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We exhibit G~lel's geometry in terms of a set of gaussian systems of 
coordinates, the union of which constitutes a complete cover for the whole 
manifold. We present a mechanism which induces a particle to follow a 
closed time-like line (CTL) present in this geometry. We generalize the 
construction of special class of observers (Generalized Milne Observers) 
which provides a way to define the largest causal domain allowing a 
standard field theory to be developed. 

1. I N T R O D U C T I O N  

A s imple  g lance  into any book  of  Re la t iv i s t i c  Cosmology  d isp lays  an in- 
t e res t ing  c o m m o n  charac te r i s t i c :  all cosmological  models  are dep ic t ed  
in gauss ian  sys tems  of  coord ina tes  wi th  j u s t  one r emarkab le  except ion ,  
GSde l ' s  1949 r o t a t i n g  Universe  [1]. 

Th is  p a r t i c u l a r i t y  is in genera l  i n t e rp re t ed  to  be  no th ing  b u t  a con- 
sequence of  the  wel l -known imposs ib i l i t y  of  cons t ruc t ing  a unique  g loba l  
gauss ian  s y s t e m  in th is  geometry .  However,  such a p r o p e r t y  does not  
forbid  the  use of  a local ganss ian  sys tem.  

Indeed,  the  t h e o r y  of  R i e m a n n i a n  dif ferent iable  mani fo lds  asser ts  t h a t  
i t  is a lways  possible ,  a t  leas t  in a r e s t r i c t ed  domain ,  to  represent  po in t -  
events  by means  of a gauss ian  coord ina t e  sys tem.  The  ex tens ion  of  this  
s y s t e m  beyond  a given doma in  depends  on p rope r t i e s  of the  geome t ry  a t  
large.  
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Although there have been some comments in the literature concerning 
synchronized systems of Ghdel's cosmological model, an explicit form has 
never appeared. We intend to remedy this situation in this article by 
exhibiting a set of gaussian systems of complementary domains, in such a 
way that their union constitutes a complete cover for the whole manifold. 

The restriction on each synchronized frame can be understood as a 
consequence of the highly confining property of Ghdel's geometry. A ques- 
tion then arises: How can one reconcile such confinement with the homo- 
geneity property of this metric? How could a point (any point) of such 
homogeneous space-time act as an irresistible attractor? This is precisely 
the condition to limit the extension of a chosen family of time-like geodes- 
ics, inhibiting it from going beyond a certain domain, and so restricting 
the region covered by the associated chart. To understand this one should 
look more carefully into the dynamical behaviour of free particle. Since 
the velocity of photons is the highest allowed one, let us just consider their 
propagation. 

From electrodynamics and gravity standard coupling photons travel 
along null geodesics. Now, from the behaviour of geodesics in Ghdel's ge- 
ometry [2,3] one obtains that the photons' trajectory, which passes through 
a point P, can be equivalently described as if the particle feels an attrac- 
tion to P by a potential Y(r) = V0tanh r (in which V0 is a constant) 
having an energy E < V0 [2]. This means that the net consequence of 
such a potential is to forbid the particle to leave the region ~D(P) which 
consists in the points encircling P of a given radius. The actual value of 
the maximal allowable radius depends on the strength of the vorticity fL 
Thus, any geodesic which passes an (arbitrary) point P remains--for its 
complete history--confined in a cylinder around P of radius r0. This has 
an immediate consequence, which we referred to previously: if one displays 
a gaussian coordinate system from a point O (arbitrary) then this system 
cannot be extended beyond 7"o. This is a consequence of the dependence 
of the gaussian system on a particular choice of time-like geodesics F(o) 
which precisely yields the identification of the local (gaussian) time to the 
proper time of F(o). 

We can build another gaussian system centered on another point O t 
distinct from O. This new system can be located either within the domain 
of the previous Gauss-I system, inthe region 0 < r < r0 or beyond it. We 
can then follow the same procedure as in the previous case and define a new 
gaussian chart (call it Gauss-II) based on point O'. This method can be 
repeated successively and complete the covering of the whole manifold. We 
present in Section 2 a short resum6 of such peculiar behaviour of time-like 
geodesics in Ghdel's Universe. 
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The possession of each synchronized system has a direct by-product: 
it allows one to establish in a standard way the foundations of a field theory 
in the GSdel background. The ultimate reason for this can be understood 
in the following way. One of the most fundamental principles o f  physics 
is the one associated to the set up of a Cauchy initial-value problem for 
a given field. In order to follow this program one starts by fixing a given 
foliation of the background space-time. This is in general provided by the 
identification of fiat surfaces in which the time coordinate is constant. One 
can, alternatively, deal with other imbeddings, e.g. by considering space- 
time hyperboloids in which translational time invariance is not explicitly 
guaranteed. Nevertheless, any of these choices is a good one as long as it 
provides a set of Cauchy successive surfaces in which the standard methods 
of causal modelling in physics could be applied. 

However, this is not the kind of situation we face in GSdel's Universe. 
The impossibility of global synchronization inhibits the set up of a s tandard 
Cauchy initial-value problem. The true origin for such a difficulty rests in 
the existence of closed time-like lines (CTL) in this geometry. In order to 
overcome this situation we will follow a procedure which has its roots in 
Milne's characterization of fundamental observers in fiat space-time. In 
Section 4 we will review briefly the properties of Milne's frame in the case 
for which it was originally created, that  is, of a Minkowski background. 

We shall see that  a very similar class of observers can be set up in 
GSdel's geometry, inducing a framework which allows a description of a 
restricted causal domain on this Universe. However, there is a crucial 
difference between Milne's restricted space-time in Minkowski background 
(which we call the /4  + region) and the analogous construction in GSdel's 
space-time (which we call the ~+ region). The H + region has a fictitious 
big bang that  generates an ever-expanding structure, while the G+ region 
has not only a non-homogeneous initial singularity (a false big bang) but  
also an ending configuration (a false big crunch). Thus a well posed Cauchy 
problem can be set up in the G+ domain. 

