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In order to provide insight about the physical interpretation of the NUT 
parameter, we solve the geodesic equations for the NUT metric. We show that 
the properties of NUT geodesics are similar to the properties of trajectories for 
charged particles orbiting about a magnetic monopole. In summary, we show 
that (1) the orbits lie on the surface of a cone, (2) the conserved total angular 
momentum is the sum of the orbital angular momentum plus the angular 
momentum due to the "monopole" field, (3)the monopole field angular 
momentum is independent of the separation between the source of the gravita- 
tional field and the test particle, and (4) the geodesics are "almost" spherically 
symmetric. The strong similarities between the NUT geodesics and the elec- 
tromagnetic monopole suggest that the NUT metric is an exact solution for a 
gravitational magnetic monopole. However, the subtle difference of being only 
almost spherically symmetric implies that the analogy is not perfect. The almost 
spherically symmetric nature of the NUT geodesics suggest that the energy of 
the "Dirac string" makes a contribution to the solution. We also construct exact 
solutions for special orbits, discuss a twin paradox, and speculate about the 
Dirac quantization condition for a gravitational magnetic monopole. 

1. I N T R O D U C T I O N  

The NUT metric is a vacuum solution of Einstein's equations which has a 
long and interesting history. Two unrelated physical interpretations for the 
metric have been stated in the literature. One viewpoint is motivated by the 
similarity between the group structure for the NUT symmetry and the 
group structure for spherical symmetry. The identification of these sym- 
metries leads to the interpretation that the NUT metric corresponds to a 
vacuum cosmological-like solution with periodic time. The peculiar proper- 
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ties of the N U T  space that follow from this identification are best 
summarized by a statement made by Misner [2]:  "A space which does 
not admit an interpretation without a periodic time coordinate, a space 
without reasonable space-like surfaces, and an asymptotically zero cur- 
vature space which apparently does not admit asymptotically rectangular 
coordinates." 

The second viewpoint is based upon the observation that the 
linearized Einstein equations for the N U T  metric are analogous to the case 
in electromagnetism of a semiinfinite magnetic solenoid or a magnetic 
monopole. That is, the N U T  metric is a particle-like solution whose spheri- 
cally symmetric source has both ordinary mass m and "magnetic-like" mass 
m*. We support the latter viewpoint by showing similarity between the 
N U T  geodesics and the orbits of an electric charged test particle orbiting 
in an electromagnetic field generated by a spherically symmetric source 
that has both electric and magnetic charge. 

The NUT metric, expressed in a Schwarzschild-like coordinate system, 
is [1]  

d s  2 = U [  d t  + 4 l  sin2(0/2) d O ]  2 - U - 1 d r  2 _ ( r  2 + l ~ ) [  dO 2 + sin2(0) &b 2 ] 

(1) 

where 

m r  2 -b l 
U = I - 2 - -  

r2 + l  2 

The constant m is the "ordinary mass" of the source and l is the N U T  
parameter, soon to be identified with the gravitational "magnetic" mass 
m*. In the limit that / = 0  the N U T  metric reduces to the Schwarzschild 
metric. 

For  a nonzero N U T  parameter the vanishing of the metric determi- 
nant in Eq. (1) identifies the singularities at 0 = 0 and 0 = re. It is this axial 
singularity which is responsible for the different physical interpretations of 
this metric. Misner [2]  considered the singularities at 0 = 0 and 0 = rc to be 
the degeneracies associated with spherical coordinates on a 3-sphere. In 
order to impose this interpretation Misner had to make the time coor- 
dinate periodic; consequently this makes the NU T metric an uninteresting 
particle-like solution. 

Seeking to avoid a periodic time coordinate, Bonnor [3]  imposed 
only part of Misner's identification on the N U T metric. With Bonnor's 
identification the singularity at 0 = 0 was removed but not the one at 0 = ~r. 
Bonnor related the singularity at 0 = rc singularity to a semiinfinite massless 
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source of angular momentum directed along the symmetry axis. 
Dowker [4] pointed out that this was analogous to representing the 
magnetic monopole in electromagnetic theory by a semiinfinite solenoid. 
The singularity along the z axis is analogous to the Dirac string. Earlier, 
Demianski and Newman [5] had suggested that the NUT parameter 
corresponded to a "magnetic" gravitational monopole. Numerous authors 
[6-9] have subsequently discussed this gravitational magnetic monopole 
interpretation for the NUT parameter. 

The NUT metric has properties that are similar to both the Kerr and 
the Schwarzschild metrics. Like the Kerr and Schwarzschild, the NUT 
space is Petrov type D and has a Killing horizon that surrounds the origin 
at a distance of ro= r +  (r2+12) ~/2. Like the Schwarzschild metric, the 
single nonvanishing Riemann curvature scalar is a function of only r, i.e., 
the curvature scalar is spherically symmetric. Also like the Schwarzschild 
space, the NUT space contains a four-parameter group of motion whose 
three space-like generators have the same commutator algebra as do the 
generators for angular momentum. 

The NUT metric in Eq. (1) is Kerr-like in the sense that it has a 
crossed space-time metric component go~ which generates gravimagnetic 
effects. The cross term in the Kerr metric not only breaks spherical sym- 
metry but also generates an ergosphere and produces frame dragging. The 
cross term in Eq. (1) does not produce an ergosphere but it does produce 
an effect similar to the dragging of inertial frames. In addition, even though 
the cross term in Eq. (1) singles out the z axis and appears to break spheri- 
cal symmetry, the space components of the geodesics as a function of 
proper time are spherically symmetric. However, the geodesic coordinate 
time component is not spherically symmetric. Because the time component 
is dependent on the orientation of the "Dirac string," we say that the 
geodesics are only "almost" spherically symmetric. 

The NUT metric appears to be axially symmetric yet the scalar cur- 
vature invariant is spherical symmetric. How do we reconcile this apparent 
difference? The situation is precisely like that encountered in the theory of 
electromagnetic monopoles where the magnetic field/~ is spherically sym- 
metric but the vector potential ~ is not. The vector potential has a Dirac 
string which breaks the spherical symmetry. In classical electrodynamics 
the vector potential is not physically measurable and the observables 
depend only on the magnetic field/~. 

