, taking into account the results of Section 2.1. 
about the FRW models, it follows that the homogeneous and isotropic 
phase is reached. In fact, by using (32) and (33), it can be computed that 
in this limit Z [ 0 / 0 F R W ~ 0  , P~PFRw, and p , ~ ( y - - 1 ) p .  For e # 0 ,  similar 
computations show that the models are homogeneous but anisotropic for 
R > Ro. However, as Ap is negative, an unreasonable result in this limit 
(33), these solutions with ~ # 0  can be ruled out in the framework of the 
two-fluid interpretation. 

5.2.2. Hyperbolic Models (k = - 1 ) 

In this case, the hypergeometric functions present in (36) are given in 
terms of oscillating power series; thus, a direct analysis from these 
equations about the limit R > R o  cannot be made by this method. 
However, this problem can be circumvented through a linear trans- 
formation formula of the hypergeometric functions. By using the identity 
[17 p. 559, Eq. 5.3.4] F ( a , b , c , z ) = ( 1 - z ) - a F ( a , c - b ; c ; z / z  - 1 )  and 
taking the limit R > Ro, it is easy to see that, for k = 1 

and 

 4 c2( F 4 J211+0( )+ ] 
where c 1 and c 2 are two v-dependent constants. 
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Substituting these results into (36) it follows that for R>>Ro, 
T ~  elfl + c2]A; in consequence, A R  + TR o ~ AR. Thus, the FRW phase for 
large values of the cosmological time is independent of the choice of the 
arbitrary functions. 

5.2.3. Ellyptic models (k = + 1 ) 

For this case, as remarked before, a FRW phase can be expected to 
occur when the "radius" R is near its maximum value Ro. The analysis is 
simplified by observing that in the neighborhood of R o we have 
R ~ O ,  J'= (OT/~R)k~O.  In fact, from (56) we find that in this limit 
AO~O, and, thus, O~OvRw. Moreover, from (36) and (13), it is easy to 
show, absorbing the functions fl and # into the function A, that for 
R ~ Ro, Q ~ AR. Then, as in the hyperbolic case, analogous results can be 
derived from the hypergeometric functions, computing the appropriate 
limits. 

FINAL REMARKS 

We have examined the existence of inhomogeneous cosmological 
models with Szekeres'-type metric class II and a different two-fluid, mater 
content. These fluids are explicitely taken as an inhomogeneous dust and a 
FRW polytropic fluid. A unified approach analysis revealed several aspects 
concerning the relation between the FRW and Szekeres'-type cosmological 
models. 

In the two-fluid solutions, the energy-momentum tensor of each com- 
ponent is not separately conserved. Thus, there is interaction between 
them. However, the evolution of the models is fully adiabatic, i.e., only 
entropy exchanges between the components are performed. 

Another feature, worth mentioning, closely related with the two-fluid 
interpretation is the simplicity of the solutions. It was possible to obtain 
exact solutions for all values of k and 7. These solutions are, in general, 
expressed in terms of hypergeometric functions. For k r  they assume 
elementary form for certain values of 7, among them the Szekeres' 
solutions. In the case k=0 ,  the geometrical and physical quantities are 
given for all values of ~ as power functions of t (compare the results of [9] 
with ours for 7--4/3; in fact, they do not have the same dynamics). 

Finally, we observe that the Szekeres' parabolic model with ~ r 0 (fl in 
the notation of the BT paper) is an "anomalous" but physical solution; this 
fact remains unaltered if we adopt the one-fluid description for the 
solutions with c~r presented here. However, in the two-fluid inter- 



1032 Lima and Tiomno 

pretation, as was shown in Section 5.2.1., they become unphysical solutions. 
Thus, the unified solutions presented in (35)-(38) are the most comprehen- 
sive set of cosmological solutions generated by this mixture of two-fluids. 
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A P P E N D I X  A 

In the comoving frame, the EFE G ~ =  T ~ for the Szekeres' line 
element (12) with T.~ = (p + p) vuvv - Pg.v are (in our units 8rcG = c = 1) 

where an overdot means time 
( i = 2 , 3 = - y , z ) .  

Q R 2 p = Q R 2 + 2 R O _ k - Q 2 2 - h  2(Q33+hh2Q2+hh22Q) (A1) 

R2p = - 2 ~ R  - k 2 + h -  lh22 (A2) 

QRp = -Qi~  - O k  - OR + h 2R-1(Q33 + hh2Q2) (A3) 

QRp = - Q R -  O k  - OR + R ~Q22 (A4) 

0 = Q23 - h- lhzQ3 (A5) 

0 = 02--  Q2 R - ~ k  (A6) 

0 = Q3 - Q3 R - ~ k  (A7) 

partial derivative and Qi~c~Q/Ox i 

A P P E N D I X  B 

Here we establish the solution of the differential equation (24) to T 
function 

( 4 -  37~/~T= 2~ (B1) 
2J Ro 

without loss of generality we take 

T =  na/r x) n = (R/Ro) 3~-2 (B2) 
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Substituting (B2) into (B1) and using (7) and (8), we find that fsat isf ies  
the inhomogeneous equation 

n(1-kn)7---S+ L2(37_ 2) kn = (B3) 8n ( 3 7 - 2 )  2 ( 3 7 - 2 )  2 

If c~ = 0 and k = +1, the above equation is in the canonical form of a 
hypergeometric differential equation [-17, p. 562, Eq. 15.5.1] whose 
parameters are a = b = (37 - 2 ) -  i and c = (37 + 2)/2(37 - 2). If k = - 1, 
transforming n --* -n ,  the same equation is obtained. Then, in the variable 
kn, the homogeneous solution of (B3) is given by [17, p. 563, Eqs. 15.5.3 
and 15.5.4] 