All the above arguments, which led us to the limited Gauss domains, 
come from classical physics (e.g. the behaviour of null geodesics in GSdel's 
background). One might wonder if these considerations should be modified 
if some new effects at the quantum level change the confining property. 
The proof that  this is not the case has been presented some years ago [6]. 
We review this briefly in the appendix. The main idea runs as follows. 
From the reduction of the behaviour of null geodesics to the examination 
of the dynamics of a particle submitted to an effective potential V(r) 
we can generate the corresponding SchrSdinger's equation yielding a one- 
particle problem in a Posch-Teller potential. The  net result of such direct 
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quantization confirms the classical confining behaviour. One could suspect 
this from the properties of the infinite range Posch-Teller potential.  

Finally, it remains to analyse a question concerning the closed time- 
like lines (CTL). I t  has been known, since GSdel's original paper,  that  these 
curves are not paths  of free particles, and a problem then appears: Wha t  
are the characteristics of  the force which induces a particle to follow such a 
strange path?  We present a solution to this question in Section 6 in which 
we show tha t  a (weak) magnetic field can induce a charged particle (say, 
an electron) to follow this path.  

2. PRELIMINARIES: G()DEL'S GEOMETRY 

In this section we will briefly review some basic properties of GSdel's 
geometry. The manifold has the structure of H 3 | ~ of a 3-dimensional 
hyperboloid-- in  which coordinate (t, r, r are defined with the range - c r  
< t < cr 0 < r < r162 0 < r < 2~r, respect ively-- t imes the infinite linear 
coordinate (z) defined on the real line ~.  In this cylindrical coordinate 
system the fundamental  element of length takes the form 2 

ds 2 = a2[dt 2 - dr 2 - dz 2 + 2h(r)dt  de  + g(r)dr (1) 

The constant a is related to the amplitude of the vorticity ~ of the 
mat te r  Q~ = 2 /a  2. The functions g(r)  and h(r)  are given by 

g(r) = sinh 2 r(sinh ~ r - 1) 
(2) 

h(r)  = x/~ sinh 2 r. 

The source of this geometry is a perfect fluid with density of energy p and 
no pressure: 

Tg~pY,  Y~. (3) 

Note  t h a t  u n d e r  th is  fo rm of geomet ry  it is no t  poss ible  to ob t a in  the  l imit  me t r i c  
for  ~ ~ 0. Th is ,  however,  c an  be  achieved if before the  l imit  is t aken  we m a k e  a 
re-scal ing by  s e t t i ng  

t -+  t I = a t ,  r --~ r I = ar ,  r --~ r = r  z -+  z ~ = a z .  

T h e n  t he  me t r i c  takes  t h e  fo rm 

2 sin_he , / ~  ~ r ' d r  1 s inh  2 V ~ r , d r  2 _ d r , 2  d z , 2  
d s  2 =  d t '  + - ~  ~ 2122 - �9 

In  th is  fo rm the  l imi t  ~ ~ 0 yields t he  Minkowskian  geomet ry  in the  cyhndr ica l  
s y s t e m  of coord ina tes .  
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In the cylindrical coordinate system, Vu = 5 ~ The congruence of the fluid 
has no expansion (O = 0), no shear (~r,~ = 0) but has a non null vorticity 

1 a' f l  (4) 

with h i = 5; - VuV u. The vorticity vector w r = �89 has com- 
ponents 

= (o, o, o, (5) 

Thus at each point of this space-time a privileged direction is defined,. 
Einstein's equations with a cosmologicM constant A are satisfied if between 
constants a,A and the energy p the following relation holds: 

4 
p = 2~ ~ = - -  = - 2 A .  (6) a 2 

Although the above cylindrical system of coordinates can be used 
throughout  the whole manifold it does not allow a bona fide formulation 
of the Cauchy problem. 

The  best way to provide the necessary conditions to establish a well 
defined formulation of the initial value problem in this geometry is to j ump  
into a frame in which a synchronization can be made (at least in some re- 
gion of Ghdel's space-time). We will follow this procedure in this work. 
The first step towards this is to select a given set of time-like geodesics and 
solve a corresponding Hamil ton-Jacobi  equation gt,~ (OS/Oxu) (OS/Ox~) = 
1 for the new time coordinate S. The remaining associated spatial coordi- 
nates 2i are obtained from the solution S(x ~, ,~i) of this Hamil ton-Jacobi  
equation through the derivatives ki = OS/OAi. Let us then look into the 
possible classes of time-like geodesics in order to make a definite choice. 

The geodesics in Ghdel's Universe were studied by Chandrasekhar  and 
Wright [3] and in an alternative manner by Novello, Soares and Tiomno 
(NST) [2]. We will follow the NST version in the present paper.  

The equations for the geodesics x ~ = xU(s) with four-velocity v u = 
dxU/ds = (t, ~;, r ~) are 

z = C o ,  

r 
cosh 2 r 

B0 

sinh 2 r cosh ~ r ' 
2 s inh2r ]  x/2Bo 

i = A o  1 cosh 2 r j  + c o s h  2 r '  

= Ao 2 _ Do 2 _ ]x/2Aosi_nh r 
/ cosh  r 

Bo ] 2 

sinh r cosh r 

(7) 
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Instead of going into the immediate integration of this set of equa- 
tions it is more convenient for our purposes to pause for a while and look 
into the generic behaviour of the time-like families of geodesics from the 
examination of their effective potential. In this vein, let us re-write the 
equation of ~ in the form 

62 = A0 ~ _ V ( r )  

in which the effective potential V(r) is given by 

and 

(8) 

r v ~  A0 si_nh r B0 ] 2 
V(r) = D02 4- L coshr  s i nh rcosh r  (9) 

1 
D~ = Co 2 + a-- ~ . (10) 

We can thus interpret the constant A0 2 as the square of the total energy 
(per unit of mass) and B0 as the total angular momentum. Indeed, if we 
define the momenta P ,  = g~v& v it then follows that  

P0 = A0, Pr = -§ PC = B0, P~ = -Co.  (11) 

A complete characterization of the main features of the behaviour of 
the geodesics can be obtained by just examining eq. (9). We distinguish 
three cases, 

B0 > 0, B0 = 0, B0 < 0, (12) 

once the associated potentials have distinct features. 
It seems worth defining the parameters 7 = Bo/Ao and f12 = 

(Do/Ao) 2. Once we are interested only in time-like geodesics we will limit 
our analysis to the case in which 0 < f12 < 1. The forms of the potentials 
are depicted in Figure 1 for the three cases. 