In quantum mechanics it is necessary to use the vector potential to 
formulate the equations and the vector potential introduces a singularity. 
The singularity runs from infinity along some curve, usually taken to be a 
line along the 0 = ~ direction, ending on the monopole. In order to make 
the physical observables in quantum theory independent of the singularity, 
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i.e., the Dirac string, one is forced to quantize the electric and magnetic 
charges. A similar result follows from the linearized version of Einstein's 
equations when they are allowed to have a gravitational monopole mass 
source. However, based on arguments that follow from the NUT geodesics 
that are calculated in this article and contain all nonlinear effects, we argue 
that the results based on linear theory might not be correct. When the non- 
linear terms are accounted for, the mass that appears in the Dirac quan- 
tization condition becomes the energy of the system. Using the energy of 
the system instead of the mass in the Dirac quantization condition leads to 
a rather ambiguous result. This argument is discussed in more detail in 
Section 9. 

The similarities between the NUT parameter and the charge of a 
magnetic monopole are immediately evident when components for the 
vector potential A in electromagnetism are compared with the space-time 
metric components goi which generate gravimagnetic effects. The only non- 
vanishing vector component for the magnetic monopole in spherical coor- 
dinates is A~=2qsin2(O/2), where q is the magnetic monopole charge~ 
From Eq. (1) it follows that the only nonvanishing space-time component 
for the NUT metric is go~ = 4l sin/(0/2). The formal analogy between go~ 
and A~ suggests that the NUT parameter can be identified with a magnetic 
mass. In the following we define l = m* in order for the notation to be 
more symbolic of a magnetic mass. 

The magnetic mass m* (the NUT parameter) is also the source term 
that generates the components of the dual Riemann curvature tensor, just 
as the magnetic monopole charge generates the components for the dual of 
the electromagnetic tensor. The close analogy that is established in this 
article between the NUT geodesics and the magnetic monopole trajectories 
strengthens the identification of the NUT parameter with a gravitational 
magnetic mass. However, we also show that there are subtle differences 
between the NUT geodesics and the electromagnetic trajectories. For 
example, the NUT geodesics are only almost independent of the direction 
of the Dirac string, unlike the electromagnetic analogy. 

In Section 2, we review the relevant properties of the NUT metric and 
derive the geodesic equations. The relation between the angular variables 
and constants that follow from the Killing symmetries are discussed in Sec- 
tion 3. We also show in Section 3 that the geodesics lie on the surface of a 
cone whose axis is defined by the Killing constants. The almost spherically 
symmetric property of the geodesics is established in Section 4. A potential 
analysis of the radial coordinate is given in Section 5 and explicit solutions 
for circular orbits are given in Section 6. With the exact circular solutions 
we also illustrate a twin paradox in which the proper periods for coun- 
terrevolving orbits are the same but their coordinate periods are different. 
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Solutions for bound orbits and null geodesics are discussed in Sections 7 
and 8, respectively. In Section 9 we speculate about the analogous Dirac 
quantization condition that follows from the NUT geodesics. 

2. THE NUT METRIC AND GEODESIC EQUATIONS 

If m* corresponds to a gravitational "magnetic" monopole mass, then 
there should be a close analogy between the NUT geodesics and the orbits 
for an electric charged particle moving in a potential generated by a spheri- 
cally symmetric source with both electrical and magnetic charge. The 
properties for these charged particle orbits are well known and can be 
summarized as: 

(i) The field created by an electric charge and a magnetic monopole 
charge has an angular momentum S directed along the line 
joining the two charges. The magnitude of this angular 
momentum is independent of their separation and has a value 
proportion to eq, where e is the electric charge and q is the 
magnetic charge. 

(ii) For an alectric charged particle orbiting in the potential of a 
magnetic monopole, the conserved total angular momentum is 
J =  L + S, where /] is the orbital angular momentum and S is 
the field angular momentum. The magnitudes of the orbital and 
field angular momenta, L=l / ] [  and S---IS[, are separately 
conserved, however, their directions are not. 

(iii) The trajectories for an electric charge in the potential of a 
monopole lie on a surface of a cone where the angle e is given 
by cos(a)= Isr/laVl . 

(iv) The vector potential of a monopole is singular along the "Dirac 
string"; however, the direction of the singularity does not affect 
the trajectories so the orbits exhibit spherical symmetry. 

To show that most of these magnetic monopole properties are shared 
by the NUT geodesics, let us consider the geodesic equations 

d v 1 d 
ds (g"~2) - 2 ~ (g~)  2~2" = 0 (2) 

The dots above the variables denote derivatives with respect to proper 
time, i.e. A =  dA/ds. The Greek letters run from 0 to 3 and correspond to 
the (t, r, 0, r coordinates, respectively. 
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Writing out the components of Eq. (2) for the N U T  metric in (1), we 
get the following equations: 

d 
v=O, ~ { U [ i + 2 m * ( 1 - c o s O ) ~ ] }  = 0  (3a) 

1 dU [ 0) 2 dU~ ~2 
v = l ,  r--2-&r U - I ~ E - U  r s i n E O - 2 m * Z ( 1 - c ~  dr]  

- UrO2+2m*U(1-cos  o) dUi~b+~dr udUi2=Odr (3b) 

d m,2) v = 2, ~ [(r  2 + O] + [ - (r 2 + m .2) sin 0 cos 0 

+ 4 m * Z U s i n O ( 1 - c o s O ) ] q ~ Z + 2 m * U s i n O ~ i = O  (3c) 

d { [4m,2U(1 _ cos O) 2 - (r 2 + m .2) sin 2 O] q~ v = 3 ,  

+ 2m'U(1 - cos 0) i} = 0 (3d) 

An additional equation follows from uVu~ = e (e = 1, 0): 

e = Ui 2 - U - 1~2 _ (r 2 + m,2) 02 + [ _ (r 2 + re,z) sin20 

+ 4m*2U(1 - c o s  0) 2] ~2 + 4rn*U(1 - c o s  0) i~ (3e) 

where u v is the tangent to the geodesic path. 
Two constants of motion follow immediately 

Eqs. (3a) and (3d); they are 

E =  U{ i + 2m*(1 -cos  O) ~} 

- J ~  + 2 m ' E =  [4m*ZU(1 - cos O) 2 - (r 2 + m .2) sin 20]  q~ 

+ 2m'U(1 - cos O) i 

from integrating 

(4a) 

(4b) 

The constant E is defined as the energy of the orbit and the constant J~ is 
chosen to agree with the z component of the conserved total angular 
momentum. The conserved angular moment J is discussed in Section 3. 