1 1 3 7 + 2  "k ] 
f = f l F  3 ; ? - 2 ' 3 7 - 2 ; 2 ( - ~ 3 , - - ~ '  n l 

[ (33@_4237-4 .%-10  
+#n(3"~-6~/2(3?-2)F 2 )' 2 ( 3 7 - 2  )' 2 - ~ 2 ) '  kn] (B4) 

where /7 and # are two arbitrary functions of x. Note that since 
F(a, b, c, o ) =  1, a solution to the flat case is readily obtained in the limit 
k--* 0. Finally, instead of taking the particular solution of (B4)fp = -2c~/k, 
which is valid for k # 0, we take the following unified expression 

fp~k)=2C~[Fi/__l 1 37+2 . '~ ] 
k L \37- 2'37-2;2(37-2);=n) -1 

which in the limit k ~ 0 furnishes 

(B5) 

4517 
fv  (~ lira ftpk)= (B6) k~o (37-2)(33,+2) 

then, by the (B2), (B4), and (B5), the unified solution of T, as a function of 
R, is 

where 

T=fl -~0 F3q-l't\go/# F4+-~- Roo [ F 3 - 1 ]  (B7) 

1 1 3 7 + 2  { 'R \  3~ 2-1 

[- 3 7 - 4  3 7 - 4  , 9 7 - 1 0  { R f l  3' 
F4 = F L2(-~7--L-2 )' 2 ~ , Z } ) "  2 ~ 7 - - ~ ) '  k \Ro} 

(Bs) 

- 2 ]  (B9) 

842/2O/lO-5 
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Let us observe that the hypergeometric functions in (B4) are linearly 
independent only if the parameter c = (37 + 2 ) /2 (37 -2 )  is nonintegral. If 
7 = (4p + 2)/(6p - 3), where p is an integer, it is necessary to obtain the so- 
called logarithmic solutions, since one of the hypergeometric functions in 
(A4) becomes meaningless or both become identical. However, the cases 
7--0,  1, and 4/3 are all contained in (B7) (Appendix C). As the most 
interesting cases can be derived from (B7), we do not consider in this paper 
the logarithmic case. 

A P P E N D I X  C 

The function T for models with 7 = 0, 1, and 4/3 are considered. In 
what follows, the identities below are useful [17, p. 556, Eqs. 15.1.6, 15.1.8; 
p. 558, Eq. 15.2.26] 

F(a, b; b; z) = (1 - z )  -a (C1) 

F(1/2, 1/2; 3/2; z 2) = (1 - z 2 )  m F(1, 1; 3/2; z 2) = z -1 arcsin z (C2) 

[b - 1 - (c - a - 1 ) z] F(a, b; c; z) + (c - b) F(a, b - 1; c; z) 

- (c  - 1 )(1 - z )  F ( a ,  b ;  c - 1; z )  = 0 (C3) 

Consider now the cases 

(i) 7 = 0  
Equation (36) reduces to 

P 
T=/3 ~00 F[  - 1/2, - I/2; - 1/2; k (R /Ro) -2 ]  

+ #(R/Ro) -2 F[(1, 1; 5/2; k(R/Ro)  -21 (C4) 

Considering the identity (C1), it is sufficient to compute F(1, 1; 5/2;z2), 
where z 2 = k ( R / R o )  -2. By using (C2) and (C3), we find F(1, 1; 5/2;z2)= 
3 z - Z [ 1 - ( 1 - z 2 ) l / 2 z  l arcsinz].  Substituting into (C4), after some 
manipulations, it follows that 

T=---~-3P{1-[(~o)2-kll/2arcsinkl/2(R/R~ J +/~ [_\~ooJF(R~2k~m-- J (c5) 
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(ii)  7 = 1 
N o w ,  (36) r eads  

T = f l  F 1 ,1 ;  2 ,  

1035 

11  1 ( ) ]  �9 k R 
2 '  2;  2 '  ~oo 

(C6)  

N o t e  t h a t  the  a b o v e  h y p e r g e o m e t r i c  f unc t i ons  have  the s a m e  p a r a m e t e r s  of  
the  l a t t e r  case.  O n l y  the  a r g u m e n t  has  been  modi f i ed .  De f in ing  z = k(R/Ro) 
a n d  r e p e a t i n g  the s teps  g iven  in case  (i), it  is r e a d i l y  o b t a i n e d  

a rc s in  k 1/2 (R /Ro)  1/2 ] 
T=3~flk [ 1 - ( ~ - k ) ~ / 2  ~ j + # ( - ~ - k )  1/2 (C7)  

(iii) "; = 4/3 

T= fi (~o )  F [  I/2 , 1/2; 3/2; k ( ff-o) 2] + # (C8)  

By us ing  (C2)  a n d  t a k i n g  z = k(R/Ro) 2 in  (C8) ,  we f ind 

a r c s in  k 1/2 (R/Ro) 
T= B k m  ~- # (C9)  
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