A direct inspection of these graphs gives the information we are look- 
ing for. For any geodesic the radial coordinate r oscillates between the 
values rl and r2 given by 

sinh 2 rl = 
1 -I- 2 x / 2 " f  - f12 

l J 

~ I ( 2 7  + V/2) 2 - (1 + f12) 
=t= 2(1 -I'- ,8 ~) 2(1 -I-/~2) 

This represents a true confinement in the classical regime once the total 
energy A~ is a fixed quantity (for each geodesic) and thus the trajectories 
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2A2o 

V( r)=IB2A20 

7>0 

I 

~= F 0 

y=0 

b 

' A(~=4130B[ (~2/T) + I] 

rz r0 

y<O 

F i g u r e  1. G r a p h s  of t he  effective po ten t i a l  for t he  free par t ic les  in  GSdel ' s  geometry .  

are kept within the cylindrical shell rl  < r _< r 2. For 3' < 0 the potent ia l  
V(r) produces  the  phenomenon  of  confinement o f  all t rajectories within 
the cylinder r < rc with sinh v~ = 1.3 Such powerful a t t rac t ion  of gravi ty  is 

3 Note  t h a t  in  case -y > 0 the  behav iou r  of  the  par t ic les  depends  on  the  m o m e n t u m  
a long t h e  axis  z; the  wid th  of  the  cyl indrical  shell  d imin i shes  a n d  can  a t t a i n  t he  value 
zero for ~2 = 1. 
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the reason that forbids the extension of any local gaussian system beyond 
a certain region. 

3. FROM TIME-LIKE GEODESICS TO THE GAUSSIAN SYSTEM OF 
C O O R D I N A T E S  

We are now prepared to undertake the first step toward a synchro- 
nized frame. In the geometry (1), the equation satisfied by the associated 
Hamilton-Jacobi equation S takes the form 

s i n h 2 r : l ]  (OS~ 2 2V~ OSOS (OS)  ~ 
cosh 2 r \ 0t ] cosh 2 r Ot 0r + 

1 (0~r ~ (OS)  2 
+s inh  2rcosh ~r + ~ z  + a s = 0 "  

(13) 

We can make the ansatz 

S(t ,  r, r z) ---- )tlt -~- )~2r '~ ~3 z "~- F ( r )  (14) 

where the hi are constants. 
The problem is then reduced to the integration of the equation for 

F(r). A straightforward calculation yields 

F(r) = x/-fi ( -2Px + Q) _ A2 arcsin (Qx - 2A~) 
- ~ -  arcsin v/Q 2 _ 4PA~ xx/Q 2 - 4PA~ 

+ x/IQ + P + A~I arcsin (Q + 2P)x + Q - 2A~ 
2 (x + 1)x/Q 2 - 4PA~ 

in which 

x - s i n h 2 r ,  P - - A ~ T A ~ + a  2, Q - - 2 v f 2 A 1 A 2 + A ~ - A 2 - a  2. 

Inserting F(r) into the expression (14) completes the definition of the 
new time. From it we can obtain the remaining spatial components $i 
by taking the derivatives of S with respect to the parameters hi, where 
i = 1, 2, 3. This procedure then provides a local synchronization through 
the construction of a set of hypersurfaces which are space-like and such 
that the family of geodesics chosen intersects each surface just once. It 
only remains to identify among the time-like geodesics which satisfy (7) 
those characterized by the above choice (14) of S(Ai,t,r,r This can 
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be made easily once in NST an explicit integrated form for these geodesics 
is given. The result of this identification can be summarized as follows. 

From the previous qualitative analysis of the behaviour of the geodes- 
ics (see Fig. 1) one can infer that  in order to set up a gaussian system the 
origin of which starts at (an arbitrary) point O we must select the value 
of the constant B0 as being null. 

From now on we will call such a system a Gauss-I system (centered at 
O). To complete the system we make the following choice for the values 
of constant A0, B0, Co and Do which appeared in expression (7): 

Ao =: p , Bo = Co = 0, Do = _1 , (15) 
a a 

in which we have defined g _-- A1/a  and set A2 = A3 = O, in order to 
conform with the solution (14) and F ( r ) .  

Let us display here for future reference the explicit formula of passage 
from the cylindrical coordinate system (t, r, r z) to the Gauss-I system 

a # a  
[ = p a t  + ~ X / ~  + 1 arcsin �9 + ~ -  arcsin A 

tt arcsin �9 + 1 = t + 2 ~/p2 + 1 ~ -  arcsin A 

~= (r 1 + ~ arcsin A 

2 = z  

(16) 

in which ~p2+l 
k9 = 1 - ;t p--5--~_ 1 sinh 2 r 

(17) 
A =  3p2 + 1  sinh ~r  1 

# 2 _ 1  sinh 2 r + l  sinh 2 r + l  

G6del's geometry in the Gauss-I system takes the from 

ds 2 = d~ 2 - a2(#  ~ - 1)d~ 2 + a2g({,~)d~l 2 + 2 h a 2 ( { , ~ ) d S d ~  - a2d5 2 (18) 

in which the functions g and h are the same as those given in (2) with the 
substitution of the radial coordinate r in terms of the new ones. From the 
transformations (16) it follows that  

sinh ~ r 
= (19) 1 - sin M 2 sinh 2 rc 
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with 

and 

p2 _ 1 
sinh 2 re -- #2 + 1 

M-= 2 V ~ - F  1 ( { -  pa~). 
a 

Thus, making use of these relations, we can write 

(20) 

(21) 

1 , 2 _ 1  
4 (p2 + 1)2 (1 - sin M) [p2 § 3 + (#2 _ 1) sin M] 

h(t,~) - x/~ #~ - 1 (1 - s inM).  
2 #2+-1 

(22) 

Let us point out that  such a synchronization procedure generated by 
the new system ({, ~, 0, ~) is valid only in a restricted domain. In terms of 
the r coordinate it is given by 0 < r < re for re defined by (20). Let us 
make a final comment on this. 