We can eliminate i from Eqs. (3) by substituting Eq. (4a) into Eqs. 
(3b)-(3e); it follows that 

1 i. 2 dU 1 d U  2 
iz--~ ---~r U l +-~--~r E U - l - r U ( O 2  +sin20~2)=O (5a) 
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d 
~ss [(re + m*2) 0] + 2 E m *  sin 0q~ - (r 2 + m .2) sin 0 cos O(b z = 0 (5b) 

J z  - 2 m E  cos 0 (5c) 
= (r z + m .2) sin 2 0 

= E 2 U  - 1  _ i .2U 1 _ (r 2 + m,2)(02 + sin 2 0q~2) (5d) 

Using (5c) to eliminate the q~ variable in (4a), we get the following 
equation for i: 

E 2 m * ( J z - 2 m * E c o s  O) 
i = -- (6) 

U (r2 + m*2)(1 +cos  0) 

It is now an easy task to eliminate the angular variables in Eqs. (5) 
and get an equation which is a function of only r and its derivative. The 
general properties for the radial variable then follow from a potential 
analysis. Before we continue with the detailed discussion of the orbital 
coordinates we examine the angular momentum properties and constants 
of motion that follow from the Killing symmetries. 

3. K I L L I N G  V E C T O R S  A N D  A N G U L A R  V A R I A B L E S  

Like the Schwarzschild metric, the NUT metric has sufficient Killing 
symmetries to establisch an exact relation between the ~b and the 0 
coordinates. The four Killing vectors [2-3] that characterize the NUT 
symmetries are 

~c~ = (1, 0, 0, 0) (7a) 

~c~ = (--2m*, 0, 0, 1) (7b) 

~:v = [ - 2 m *  cos ~b tan(0/2), 0, - s i n  ~b, - c o s  ~b cot 0] (7c) 

~Cy = [ - 2 m *  sin ~b tan(0/2), 0, cos ~b, - s i n  ~b cot 0] (7d) 

The subscripts, t, x, y, and z, denote the particular vector and the sub- 
script, v, denotes the tensor indice: The time-like Killing vector in (7a) 
describes the symmetry associated with the usual time independent solu- 
tions. The three space-like Killing vectors in (7b)-(7d) characterize the 
orbit's angular dependence and they generate a conserved total angular 
momentum vector. 

The three space-like vectors form a subgroup with the same structure 
constants that are obeyed by spherically symmetric solutions. However, the 
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NUT killing vectors have nonzero time components and act on a three- 
dimensional hypersurface, which is contrary to the spherically symmetric 
case, which acts on only a two-dimensional hypersurface. 

Contracting (7b)-(7d) with the four-velocity vector and using Eq. (4a) 
to eliminate the i terms, we get the following three components for the 
conserved total angular momentum (per unit mass): 

J x  v - - - ( r  2 q- m . 2 )  sin ~bO - (r  2 -F m . 2 )  - =  - - K  x U  v - -  

• cos 0 sin 0 cos ~b~ + 2 m * E  sin 0 cos ~b (8a) 

J y =  -tCyUv = ( r2+m .2) cos ~b0- ( r2+m .2) 

• cos 0 sin 0 sin ~b~ + 2 m * E  sin 0 sin ~ (8b) 

Jz = - x ~ u ,  = (r 2 + m .2) sin 2 0q~ + 2m*E cos 0 (8c) 

It is obvious from Eqs. (8) that the conserved total angular momentum J 
can be expressed as the sum of two vectors, the field angular momentum 
57 and the orbital angular momentum/S, 

J = L + S  (9) 

The orbital angular momentum (per unit mass) is defined by the usual 
expression but with r z replaced by r2+ m .2, 

Lx = -  - ( r  2 -F m .2)  s i n  ~bO - (r  z + m .2)  

x cos 0 sin 0 cos ~b~ (lOa) 

Ly=- (r 2 + m  .2) cos r  (r 2 + m  *z) 

x cos 0 sin 0 sin r (10b) 

Lz - (r 2 + m .2) sin 2 0~ (10c) 

The components of the field angular momentum generated by the magnetic 
mass are defined by 

Sx = 2 m * E  sin 0 cos ~b ( l l a )  

Sy = 2m*E sin 0 sin ~b ( l lb )  

sz = 2 m * E  cos 0 (1 lc) 

The field angular momentum 57= 2m*E~, is independent of the coor- 
dinate r and is directed along a line joining the test particle and the source. 
This field angular momentum has a constant magnitude and is per- 
pendicular to L, precisely the same as the angular momentum generated by 
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the field between an electric charge and a magnetic monopole. It is the time 
component in Eqs. (7b)-(7d), that is responsible for generating the field 
angular momentum. 

Squaring the total angular momentum, we get 

j2  = j2  x + jy2 + jz  2 = 4m* 2E2 + L 2 (12) 

Since j2 and S 2 are constants it follows that the magnitude of the orbital 
angular momentum L is also constant, but not its vector components. 

Let us now separate 0 and 0~ in Eqs. (8) and obtain relations for the 
~b and 0 coordinates. Multiplying Eqs. (8a) by -sin~b and Eq. (8b) by 
cos ~b, and then adding, we get 

0 =  - A  s in (~ -  q) (13) 
(r 2 + m .2) 

where we have defined the constants A and q by 

Jx -= A cos(q) and Jy =_ A sin(q) (14) 

In addition, multiplying Eq. (Sa) by cos ~b and Eq. (8b) by sin ~b and 
adding, we get 

A cos(~b- q) sin 0 = 2 m * E - J z  cos 0 (15) 

The relation between the angular variables given by (15) is the relation that 
restricts the motion of the test particle to the surface of a cone whose axis 
is along f 

An expression for the cone angle can be obtained by dotting the 
normalized position vector P with the conserved angular momentum vector 

It then follows from (9) that the cone axis along ] makes an interior 
cone angle c~ given by 

2 m * E  
cos 0~ = iavl (16) 

Let us now use the relations that we have established for the angular 
variables to obtain an equation for the radial coordinate. The behavior of 
the angular variables allows us to derive a potential equation for the radial 
coordinate which is independent of the angular variables. 

Squaring and adding Eqs. (10), it follows that L 2 is related to the 
angular coordinates by 

L 2 
(0 2 + sin 2 0(9 2) = (r 2 + m,Z)  2 (17) 
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In order for 0 and ~b to be real it follows that the allowable range of j2  and 
L 2 are L 2 ~> 0 and j z  >~ 4m.2E2. 

Using (17) to eliminate the angular variables in (5d), we get 

( 2 =  ( E  2 --  1 ) -  V(r) (18a) 

where 

L2U 
V(r)= U -  1 q- (r2 + m , 2 )  (18b) 

Equation (18b) defines an effective potential for the radial coordinate. Only 
the magnitude of /7, enters in (18a), therefore, the radial equation is 
obviously spherically symmetric. 

Let us now consider the behavior of the angular coordinates, ~b and 0, 
for the special orientation of the orbit in which Jx = Jy = 0 (A = 0). For 
A = 0, the conserved momentum is along the z axis. Setting A = 0 it follows 
from (15) that 

0 2m*E (19) COS = 

IJI 

where l J[ =Jz .  In the Schwarzschild limit, m * = 0 ,  Eq.(19) reduces to 
0 = n/2. That is, the origin of the coordinates lies in the plane of the orbit 
and the plane of the orbit is orthogonal to the z axis. With a nonzero m*, 
the orbit is lifted in the direction of the z axis by the gravimagnetic effects 
generated by the magnetic monopole mass. 

From (19) it follows that s i n 2 0 = ( J 2 - 4 m 2 * E 2 ) / J  2 so Eq.(5c) 
reduces to 

]JJ (20) 
- (r  2 + m . 2 )  

Equations (19) and (20) describe the behavior for the angular variables in 
the special case that A = 0. 

The angular properties that follow from the group symmetries are 
identical to the analogous angular properties for an electric charge 
spiraling along the magnetic field lines generated by a magnetic monopole. 
Let us now show that the spatial coordinates, r, 0, and ~b, for the orbits are 
spherically symmetric, i.e., the spatial coordinates are independent of the 
orientation of the orbit. 
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4. R O T A T I O N  OF THE COORDINATES TO CANONICAL F O R M  

For the case of the spherical symmetry Schwarzschild metric one can 
always pick a coordinate system, without the loss of generality, so that 
.Ix = Jy= 0. This result can be verified by rotating the coordinates to a 
system with the z axis pointing along the orbital angular momentum 
vector. The resultant equations will be identical to the equations one gets 
by setting Jx and Jy equal to zero. A similar result is also valid in the 
classical electromagnetic for the motion of a charged particle in the field 
of a magnetic monopole, even though the Dirac string breaks spherical 
symmetry in the vector potential. 

In this section, we show that a similar result follows for the N U T 
geodesics. That  is, if one rotates to a coordinate system with the z axis 
pointing along a~ the angular equations reduce to the canonical form given 
by (19) and (20). It is already obvious from Eq. (18) that the radial coor- 
dinate is independent of the orientation of the coordinate system. However, 
a similar result does not follow for the time coordinate. The time coor- 
dinate is a function of the direction of the singularity (Dirac string) along 
the z axis. 

Let us now construct a transformation that rotates the coordinates to 
a system where the z' axis lies along the direction of the conserved angular 
momentum vector. In the rotated coordinates it will follow that Eqs. (8) 
reduce to the form generated by the special case where we have set Jx = 
Jy=0. 

The rotation matrix that generates a coordinate system (x', y', z') such 
that the z' axis lies along J i s  obtained by rotation first about the z axis by 
an angle q and then about the y axis by an angle co. Taking the product of 
these two rotations we get the following rotation matrix that connects the 
coordinates (x', y', z') and (x, y, z): 

f cos  g / cos  o) 

R01, co) = ] - s i n  t/ 

I, cos t/sin co 

sin t/cos co - s i n  ~o" 

cos t/ 0 

sin t/sin co cos co 

(21a) 

rl =tan-l(Jy/J~),  o = c t n - l ( j z / A )  (21b) 

Expressing the Cartesian coordinates in terms of angular variables, it 
follows from (21a) that we get the following relations between the rotated 
angular variables (0', ~b') and the unrotated angular variables (0, ~): 

sin O' cos ~' = cos co[sin 0 cos(~ - t/) - tan co cos O] (22a) 
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sin 0' sin ~b' = sin 0 sin(~b - t/) (22b) 

cos 0' = sin o~[sin 0 cos(~b- r/) + ctn c0 cos 0] (22c) 

and 

cos 0 = - s in  co sin 0' cos r + cos co cos 0' (22d) 

Let us now use the relations in (22) to express Eqs. (8) in terms of the 
rotated coordinates (0', ~'). It follows that 

2m* E 
cos(0') = (23a) 

lYL 
An expression for the angular variable ~b' follows from taking a 

derivative of (22d) and using (15), (21b), and (22), we get 

q~, _ Ill (23b) 
(r 2 + m .2) 

Equations (23) are identical to Eqs. (19) and (20) where A = 0 and they are 
the expected results that follow for a spherically symmetric field. 

The equations that govern the radial and angular variables as a 
function of proper time are spherically symmetric--the direction of the 
singularity along the negative z axis does not affect their behavior. An 
equivalent statement cannot be made about the time coordinate. To show 
this we express the time coordinate in terms of the rotated coordinates and 
compare the result with the equations that follow from setting A = 0 in (6). 

Substituting (22d) and (23a) into (6), we get 

E -2m*{Jj2--2m*E[--ALcoscy+2m*EJz]} 
i = ~ +  [ j j  _ALcosqk, + 2m,EJz](r2 +m,2 ) (24a) 

This is not the same equation that follows from setting A = 0 in (6) which 
is simply 

E 2 m * [ J - 2 m * E ]  
i = ~ -  (r 2 -k- m . 2 )  (24b) 

In general, the time coordinate does depend on the orientation of the 
orbit relative to the direction of the line singularity. Only for the special 
case of radial infall, i.e., /2= 0, does Eq. (24a) reduce to (24b) and, there- 
fore, reflect spherical symmetry. In general only the spatial components of 
the geodesics are independent of the orientation of the orbit and reflect 
spherical symmetry. 
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5. POTENTIAL ANALYSIS FOR THE RADIAL VARIABLE 

In this section we study the properties of the NUT geodesic that 
follow from the radial equation. Properties for the radial coordinate follow 
immediately from a potential analysis of Eqs. (! 8). Expressing the effective 
potential in (18b) as the sum of four terms, we have 

2 m r  3 ( L  2 - 2m .2) r 2 
V(r)= ( r = + m , 2 ) = +  (r2 +m,=) 2 

2 m r ( L  2 q- m .2) m*2(L 2 + 2m .2) 

(r2 + m * 2 )  2 (r2 -1- m*2) 2 (25) 

The characteristics of this potential are similar to the Schwarzschild 
potential. The first three terms on the right-hand side of Eq. (25) are just 
the usual Schwarzschild terms with only a slight modification from m*. The 
first term is just the classical Newtonian potential, the second term 
corresponds to the centrifugal force barrier, and the third term is analogous 
to the usual general relativistic correction that occurs in the Schwarzschild 
potential. The main effect of m* on these three terms is to modify the 
angular momentum barrier. The potential barrier appears in the second 
term of (25) and is proportional to (L 2 -  2m'2). The fourth terms is unique 

t o  the NUT metric and makes only a short-range contribution. In addition, 
unlike the Schwarzschild potential, the NUT potential is nonsingular at 
r = 0, which follows from the fact that r 2 appears only in the form r 2 + m .2. 