Distinct values of # = ~ l /a  yield (within the same class of geodesics, 
e.g. B0 = Co = 0 and Do = I /a)  different types of curves and consequently 
distinct, although equivalent, coordinate systems. Now, for each fixed fam- 
ily (e.g. fixed values of A1) and by noting that  p = ~ l /a  = (~/-2/2)Alf~, it 
follows that  when the vorticity increases (w ~ c~)2 we achieve the maxi- 
mum possible value for the gaussian domain: sinh re = 1. On the other 
hand, by means of a simple re-scaling of the cylindrical coordinates--as 
we did earlier--we can show that  if the vorticity vanishes the domain o f  
validity of the above synchronization can be extended through the whole 
space-time manifold (i.e. it reduces to the empty Minkowski geometry). 

4. THE F U N D A M E N T A L  OBSERVERS OF GAUSS-I  (GENERALIZED 
MILNE FRAMES)  

The complete characterization of the gaussian observers can be 
achieved through a direct integration of the geodesic equations. In the 
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cylindrical coordinate system this is accomplished by setting (NST) 

Z = Z  0 

sinh2.________~r 1 1 + cos - ~ + 1 (s - so) 
sinh 2 rc - 2 a 

x /2#  1 
c o s ( r  - r  - 

X/# 2 - 1  sinh 2 r + l  

t a n ~  t+ -a (S -So )  = #V~ tan a (S-So). 

(23)  

We can thus read f rom these formulae the value of the components of 
the four-vector l" of this observer. We obtain 

10_ # sinh 2 r - 1  
a cosh 2 r 

V/p 2 - 1 - (p2 + 1) sinh 2 r 
l 1 

a cosh r (24) 

/2 _ v / T p  1 
a cosh 2 r 

1 3 = 0 .  

This vector / ~ in the Gauss-I  system of coordinates takes the value l~ = $~, 
just  by construction. We have seen in Section 2 that  the mat te r  flow has 
components V ~ = (1/a)5~, which in the gaussian system take the form 
V ~ = (#, I/a, 0, 0). This can be used to give a simple geometrical inter- 
pretat ion for the parameter  p which we have used to distinguish among 
the infinite set of equivalent systems of transformation (16): it measures 
the angle between the fluid four-velocity V ~ and the geodesic l ~. Indeed, 
from the above expressions it follows tha t  

= v J  (25)  

Just  for completeness let us make one more remark concerning such 
kinematical properties. Although the mat te r  content of GSdel's Universe 
is conveniently represented by the form (3), when represented in terms of 
the gaussian observers it appears  as a more complicated fluid with non- 
vanishing pressure and heat flow. This reflects the fact that  a tensor 



148 N o v e l l o ,  S v a i t e r  a n d  G u i m a r K e s  

t u v  can be represented by projecting into non-equivalent frames. This is 
explicitly realized by the equality 

p v ~ v ~  = >l~l~ - >(g~z - U~) + (1(~t~) + rr~ (26) 

in which 

1 -"]12 1), qA p#(Vx #!~). (27 )  = P P ~ ,  P = -~Pt - = - 

Let us now turn our attention to the behaviour of the congruences 
generated by the/~-geodesics. From the definition of the congruence O = 
l ' ; ,  it follows, using (24) and (18), that 

O = - 2  ~ + 1  t anM (28) 
a 

in which M is given by (21). Thus, O diverges at the boundaries of validity 
of the gaussian system (see Fig. 2). 

H 
_ .  (0 C" V 

il ~ / 

F i g u r e  2. The  domain  of Gauss-I  sys tem of coordinates const i tutes  the region inside 
the lines r = 0 and  r = re, which we will call the G + Universe. The null cones are 

provided by dt = a k / t s ~ -  ld~.  
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The region covered by this system, the G + Universe, can be described 
in an alternative way as the evolution of a solidary, unique, compactified 
region which we will now try to describe. 

The behaviour of the expansion @ suggests the interpretation of the 
Gauss-I system as the establishment of a frame generated by a fictitious 
class of observers in Minkowski background as proposed many years ago 
by Milne [4]. 

In order to understand this let us briefly review the properties of this 
frame in the case for which it was first created, i.e. that  of a Minkowski 
background. 

According to Milne's idea, from an arbitrary point O of Minkowski 
space-time an infinite number of idealized particles (without any material 
properties, i.e. no mass, no volume--almost  ghosts) is shot out in all di- 
rections in a completely random way, with all possible velocities. Thus at 
O there exists a sort of space-time creation mechanism, a false big bang, 
which is nothing but the reduction of the whole Minkowski space-time to a 
small portion of it, the region which we denote by//(+).  Such//(+) consists 
of the region inside the light cone 7-/generated from O. This U(+) region 
is called the Milne Universe. 

The geometry at/4(+) takes the form 

d s  2 = d t  ~ - t 2 d a  2. (29) 

Milne's fundamental observers are comoving, i.e. V v = 80 ~. The expansion 
factor of the congruence | takes the calue @ = 1 / t ;  it diverges at 7/, in 
which t = 0. 

Thus, Milne's frame contains a trivial Cauchy horizon once it consists 
of a chosen limited gaussian system of coordinates, which however can be 
extended beyond 7~ by another choice of coordinates. 

In this sense it has been argued--not  completely without foundat ion--  
that  Milne's Universe is nothing but a self-limited artificial construction 
of a handicapped frame used to describe Minkowski space-time. 

Nevertheless, in some other class of space-times there are global prop- 
erties such that  the accomplishment of a class of observers similar to 
Milne's does not suffer from the above criticism; instead this becomes 
precisely the most adaptable frame in which a causal history of events 
could be displayed. 

We will provide an example of this assertion by looking at the prop- 
erties of GSdel's Universe. 

From the previous analysis of the behaviour of geodesics in GSdel's 
geometry we concluded that  any material particle (or photon) which passes 
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through an arbitrary point, say A, is confined into a cylinder of radius 
rc encircling A. Once this geometry is completely homogeneous, such 
confinement is guaranteed for any of its points. Such a curious confinement 
aspect has been analysed extensively [2,3]. 

Thus if one intends to obtain a gaussian system of coordinates for this 
geometry by means of timelike geodesics one faces the above limitation, 
which is nothing but  the counterpart  of the occurrence of closed time-like 
curves (non-geodesic) in this geometry. 

We are thus prepared to undertake the construction of Milne-type 
observers in GSdel's background. 

In every plane z -- constant we consider an infinite number of test par- 
ticles shot out, in this plane, in all directions in a chaotic way. The infinite 
"source" of these observers is a string which we may locate arbitrarily at 
the origin of the r-coordinate. In the Minkowski case, the origin of the 
bang is a point. Here, in GSdel's, it is a string. This means that  these 
observers are devised in such a way as to exhibit the background sym- 
metry. Thus, for r = 0 this part  of GSdel's Universe, expressed through 
Milne's coordinates, evolves as a closed Universe, once O diverges both 
at r = 0 and at r = re, where the critical radius rc is given by (23) as 
sinh 2 rc = (#2 _ 1)/(p2 + 1). There is a false big bang at r = 0 and a false 
big crunch at r = re. 

Let us note that  inspection of the above dependence of the original 
coordinate r on the gaussian coordinates (t',~) shows that  the bang is not 
homogeneous: it can be depicted as a configuration similar to a lagging 
core typical of a white hole (see Fig. 4). That  is, for the gaussian system 
there is no unique moment of creation; separate parts enter the g_aussian 
domain at distinct moments, viewed in terms of the cosmic time t. 

F i g u r e  3. Milne's ghost observers in Minkowski space-time. The false big bang occurs 
at  (an arbi trary)  point O. 
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/ e ,,_.Z = Zo/7 

F i g u r e  4. Mi lne ' s  ghost  observers  in  GSdel space- t ime.  The  false b ig  bang  occurs a t  

r =-- 0. The  false b ig  c runch  occurs  a t  r = re. 

From the theory of geodesics in GSdel's geometry [2,3] it follows 
that  the region covered by such Milne observers--which we call the 6+ 
Universe--is the largest causal domain of GSdel's model (see Fig. 4). Thus 
the hypersurfaces [ = constant provide Cauchy surfaces for all points in the 
G + Universe. 

This in turn can be used to examine the evolution properties of any 
field theory described by initial data  on surfaces [ = constant in ~+. Equiv- 
alently, one can define standard commutation relations at [ = constant and 
propagate them throughout ~+ in order to elaborate a canonical quantum 
version of a field theory. 

Although in these considerations we have been concerned with GSdel's 
Universe, the construction of similar Milne-type observers for different 
classes of geometries can be achieved through the generalization of the 
procedure shown in the above example. Some of those (e.g. Minkowski) 
are of limited importance (generating trivial Cauchy horizon), but others 
can be of crucial value (e.g. the G + Universe) in the set up of a field theory. 

Therefore, from what we have learned we conjecture that  Milne's ob- 
servers provide the most natural frame in which a Quantum Field Theory 
may be established in space-times which contain closed time-like curves. 

5. B E Y O N D  THE GAUSS-I  SYSTEM 

We have seen the reasons which forbid the analytical continuation of 
the Gauss-I system beyond a certain finite radius re. However, we can 
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find another gaussian system for r > rc just by choosing another set of 
fundamental observers. 

This is equivalent to defining a new local time t2 through the choice 
of another class of time-like geodesics. Thus, in the new system (call it 
Gauss-II), instead of the values (15) for the parameters which characterize 
the congruence in Gauss-I, we set 

Ao = It Bo = v - ,  - ,  c0=0, D0= 1. (30) 
a a a 

Then the constants 7 and f12 take the values 

v fi2 1 7 = - ,  = - -  (31) 
it i t s  

From the previous analysis it follows that  we must select #s > 1. Then 
0 < f12 < 1 guarantees the existence of the Gauss-II system of coordinates. 
We note that  the parameter v is the true factor which defines the domain 
of validity of Gauss-II. The explicit transformation formula which relates 
the cylinder system of coordinates (1) to the Gauss-II system is given by 

a 
ts = #at + var + ~ X/# s + 1 arcsin @2 

va a (v + v/2#) arcsin As 2 arcsin Xs + 

# arcsin ~s  + 1 ~ s = t  + 2X/its + 1 ~ -  arcsin A2 

1 1 
~2 = r + ~ arcsin As - ~ arcsin Xs 

(32) 

ZS ~ Z  

in which 

1 
$2 = ~ - [ - 2 ( #  2 + 1) - 2(it s + 1 ) s i n h S v + 2 x / 2 i t p + #  s -  11 

1 [.(2vr2#u+3#S+l)sinhSr-(#2+Vr2u)S+l] 
A s = ~ -  sinh----~r +]-  

] 1 - 2 v  2 + (2v~i tv  + #2) sinh 2 r 
X2 = ~ -  sinh-----~r 

(33) 



S y n c h r o n i z e d  F r a m e s  f o r  G h d e l ' s  U n i v e r s e  1 5 3  

in which 
q = ( 2 v ~ p v  + #2 _ 1)2 _ 4u2(#2 + 1). (34) 

Just  for completeness, we can exhibit the components of the four- 
velocity pU of the Gauss-II  observers which in the cylindrical coordinate 
system are 

p0 1 
- a 2 cosh 2 r [p(1 - sinh 2 r) + v ~ v ]  

pa = 1 [(#2 _ 1) cosh 2 r sinh 2 r - ( v ~  # sinh ~ r - v) 2] 
a cosh r sinh r 

p2 = 1 
a cosh 2 r sinh 2 r [v/~# sinh2 r - v] 

p3 = 0. (35) 

We can use this to give the direct proof that  the angle between Gauss- 
I observers four-velocity p~ and the four-velocity V" of the mat te r  content 
of Ghdel's Universe is precisely the same as the Gauss-I observers, 

p~Vc~ = l'~V,~ = p. (36) 

This reflects the continuity property which yields a coincidence of the 
two classes of Gauss observers in the limit v ---* 0. Combining the values 
of the parameters  Ao,Bo,Co and Do from (30) with the form (9) of the 
effective potential  we conclude that  the domain of validity of the Gauss-II  
sys tem is bounded by the range r l  < r < r2 as given previously by Fig. 1 
which is the classically accessible region for a free particle. 

One can give an overview of those coordinate systems in the following 
terms. The system Gauss-I  covers a part  of Ghdel's geometry that  consists 
in those points limited from an arbi t rary origin (say point O) which we 
gauge r = 0 to r = rc with sinh 2 rc = (/z 2 - 1 ) / ( #  2 + 1). Thus the extension 
of such a domain depends on the value of the parameter  #. 