The qualitative features of the potential for L r 0 in (25) are shown in 
Fig. 1. The shape of the potential is determined by the number of extremum 
points. Setting the derivative of the potential in (25) equal to zero, it 
follows that the extremum points are located at the roots of the quartic 
equation, 

m r  4 -k (2m .2 - L 2) r 3 "k 3 L 2 m r  2 + (2m .4 + 3L2m .2) r - m * 2 m ( m  *z + L 2) = 0 

(26) 

Equation (26) has four roots, one of which is always negative. In order 
of decreasing distance from the origin, the four roots are denoted by r~, r2, 
r 3, and r4. An approximate solution of (26) is 

8m* l [ 
rl ~mm 1 - - - - ~ J ~ L 1  +--9L-3-J + 1 L2 9 ~  j J (27a) 



L 2 [ 1  2m*2qf[  - 8m'2-] [ 1 

r 3 ,~ (1/3) 1/2 m* -- (4/9m) m .2 

r4 ~ -- (1/3) 1/2 m* -- (4/9m) m .2 

12m 2 16m '2 ]  v2"~ 
L2 ~ _] j (27b) 

(27c) 

(27d) 

Equat ion  (26) or Eqs. (27) reduce to the s tandard Schwarzschild results 
when m* =0 .  Setting m * = 0  in Eqs. (27), we have 

L2 { l + E  1 12m2]1/2"~ 
r ,  =~mm - ~ J  J (28a) 

12m2]X/2"~ 
r2 = ~m - - - - - ~ j  j (28b) 

and r 3 = r 4 = 0. 

o2 

I l r .  I 

p4  

o6  

o8 
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Fig. 1. The qualitative features of the effective potential V in terms of r/m, where m = 1 and 
L2= 22 for nonzero m*. 
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It follows from (26) that r 4 is always negative (unphysical) so there are 
only three possible circular orbits, which are located at r~, r2, and r3. The 
orbits located at rl and r 3 are stable, while the orbit at r 2 is unstable. The 
two circular orbits at r~ and r 2 lie outside the horizon and are analogous 
to the stable and unstable orbits in the Schwarzschild potential-- the 
circular orbit at r 3 is unique to the NUT potential and is due to the 
short-ranged fourth term in (25). The circular orbit at r3 is always located 
inside the horizon and lies in the allowable positive range of r only for 
appropriate values of L and m*. 

The turning points of the orbit are obtained by setting ~ = 0  in 
Eq. (18) and solving for r. They are located at the roots of the equation 

E 2 ( r  2 + m . 2 )  - U(r 2 + m . 2  + L 2 ) = 0 (29) 

Let us now solve the orbit for the explicit case of radial motion. From 
Eq. (17) it follows that the radial orbits have L = 0 .  Setting L = 0  in (18), 
we have 

i2=  (E 2 - U) (30) 

Taking the square root and integrating, we get 

S =  
[-r 2 q_ m,2]  ,/2 dr 

[ (E  2 - 1) r 2 + 2mr + (E 2 + 1) m .2]  1/2 (31) 

Equation (31) is an expression for the radial coordinate as a function 
of the proper time. In a similar manner, we get the radial position as 
a function of the coordinate time. Setting ~ = 0 in (4a), and using the 
resulting expression between the coordinate and the proper times to 
eliminate the proper time in (30), it follows that 

E[r  2 + m*2] 3/2 dr (32) 
T =  f (r 2 _ 2 m r _ m , 2 ) [ ( E  2 -  1) r 2 + 2 m r +  (E 2+ 1)m .2]1/2 

The results in Eqs. (31) and (32) are similar to the Schwarzschild 
result. From (31) it follows that only a finite amount of proper time is 
needed to fall to the origin, r = 0. On the other hand, it follows from (32) 
that the coordinate time goes to infinity as the test particle approaches the 
horizon. These results are illustrated in Fig. 2. 

Notice that the solution is independent of the direction of infall, i.e., 
the radial orbits are independent of the singularity along the 0 = r~ direc- 
tion. This is consistent with what one would expect from a magnetic 
monopole field--the motion along the magnetic field lines does not affect 
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S\  \ \\ T---.._ 4 

Fig. 2. The solid (proper times) and the dashed (coordinate time T) curves are plotted by 
Eqs. (29) and (30) for M* =0, 2, 4. 

the motion of the particle. The NUT radial trajectories are not twisted by 
the gravimagnetic term, whereas the similar radial trajectories in the Kerr 
metric are given an angular component by the dragging of the inertial 
frame produced by the gravimagnetic term. 

6. CIRCULAR ORBITS AND THE TWIN PARADOX 

In this section we construct the exact solution for circular orbits. 
Circular orbits are complex enough to show the basic effects of the 
magnetic mass yet simple enough to be transparent. The exact solution for 
circular orbits illustrates the gravimagnetic effects that are produced by the 
g~o space-time term. In particular, there is an effect which is analogous to 
the dragging of the inertial frame in the Kerr metric. The basic difference 
between the Kerr and the NUT term is that the Kerr cross term, goo, 
produces dipole-like field, whereas the NUT term is a monopole-like field. 

The effects of frame dragging are most apparent in the Kerr solution 
when one compares the periods of counterrevolving orbits. The dragging of 
the inertial frame produces age differences for twins in similar counter- 
revolving orbits. We illustrate the dragging of inertial frames in the NUT 
metric by considering a similar twin paradox. 

To illustrate frame dragging in the NUT space, we compare the 
periods of counterrevolving orbits. We show that twins in counterrevolving 
orbits with the same radius do not have the same coordinate period even 
though they have the same proper period. The difference in coordinate 
periods is attributed to frame dragging. 
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Properties for circular orbits are determined from the location of the 
extremum points of the potential and the expression for the turning points 
of the orbit. The position for the extremum is given by (26). Solving this 
equation for L 2 and denoting the radial coordinate by r = a, we have 

L2 _ (a 2 q- m*2)  2 ( d U / d r )  (33) 
[2Ua - (a 2 q- m*2)(dU/dr)] 

The turning points are given by (29). Using (33) to eliminate L 2 in 
(29) and solving for E, we have 

2U2a 
E 2 --- (34) 

[2Ua -- (a 2 q- m*2)(dU/dr) 

The expression for the conserved angular momentum, j 2  = 

4m*ZE2 + L 2, follows from Eq. (33) and (34); we have 

j2 [( a2 + m*2) 2 (dU/dr) + 8aU2m .2] 
= [2Ua - (a 2 + m*2)(dU/dr)] (35) 

Solutions for the circular orbits are well defined only if the 
denominators in equations (33)-(35) are positive. The vanishing of the 
denominators determines the position of the innermost circular orbit. As 
m* goes to zero the value of the innermost circular orbit approaches the 
Schwarschild value of 3m. From Eq. (16) it follows that circular orbits lie 
on the surface of a cone with cone angle ~ given by 

4m*2E 2 8m*2aU 2 
cos ~2 _ j2  -= [-(a 2 + m*2) 2 (dU/dr) + 8aUZm .2] (36) 

As m* goes to zero, c~ goes to zero and the origin of the coordinates 
lies in the plane of the orbit as it should. 