The range of the second (Gauss-II)  sys tem depends not only on/~ but  
also on the value of the parameter  v, and it is bounded by rl  and r2. We 
can choose these parameters  in such a way that  we have rl  < re, with a 
non-vanishing intersection of both  systems. This allows for the continuity 
of the covering of the G6del geometry from r = 0 to r = r2. 

We can proceed further and define a third gaussian system (call it 
Gauss-III)  which will display the same feature as Gauss-II .  This proce- 
dure can be repeated. The  net result of this is nothing but a piece-wise 
synchronization of the whole Ghdel Universe. 
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Let us pause for a while and consider what we have achieved. From 
what  we have learned above it follows that  the impossibility of defining 
a unique global t ime can be interpreted as the requirement of the uses of 
non-gravitat ional  forces to accelerate an observer in order to provoke its 
passage from a given geodesic congruence (which provides a definite lo- 
cal synchronization) to another one (correspondingly, to another gaussian 
time). 

The  set of gaussian observers which we use to define the Gauss system 
encounters some unusual properties due to the existence of closed time-like 
lines (CWL) in this geometry. It  seems worthwhile then not only to look 
into the properties of these CTL but also to t ry to answer the question 
of how a material  particle could be accelerated in order to follow a OIL. 
Besides this, one could contemplate that  the difficulty of extending the 
pa th  of a real particle beyond a certain region in GSdel's Universe might 
be a classical hindrance. Is it possible that  some sort of quantum tunneling 
effect might lead a particle to escape from the confinement which we have 
described earlier? In the next section we will elaborate an answer to these 
two questions. 

6. B A C K W A R D S  T I M E  T R A V E L  

GSdel's geometry has five Killing symmetries.  One of them, which 
in a given basis can be characterized by 0 /0 r  is of particular interest. 
This is because of its unusual property which guarantees that  the vector 
0 / 0 r  is space-like for r < rc and becomes time-like for r > re. This 
proper ty  has been employed, since GSdel's original discovery, to adapt  
an observer to a closed time-like line (CTL). Indeed, the line defined by 4 
r = r0 = constant,  z = z0 = constant,  t = to = constant and 0 < r < 2~r is 
a OWL for r0 > re. Once this curve cannot be a geodesic (cf. our previous 
remarks),  the question then arises of what the required force is which 
constrains a particle to follow such an unusual path. 

The most  natural  candidate for this enterprise should be a rocket 
which carries enough fuel to undertake such an incredible journey. How- 
ever, it has been shown in a very direct way [5] that  the fuel consumption 
on such a pa th  would be so high (almost 100% of the initial mass contained 
in the rocket) tha t  it would preclude such backwards time travel. 

Instead of considering some sort of technological argument which 
might produce more economic utilisation of the fuel, we will turn to a 

4 We are using here the cylindrical coordiante system. 
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more fundamental question: How should a machine operate in order to 
send a real particle of well-known properties travelling backwards in time? 

We will discuss the case of setting an electron to undertake such travel. 
We decide to proceed in this way because it seems to us that,  if we answer 
this question for the electron, then we would quite naturally gain some 
insight into the corresponding question of travelling backwards in time for 
macroscopic bodies, at least as far as theoretical arguments are concerned. 
The problem can thus be clearly stated as follows. 

Consider an electron which follows the trajectory F characterized (in 
the cylindrical coordinate system) by 

t = t 0 = c o n s t . ,  r = r 0 = c o n s t . ,  z = z 0 = c o n s t . ,  0 < r  (37) 

The normMized four-velocity b ~ of the electron is given by 

b" = 0,0, a s i n h r ~ s i n h  2 r -  1 

The corresponding four-vector acceleration b" defined by /~" = b."~b" is 
directed along O/Or, that  is 

( cOsh r(sinh~ r - 1) ) 
b u = 0, a 2 sin----~ar(sin------hSr---i) , 0, 0 . (39) 

As we have stated above, the gravity field alone cannot provide for 
such travel. The question we face is then the following: What  force main- 
tains the electron in such a strange orbit? What  is responsible for such 
motion? 

Our strategy for solving this problem is simply to look for a com- 
bined effect of gravity and electromagnetic forces. We decided to turn our 
attention to these two forces because they are the only long-range forces 
known. This seems a good criterion, once we know that  the breakdown of 
synchronization is a global effect (see the analysis in the previous section 
of the limitation of gaussian domain for a coordinate system). 

We will examine the orbit (37) in GSdel's Universe. Thus, any electro- 
magnetic field present on it must be treated just as a small perturbation. 
In order to simplify our model we restrict the analysis to a sourceless pure 
magnetic field, as viewed in the frame comoving with the rotating matter,  
which is the source of the geometry. In the cylindrical coordinate system, 
the unique non-vanishing component of the electromagnetic field is set to 
be 

F 12 = g .  (40) 
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For the comoving mat ter  with four-velocity V" [cf. eq. (3)] this is 
indeed a pure magnetic field directed in the z-direction. However, in the 
electron's frame which has four-velocity b u [cf. eq. (38)] this is not  a pure 
magnetic field. Indeed, for the electron we have a non-null e lectr ictensor  
given by 

E't, = Ft,~ bt' = F~,2 b2 • O. (41) 

The Lorentz force provides the necessary acceleration to keep the elec- 
tron in the orbit F, for r = r0, if the strength of the field is given by 

m cosh r(2sinh 2 r - 1) (42) 
H ( r )  = ea 2 sinh r 

Solving Maxwell's equations as a test field in the background of GSdel's 
geometry yields the dependence of H,  

Ho (43) 
H - sinh 2r " 

Combining eqs. (42) and (43) for a given value r = r0 yields the value 
of the intensity H0, that  is, 

2m cosh 2 r0(2 sinh 2 r0 - 1) 
H0 -~ 

ea 3 sinh r0(sinh 2 r0 - 1) 3/2 
(44) 

This is the strength of the magnetic field which maintains the electron 
in the F orbit. It remains to be proved that  the energy of such field is small 
enough compared to the matter  density p as given by (6) in order not to 
disturb significantly the geometry of the background. 