The a appearing in the orbital equations is not the radius of the 
circular orbit; rather, it is the distance from the origin of the coordinates 
along the cone to the orbit (Fig. 3). The radius of the circle R is related to 
the radial distance from the origin to the orbit by 

L a  
R = - -  (37) 

J 

Substituting Eqs. (33) and (35) into (37), we have 

R 2 .w- a2(dU/dr)[a 2 4- m*2] 2 
[(a 2 + m*2) 2 (dU/dr) + 8aU2m .2] (38) 

842/21/8-6 
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Fig. 3. 

J g~ 
The proper time for the co- and counterrevolving twins where they are displaced in 

the opposite direction along the total angular momentum by the distance 2D. 

Solving Eq. (38) for a as a function of R and keeping only the lowest-order 
terms in m and m*, we have 

a ~ R I  1 2m'2 /  + - - ~ 1 - - ~ ) ]  (39) 

Counterclockwise and clockwise revolving orbits do not lie in the 
same plane. The orbits are displaced in the direction of the orbital angular 
momentum vector; therefore, orbits revolving in the clockwise and counter- 
clockwise directions are displaced in opposite directions by a distance 2D. 
D is given by 

2m*ER 
D = - -  (40) 

L 

The relation for the proper orbital angular frequency follows from 
substituting Eq. (35) into (20); we have 

~2_  [( a2 + m*2) z (dU/dr) + 8aU2m .2] 
[2Ua - (a 2 + m*Z)(dU/dr)] [a 2 + m*2] 2 

(41) 

The proper period S for the orbit follows from inverting (41), taking 
the square root, and integrating, i.e., multiplying by 2n. It follows that the 
square of the proper period is 

S 2 = 4x2[ 2Ua - (a 2 + m*Z)(dU/dr)] [a 2 + rn*2] 2 

[(a 2 + m*2) a (dU/dr) + 8aU2m .2] (42) 

The proper period goes to zero as the radius of the orbit approaches the 
position of the inner most circular orbit. Substituting Eq. (39) into 
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Eq. (42), it follows that the proper periods can be written in terms of R. To 
lowest order in m*, we have 

/ 15__m,2, S2(R) ~ 4~2g?j2(1 - 3(2~R 2) | 1  (43) 
R 2 / \ 

where ~ = (re~R3) U2 is the Schwarzschild angular velocity. 
It follows from Eq. (42) or Eq. (43) that m* shortens the proper 

period in the NUT solution relative to the classical Schwarschild proper 
period. In addition, the proper period is independent of the direction of 
revolution, which is not the case for the coordinate period. 

An expression for the coordinate period t follows from (4a). For  
counterclockwise revolutions we have cos 0 =  cos c~ and q~ = tq~l, while for 
clockwise revolutions we have cos 0 = c o s ( n - ~ ) =  - c o s  :~ and q~ = -I~].  
Substituting these results in (4a), we have 

and 

i+ = E / U -  2m*(1 - cos c~) t~] (44a) 

i_ = E / U +  2m*(1 + cos c~) [q~l (44b) 

where + is for the counterclockwise revolution and - for the clockwise 
revolution. Integrating (44) gives the coordinate period for the two 
counterrevolving orbits. The difference between the coordinate periods is 
attributed to the gravimagnetic effect generated by the cross term gt~ in the 
metric. 

An expression for the angular velocity in terms of the coordinate time 
can be written 

This difference in coordinate periods leads to a twin paradox for observers 
that are revolving in opposite directions. 

Let us now illustrate the gravimagnetic effect of frame dragging with 
a calculation for the ages of two twins revolving with the same radius but 
in different directions. Consider two orbits located in the x - y  (A = 0 )  
plane with the same radial coordinate r -- a but revolving in opposite direc- 
tions. If the two orbits start from ~b = 0 at coordinate time t = 0, they next 
pass each other at coordinate time t =  T (Fig. 3). The co- and coun- 
terrevolving twins will have angular coordinates denoted by ~b+ and ~b , 
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respectively. When the twins meet, i.e., pass over and under one another, 
their coordinate positions will be given by 

which satisfy the relation 

~b + + ~b _ = 2n (46b) 

From (45) and (46) it follows that the time of passage is given by 

T=2rc ( i + ) ( i )  (47) 
I 1(i+ + i  ) 

Substituting (47) into (46) we get the following expressions for their 
angular coordinates at the time of passage: 

q~+=2n(i ) ( i + + i  ) -~ 

and 

(48a) 

~b =2r~(i+)(i+ + i _ )  -1 (48b) 

The proper time that each twin measures from T=  0 to the next time 
of passage, T, is obtained by taking the square root of (41) and integrating 
from 0 to ~b_+, i.e., 

~ •  &b (49) 
s ,  = 17 

The fractional difference in proper time becomes 

S+ - S _  4 m * J  
1/2(S+ + S _ )  - (r2 + m  .2) (50) 

To lowest order in m* it follows from (34) and (35) that E =  U =  1 and 
J ~  (mr) 1/2 so Eq. (50) becomes 

S+ - S  
,~ 4rn*f2s (51 ) 

1/2(S+ + S_)  

7. B O U N D  QUASI-ELLIPTICAL ORBITS 

In this section we show how the magnetic mass affects bound orbits. 
The general solutions for bound "quasi-elliptical" orbits have all the 
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characterist ics of circular orbits  and, in addit ion,  are nonp laner  and exhibit 
a perihelion precession. In the following section we consider the propert ies  
of elliptical orbi ts  for the case that  A = 0. 