Let us look for the physical components of the stress energy tensor in 
A such that  a local inertial frame. We choose to work in a tetrad e~ 

A B (45)  e ( a ) e ( f l ) r l A B  = g~z 

in which indices A, B , . . .  are tetrad indices, ']An is the Minkowski metric, 
diag. (+  - - - ) .  Using the cylindrical coordinate system we have 

= = G = a 

e~2 ) = v ~  a sinh 2 r 

e~) = a sinh r cosh r 

(46) 



S y n c h r o n i z e d  F r a m e s  f o r  G S d e l ' s  U n i v e r s e  157 

and its inverse 
e 0)= 4 )  : 4 )  : 1 

a 

e~O)_ v ~  s inhr  (47) 
a cosh r 

e ~ 2 )  1 t 
a sinh r cosh r " 

In the tetrad frame the energy of the matter  is a constant given by [cf. 
eq. (6)] 

4 
Too = p = ~--~. (48) 

The energy of the magnetic field is also given by a constant 

T(oag .) _ a 2 - 4 H~ (49) 

We should then require 

16 (50) Ho 2 <:< a- ~ �9 

Substituting the previous results in this inequality yields 

cosh 2 r0(2 sinh 2 r0 - 1) 

sinh r0(sinh 2 r0 - 1) 3/2 

e 
<< 2 - - .  (51) 

m 

Thus, given the value of the ratio e/m, (51) yields a limit value for 
r0 in order not to violate the above requirement. Using the values of 
the properties of the electron we conclude that  the minimal value of the 
radius r0 of the orbit F is near the critical value re. Thus, it suffices to 
choose a massive charged particle to allow for travel backwards in time, 
circumventing thus the difficulties pointed out by Malament [5]. 

7. FIELD THEORY IN CAUSAL DOMAINS: A GENERAL SCHEME 

From what we have learned in the preceding sections we conclude 
that  the gaussian coordinates ([, ~, ~, 5) consitute a natural framework in 
which the evolutionary equations for an arbitrary test field ~ (x  ") should be 
examined. In this section we present an overview of the standard scheme 
which allows for such analysis. We consider a real scalar field r  which 
satisfies the wave equation 

D e  = 0 (52) 
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where [] is the d'Alembertian operator in the metric 

ds 2 = d ?  - a2(# 2 - 1)d~ 2 + g([,~)d~ 2 + 2h(t,~)d~ d~ - d 2  (53) 

in which the functions g and h are given by 

1 p 2 _ l  ( 1 - s i n M ) [ p 2 + 3 + ( / t  2 1)sinM] 
g - -  4 ( # 2 + 1 )~  

h -  x/~ #2 _ l ( l  _ sin M )  

(54) 

and 
M -- 2_X/~- ff + 1 ( t -  pa~). (55) 

a 

Using the definition of the d'Alembertian in the metric (53) it follows 
that 

02~ 

Q # -  0~- 2 
2X/%-5 + 1 tanMO~.  

a 0t 
_ - . 0 2 r  

1 1 L u2 + 3 + (#2 _ 1) sin M] - ~  
a2(p 2 - 1)(# 2 + 1) 1 + s i n M  

4 v ~  1 02V 
a2(# 2 - 1) 1 + s i nM 0~0~ 

2# 1 
- -  X 

X/# 2 + 1 a2(/J 2 - 1) cos M(1 + sin M) 

0~ 
x [.2 + 3 + ( .2 _ 1 ) ( s inM - cos 2 M)  ]-~- 

a2(# 2 - 1) cos M(1 + sin M)  O~ 

4 /t 2 + 1  1 02~ 1 02~ 
- -  - -  O o  

a /t 2 - 1  cosM O~ 2 a ~ 052 

In order to solve this equation let 

r  = e ~ e - i ~ S F ( M )  (56) 

in which F ( M )  is a solution of the equation 

a ( M ) F "  + f l (M)F '  + 7 ( M ) F  = 0 (57) 
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where F'  =_ d F / d M  and 

a (M)  --- 

/3(M) -- 

(.2 _ 1)sin M - (3 .  2 + 1) 

(.2 _ 1)( .2 + 1)(1 + s inM) 

n2v/'2" -- tan M 
(.2 _ 1 )V/~  + I (i - sin M) 

. 2 [ ( . 2  + 3) + (.2 _ 1)(sin 2 M + s i n M -  1)] 
+ 

(.2 _ i) (.2 + 1) cos M(1 + sin M) 

nx/2.  
7(M) = 

(.2 _ 1 ) 4 . 2  + 1 cosU(1 + sin M) 
n 2 k s 

+ (58) 
- ( . 2 _  1) cos 2 M  4( .  2 + 1)" 

We define the scalar product of functions (I)1 and (I)2 in the standard 
way: 

= i /  (59) 
Jo 12 

We know that  a foliation of space-like surfaces in G+ is provided by 
the hypersurfaces ~ - t = constant. The time-like vector Nt. normal to 
these hypersurfaces is given by N~ = c~.k~ = (1, 0, 0, 0) and thus it yields 
dk~" = N ~ V/i det ~.~ I d~dfld~. 

Let us point out that  the time-like Killing vector which allows the 
above definition of the scalar product is provided by /-f~ = (#, l / a ,  O, O) 
which in the cylinder coordinate system ( t , r , r  reduces to the form 
K s = ( l / a ,  0, 0,0) tangent to the velocity flow of the matter. Note that  
V/I det g,~l is equal to 

71detg•v 
] a 3 . 2 _  1 

2 . 2 ~ 1  [(.2 _ 1 ) ( 1 -  sin2M)] 1/2. 

We are thus prepared to pass to the quantization in 6+ by setting the 
canonical commutator relation, for instance 

&) ,  = o. 

From the Lagrangian 

s = v / - ~ 8 ~ , , ~ O ~ , ~ g ~  '~ 

a2(. 2 - 1 )  
= cos M 

2X/.2 + 1 

(60) 

-4- 
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We can proceed to obtain the associated moment 

1 I -  ~f(aff/at) (61) 

and the remaining conventional procedure of field theory. 
It seems worth pointing out that  some authors [7] argue that  the 

standard quantum field theory may not make much sense in a space-time 
which contains closed time-like lines (OIL) as in GSdel's Universe. Note 
however that  by using the generalized Milne coordinates, it is possible to 
construct a frame in which the local causal structure of the space-time is 
explicitly guaranteed. One could envisage applying this method to any 
space-time which contains CTL. We postpone the complete analysis of this 
question to a forthcoming paper. 