Fo r  A = 0  the 0 dependence is given by Eq. (19) and the radial 
dependence as a function of ~b follows f rom Eqs. (18) and (20): 

where 

where 

j2  F d r ] Z = ( E Z _ l ) _ V ( r )  
(r 2 + m*2) 2 kd~J 

V(r) = U -  1 + 
L2U 

(r 2 + m .2)  

If we let v = 1/r, then Eq. (52) reduces to 

j2F l 2 
[_d(~J = al "114 -~- a2v3 + a3v2 + 2mv + ( E  2 - -  1 ) 

(52) 

(53a) 

al =m*2(L2+m*2+m*2E2),  a2=2m(L2+m*2),  a3 = m * 2 E 2 - L 2  (53b) 

Fac tor ing  the r ight -hand side of Eq. (53a), we get 

[_-~j = a l ( x - -  1 + e ) ( x -  1 - e ) ( x - x 3 ) ( x - - x 4 )  (54a) 

where 

x 
- -  (54b) v=~(l_e2)  a 

The two turning points  of  the orbit  are at a ( 1 - e )  and a(1 + e ) .  

get 
Using Eq. (54b) in (53a) and compar ing  the results with Eq. (54a), we 

aix3x  4 = a4(1 - -  e2) 3 ( E  2 - -  1) 

a l ( x  3 + X 4 )  = - -  r 2 a  I + a(1  - e z) a 2 ]  

a3 a2(1 -- e 2) + 4ma3(1 -- e 2) -- al  = -- (3 + e2)(l -- e2)(E 2 - 1 ) a 4 

a2a(1 - e 2) + 2al - 2ma3(1 - e2) 2 = 2a4(1 - e2) 2 (E  2 - 1 ) 

(55a) 

(55b) 

(55c) 

(55d) 
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Using Eq. (53b) in Eqs. (55a)-(55d)  and keeping only the lowest-order 
term in m*, we have 

2m .2 m*2(3+5e2)] 
(55e) 

E z,~ 2[  4mm*2 ] 
=e= 1 + ( i=~5~  3 (55f) 

6m .2 (-- 13 + 5e 2) rn .2]  
J-~L~ 1 +m~(1-e2) + ~ [ - ~  7 J (55g) 

where L~ and E~ are the Schwarzschild results, 

L ~ = ma(  l - e 2) (55h) 
{ 1 - Ira(3 + e2)/a( l  - eZ)] } 

E~ = 1 - { 4 m / [ a ( l  - e2)] } + {4mV[a(l - e2)]} 
1 - [(3 + e2)/(1 - eZ) ] (m/a )  (55i) 

Defining the new variable 

x = (I + eco sq,) (56) 

Eq. (54a) can be simplified 

_  a(l_e2)j; l -dO] 2 
Ld~J 

= a l [ ( l + e c o s ~ ) 2 - ( x 3 + x 4 ) ( l + e c o s ~ k ) + x 3 x 4 ]  (57) 

Substituting Eqs. (55a) and (55b) and (53b) into Eq. (57), we have 

a6y ~-Y~L a2 ~---~(L'+m*~)+aZ(EZ-1) (58a) 

We assume that m * <  m < a and keep only linear terms in the eccen- 
tricity and terms to order (m* /a )  2. Substituting Eqs.(55a)-(55i) in 
Eq. (58a), taking the inverse square root, and integrating the resulting 
formula, we have 

3m 3m .2 27m 2 9m'2"~ 
~ 1 + - - +  (58b) 
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As r increases from 0 to 2~, i.e., from one perihelion to the next, ~b 
increases by 21r + A~b, where 

~--~I m .2 9m 3m .2]  
3q} ,,~ 1 + - - ~  + ~a + ma _1 (59) 

where we used Eqs. (55e) and (55f) in Eq. (58b). 

8. N U L L  GEODESICS 

In this section we consider the effect of the magnetic mass on null 
geodesics. We first construct the potential equation for null geodesics and 
then calculate the bending of light due to m*. Again, without the loss of 
generality, we assume A = 0. The angular dependence for the null geodesics 
is the same as for the time-like geodesics. The null orbits lie on the surface 
of a cone with angle given by (16). The characteristics for the radial 
variable follow from an analysis of the impact potential that is deduced 
from Eq. (5d) with ~=0.  Eliminating the angular variable in Eq. (5d) by 
means of Eq. (17) and using (20) to express the radial equation in terms of 
~b, we get the following equation for the radial variable: 

1 ~dr~ 2 ( E 2 - - 1 ) [ B - 2 ( r ) -  1] 
(r 2 + m . 2 )  2 LdCJ = j2 j2 (60) 

B - 2 ( r ) -  1 is the impact potential and B -2 is given by 

| F r 2 2mr m .2 ] 
L-2B-2(r  ) 

k(r 2 + m . 2 )  2 (r 2 + m . 2 )  2 (r 2+m*2)2j  (61) 

The constants E and L enter Eq. (61) only in the form of the ratio L/E; 
therefore, we define a new constant L ' =  LIE. 

The impact potential has the same qualitative behavior as the 
Schwarzschild geodesics. The third term in (61) is a consequence of only 
the NUT parameter and it makes only a small contribution to the path of 
a photon. 

We now seek a solution for (60) where only the leading order terms 
are retained. We assume that r >  m > m* and keep only the lowest-order 
terms. The constant L'  can be expressed in terms of the distance of closest 
approach r 0. Setting dr/&b = 0  in Eq. (60) and using Eq. (61), we get 

L '2 ~ L'~(1 + 3m*Z/r~) (62a) 



844 

where the Schwarzschild value of L's is 

L '2 r2 (62b) 
( 1 + 2m/ro) 

We have retained terms only to order 0(m z, m .2) in Eqs. (62). 
Let v= 1/r and using Eqs. (61) and (62a) in (60) and taking the 

derivative, with respect to ~b we have 

d2v ..~ ( 6m'2"~ 
d~ 2 = - 1 - - - ~ - j  + 3my 2 + 2m*2v 3 (63) 

Expanding the solution about the Schwarzschild result, we let 

v =  vs + v n (64) 

where Vs is a solution of 

d2vs 
dff 2 = -v~ + 3my 2 (65) 

Substituting (64) into (63) and using (65), we get the following equation 
f o r  v n : 

d2vn  
dO2 ~, -vnq-2m*2Vs(-~oq-V2s) (66) 

Solving Eqs. (65) and (66) for v~ and v, and Substituting the resulting 
solutions into Eq. (64), we have 

3mA 2 3m2A 3 
v ..~ A cos ~b + ~ (1 - �89 2~b) + ~ (5~b sin ~b + �88 3~b) 

A 2 
3m*2A (i-2 cos 

To find the constant A we set ~b = 0 at the distance of closest approach 
(r = ro) so 

I [ m (  _29m'] (m'2"] l  
A ~ - -  1 - - -  1 + (67b) 

r0 ro 16roJ \ 16r2JJ  

Therefore, the bending of light is described by (67a), where A is given by 
(67b). 

Zimmerman and Shahir 
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To find the deflection of the path we let ~b = �89 + c~ where v becomes 
infinity; we get for the total deflection (A = 2c5) 

4m 4m 2 30~m 2 30=m .2 
A = t- (68) 

r o ro z - - ~ r o  2 + 8ro 2 

o r  

4m ( m 15rcm 15r~m*2~ 
A = - -  1 - - -  + 1-i--~-ro q (69) ro ro 16mro ] 

9. CONCLUSION 

We conclude that the properties of the NUT geodesics are remarkably 
similar to the properties of trajectories for a charged particle orbiting about 
a magnetic monopole. It follows from this analogy that the source for the 
NUT metric may be related to a combination of ordinary mass plus a com- 
ponent of "magnetic" mass. This interpretation is also supported by the 
trajectories calculated from Newtonian gravity that was generalized to 
include a magnetic mass term. However, the one property where the NUT 
geodesics differs from a magnetic monopole is in the spherical symmetry of 
the coordinate time. In electrodynamics the direction of the Dirac string 
does not affect the classical trajectories. This is not exactly true for the 
NUT metric. The spatial coordinates are independent of the direction of 
the line singularity when they are parameterized in terms of the proper 
time; however, the time coordinate depends on the direction of the line 
singularity. 

Spherical symmetry is also violated in the quantum mechanical treat- 
ment of the magnetic monopole since the quantum equations depend on 
the vector potential. Forcing the quantum equations to be independent of 
the Dirac string leads to the Dirac quantum condition for the charge. Can 
one find a similar relation in general relativity that will make the time 
coordinate in (24a) independent of the axial singularity? It is not clear 
what the analogous Dirac condition must be to make the time coordinate 
independent of the axial singularity because the problem is more complex 
in general relativity. 

In general relativity the line singularity creates an effective energy 
which, in turn, affects the rates of clocks. Hence, the line singularity 
manifests itself in the relation for the time coordinate. It is not clear 
whether the NUT solution has to be modified at the beginning in order to 
distinguish between a solenoid-like solution and a magnetic-like particle 
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solution. Or is it possible to eliminate the effect of the Dirac string the way 
Dirac did for the quantum mechanical formulation of the magnetic 
monopole, i.e., by quantizing the charge and not modifying the field. 

There are several ways that lead to the Dirac quantization condition. 
The easiest, and the one most relevant to this article, is the semi-classical 
approach [15]. The Dirac quantization condition follows equating the 
magnitude of the field angular momentum equal to nh, i.e., eg = nh. If we 
do the same thing for the NUT metric, it follows from Eqs. (11) that 
E m m * =  �89 To lowest order in m*, E ~  1 and the equation reduces to 
mm* = �89 However, if one retains all orders in m*, then the quantization 
condition is not just a restriction on m and m* but also involves the total 
energy of the system. It is not clear what this means or even whether it 
makes sense to suggest such a restriction. In addition, this quantization 
does not make the NUT solution spherically symmetric so the monopole 
string is still manifest in the geodesic time coordinate. 

Although a conclusive interpretation for the NUT metric would have 
been preferable, we must conclude this article the same way we started, i.e., 
with an indecisive conclusion. Even though the NUT metric has properties 
that are tantalizingly close to those that one would expect to follow for a 
gravitation magnetic monopole, the subtle nonspherical behavior of the 
time coordinate casts some doubt about this interpretation. Can the non- 
spherical behavior be eliminated by a quantization condition, as is done for 
quantum monopoles, or must the NUT metric be modified in order to 
eliminate its solenoidal-like behavior? 

APPENDIX: NEWTONIAN THEORY FOR GRAVITY M O N O P O L E  

To verify further the magnetic behavior of the NUT parameter, we 
construct the solution for the equations of motion that follow from a 
theory of Newtonian gravity that has been generalized to include 
"magnetic" mass. This example further supports the claim that the NUT 
parameter, m*, behaves like magnetic mass. 

Consider a spherical source that has both ordinary mass m and 
magnetic mass m*; m generates the ordinary gravitational field be, and m* 
generates a "magnetic-type" field Fh. For a spherically symmetric source F h 
and Fe are of the form 

m m *  
F~ = ~  r~ ffh = ---F r* (A1) 

The magnetic mass m* modifies the usual equation of motion in the 
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same way that a magnetic charge modifies the Lorentz force in electro- 
dynamics. The generalized equations of motion for a test body with inertial 
mass mo orbiting a source with both ordinary mass and magnetic mass are 

-mr* (-rn*r*!] (A2) d=[_75__ 4 2v'x r 3 

We have assumed that the gravitational mass of the test particle is equal 
to its inertial mass, i.e., the principle of equivalence. 

The particles angular momentum (per mass), s  f x  ~ does not yield 
a conserved quantity because the magnetic matter generates a torque on 
the test particle. Forming the cross product of the vector f with Eq. (A2), 
we get the following expression for the time derivative of the angular 
momentum: 

dE d? 
- -  = - 2 m *  - -  ( A 3 )  
dt  d t  

Integrating (A3), we get the conserved angular momentum 

J = L + S  

where 

S =  2m*/ and /5 = f x  

(A4a) 

(A4b, c) 

The conserved angular momentum J i s  the sum of the particles orbital 
angular momentum/~ and the field angular momentum for the source S ~. 
is directed along the line joining the orbiting particle and the source and 
is normal to/~. The magnitudes of both/~ and S are conserved. Squaring 
Eqs. (A4), it follows that 

S. S =  4m .2, L.  L = J- J -  4m .2 (as) 

From these results it follows that the orbits lie on the surface of 
a cone. Dotting the unit position vector ~r into a~ we get the constant 
~r' J =  2m*. This means that the motion is along a cone with cone angle 
cos ~ = fSf/IJ[. Equations (A4) and (A5) are the limiting case of the NUT 
equations (9)-(12) to lowest order in m*. 

The radial behavior for the orbit follows from the conserved energy. 
Dotting ( in to  (A2), the conserved energy (per mass) is given by 

E 2 = �89 2 - m / r  (A6) 
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Expressing (A6) in terms of angular variables, we get 

E 2 = �89 2 + V(r)  ( A 7 a )  

where 
rn L 2 

V(r)  = - - -  + - -  ( A 7 b )  
r 2 r  2 

The potential in (A7b) is identical to the form of a particle in an 
ordinary gravitational field. The magnetic part of the source does not 
appear in the energy equations because the force acts in a direction normal 
to the displacement of the trajectory. 

Notice the remarkable similarity between these generalized Newtonian 
equations and the NUT geodesic equations. Keeping only the terms linear 
in m and m* and comparing the results for the Newtonian and NUT 
geodesic, we get identical results. This close similarity is further support for 
the identification of the NUT parameter with a gravitational magnetic 
monopole component for the source. 
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