8. CONCLUSION 

In this paper we have analysed the main properties of the synchro- 
nization mechanism in GSdel's Universe. 

The impossibility of constructing a unique global gaussian system of 
coordinates is related to the confinement properties of the geodesics in this 
geometry. This unusual behaviour is demonstrated in a direct and simple 
way through the method of the effective potential introduced earlier to 
reduce the analysis of the geodesics to the dynamics of a single particle 
submitted to a central force. 

After a review of the geodesics we present a set of gaussian system of 
coordinates in such a way that  their union provides a complete cover for the 
whole manifold. We have identified the existence of closed time-like lines 
(OWL) with the property that  forbids the extension of a local gaussian frame 
beyond a certain range, Thus, we recognize the impossibility of establishing 
a global Cauchy surface. This yields two alternatives; either we abandon 
the project of constructing a causal chain of events from a given set of 
initial data, or we should restrict the description of the evolution of a field 
to a finite region inside the frontiers of a causally related bounded domain 
of space-time. This has led us to contruct a convenient frame which is 
the generalization of Milne's idea of special observers. This generalized 
Milne's observers constitutes a special frame to which a causal field theory 
can be constructed. 

We are thus led to conjecture that  it is possible to use this kind of 
frame in any space-time which contains closed time-like lines in order to 
provide for a formulation of a causal field theory. 
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On the other hand, we have presented a mechanism which consists 
of a combined action of long range fields (electrodynamics and gravity) 
that  induces a real particle--say, an electron--to undergo backwards time 
travel. 

Finally, we argue that  going into a quantum version of the theory does 
not modify the confining character of GSdel's geometry. 

APPENDIX. SCHRODINGER'S QUANTUM EQUATION 

In this appendix we will present an overview of the arguments pre- 
sented in Section 4 and which aim to anser the following question: Can a 
quantum mechanism induce a particle - -  interacting only via the gravita- 
tional process - -  to go beyond the classical confined region [6]? 

We have seen in preceding sections that  the mechanism of confinement 
depends only on the behaviour of geodesics under an r-displacement (we 
will work here in the cylinder coordinate system). 

Using the momentum Pu defined previously we can re-write the equa- 
tion for the r variable (7). It is sufficient to consider the case in which 
B0 = Co = 0 [cf. eq. (15)]. We then have 

p2.+D2+A2o[ 1 cosh 22 r]  = 0 .  (A.I) 

Following the standard prescription of the first quantization, we will treat 
Pr as the operator, 

to obtain SchrSdinger's equation 

[ 2 + ] 
+ r d r  - ~ J  ~ = A~ (A.3) 

or, setting 

2mY(r) = D~ 2A2 (A.4) 
cosh 2 r 

2mE = -g~ (A.5) 

thus, 
d 2 d) 

- ~ + - r ~  ~ = 2 m ( E - v ) ~ '  (A.6) 
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We set 

to arrive at 

in which 

ql = 1 u(r )  (A.7) 
r 

I d X(X-1)  u ( r ) - - O  (A.8) 
+ k2 + cosh ~ r  

A(X-  1) = 2A~ 
k 2 = - (Do  2 + A~). (A.9) 

Thus, the dynamical behaviour of a particle in GSdel's background 
under the standard SchrSdinger quantization is reduced to the problem 
of a particle in a Posch-Teller potential (A.8). This potential has a well- 
known structure, and appears in connection with completely integrable 
many-body systems in one dimension. It appears also in soliton solutions 
to the Kortweg-de Vries equations, etc. 

Changing to a new variable y = cosh2r (which maps the domain 
0 < r < co into the transformed one 1 < y < cr eq. (A.8) can be written 
in the more fashionable form 

y ( 1 -  y ) ~  + - Y  ~yy-  + ~ly u = O .  

. d2v 

Re-defining 

(A.10) 

a = + ik)  
(A .13 )  

b -= ik ) ,  - 

w e  re-write this equation for v as 

" d2v 1 dv 
y(1 - y)~r2 -4- [c - (a 4- b -4- )Y]~rr - abv = 0 (g.14) 

with c --- a -4- b + 1/2. 
This procedure led us to eq. (A.14) which can be recognized as a 

typical equation for hypergeometric functions. The radius of convergence 
of this series is given by [y[ < 1. 

Write 
u = y l / 2 v ( y )  (A.11) 

to obtain the equation for v as 

1 dv 1 + [(A + 1/2) - (A - )y]~yy - ~ (A 2 + k2)v  = 0. (A.12) 
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It  is possible to extend analytically this function for the whole complex 
plane through the cut [1, oo). Define the variable z = 1 - y; then 

d2v 1 z] dv 
z ( 1 - z ) ~ - ~ z  2 + [ 1 / 2 - ( a + b +  ) ~ - z b v = O ,  (A.15) 

the solutions of which are given by 

v=clF(a,b, 1/2, z)+c2(1-y)l/2F(a+ l/2, b+ l/2,3/2, z). (A.16) 

In order for ~ to be finite at the origin r = 0 we must set cl = 0. In the 
other limit r --+ c~ we can write 

~ [  F ( b -  a) 22a+le_(2a+l) r Ce-(~+l)e(~+l)~F a) ~ - _ 

r ( a  - b) ] 
-~ r ( a  + 1/2)r(1 - b) 22b+le-(~b+l)r J 

and thus 
e),r e)~r 

~ - -  e -2a~ + e -2b~. (A.17) 
r r 

In order to normalize ~ ( r ) ,  the first term of the expression above 
should be null. Thus,  

1 -  a = - n  (A.18) 

o r  

1 (A.19)  ~ + b =  - n .  

Thus,  the F function has poles in these values. Setting 

a = ~  

A =  ~ 1 +  (A.20) 

E = -A~ 
2m ' 

we can find a functional relation 

En = f(n, Do, m) (A.21) 

where n is an integer and > 0. 
We can now interpret particles of mass m following geodesics in 

GSdel's Universe as quantum particles submit ted to a Posch-Teller po- 
tential. The  functions if/, being normalized, permit  us to achieve the ex- 
pression of the energy which depends only on Do, the mass m and an 
integer number  n. 
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