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Synchronized Frames for Godel’s Universe
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We exhibit Godel’s geometry in terms of a set of gaussian systems of
coordinates, the union of which constitutes a complete cover for the whole
manifold. We present a mechanism which induces a particle to follow a
closed time-like line (CTL) present in this geometry. We generalize the
construction of special class of observers (Generalized Milne Observers)
which provides a way to define the largest causal domain allowing a
standard field theory to be developed.

1. INTRODUCTION

A simple glance into any book of Relativistic Cosmology displays an in-
teresting common characteristic: all cosmological models are depicted
in gaussian systems of coordinates with just one remarkable exception,
Godel’s 1949 rotating Universe [1].

This particularity is in general interpreted to be nothing but a con-
sequence of the well-known impossibility of constructing a unique global
gaussian system in this geometry. However, such a property does not
forbid the use of a local gaussian system.

Indeed, the theory of Riemannian differentiable manifolds asserts that
it is always possible, at least in a restricted domain, to represent point-
events by means of a gaussian coordinate system. The extension of this
system beyond a given domain depends on properties of the geometry at
large.
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Although there have been some comments in the literature concerning
synchronized systems of Godel’s cosmological model, an explicit form has
never appeared. We intend to remedy this situation in this article by
exhibiting a set of gaussian systems of complementary domains, in such a
way that their union constitutes a complete cover for the whole manifold.

The restriction on each synchronized frame can be understood as a
consequence of the highly confining property of Godel’s geometry. A ques-
tion then arises: How can one reconcile such confinement with the homo-
geneity property of this metric? How could a point (any point) of such
homogeneous space-time act as an irresistible attractor? This is precisely
the condition to limit the extension of a chosen family of time-like geodes-
ics, inhibiting it from going beyond a certain domain, and so restricting
the region covered by the associated chart. To understand this one should
look more carefully into the dynamical behaviour of free particle. Since
the velocity of photons is the highest allowed one, let us just consider their
propagation.

From electrodynamics and gravity standard coupling photons travel
along null geodesics. Now, from the behaviour of geodesics in Godel’s ge-
ometry [2,3] one obtains that the photons’ trajectory, which passes through
a point P, can be equivalently described as if the particle feels an attrac-
tion to P by a potential V(r) = Vptanhs (in which V; is a constant)
having an energy £ < Vp [2]. This means that the net consequence of
such a potential is to forbid the particle to leave the region D(P) which
consists in the points encircling P of a given radius. The actual value of
the maximal allowable radius depends on the strength of the vorticity .
Thus, any geodesic which passes an (arbitrary) point P remains—for its
complete history—confined in a cylinder around P of radius 7p. This has
an immediate consequence, which we referred to previously: if one displays
a gaussian coordinate system from a point O (arbitrary) then this system
cannot be extended beyond ry. This is a consequence of the dependence
of the gaussian system on a particular choice of time-like geodesics I'(0)
which precisely yields the identification of the local (gaussian) time to the
proper time of I'p).

We can build another gaussian system centered on another point O’
distinct from . This new system can be located either within the domain
of the previous Gauss-I system, in-the region 0 < r < rg or beyond it. We
can then follow the same procedure as in the previous case and define a new
gaussian chart (call it Gauss-II) based on point ('. This method can be
repeated successively and complete the covering of the whole manifold. We
present in Section 2 a short resumé of such peculiar behaviour of time-like
geodesics in Godel’s Universe.
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The possession of each synchronized system has a direct by-product:
it allows one to establish in a standard way the foundations of a field theory
in the Gddel background. The ultimate reason for this can be understood
in the following way. One of the most fundamental principles of physics
is the one associated to the set up of a Cauchy initial-value problem for
a given field. In order to follow this program one starts by fixing a given
foliation of the background space-time. This is in general provided by the
identification of flat surfaces in which the time coordinate is constant. One
can, alternatively, deal with other imbeddings, e.g. by considering space-
time hyperboloids in which translational time invariance is not explicitly
guaranteed. Nevertheless, any of these choices is a good one as long as it
provides a set of Cauchy successive surfaces in which the standard methods
of causal modelling in physics could be applied.

However, this is not the kind of situation we face in Gédel’s Universe.
The impossibility of global synchronization inhibits the set up of a standard
Cauchy initial-value problem. The true origin for such a difficulty rests in
the existence of closed time-like lines (CTL) in this geometry. In order to
overcome this situation we will follow a procedure which has its roots in
Milne’s characterization of fundamental observers in flat space-time. In
Section 4 we will review briefly the properties of Milne’s frame in the case
for which it was originally created, that is, of a Minkowski background.

We shall see that a very similar class of observers can be set up in
Godel’s geometry, inducing a framework which allows a description of a
restricted causal domain on this Universe. However, there is a crucial
difference between Milne’s restricted space-time in Minkowski background
(which we call the U™ region) and the analogous construction in Goédel’s
space-time (which we call the Gt region). The Ut region has a fictitious
big bang that generates an ever-expanding structure, while the G¥ region
has not only a non-homogeneous initial singularity (a false big bang) but
also an ending configuration (a false big crunch). Thus a well posed Cauchy
problem can be set up in the G domain.

All the above arguments, which led us to the limited Gauss domains,
come from classical physics (e.g. the behaviour of null geodesics in Godel’s
background). One might wonder if these considerations should be modified
if some new effects at the quantum level change the confining property.
The proof that this is not the case has been presented some years ago [6].
We review this briefly in the appendix. The main idea runs as follows.
From the reduction of the behaviour of null geodesics to the examination
of the dynamics of a particle submitted to an effective potential V(r)
we can generate the corresponding Schrédinger’s equation yielding a one-
particle problem in a Posch—Teller potential. The net result of such direct
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quantization confirms the classical confining behaviour. One could suspect
this from the properties of the infinite range Posch—Teller potential.

Finally, it remains to analyse a question concerning the closed time-
like lines (orL). It has been known, since G6del’s original paper, that these
curves are not paths of free particles, and a problem then appears: What
are the characteristics of the force which induces a particle to follow such a
strange path? We present a solution to this question in Section 6 in which
we show that a (weak) magnetic field can induce a charged particle (say,
an electron) to follow this path.

2. PRELIMINARIES: GODEL’S GEOMETRY

In this section we will briefly review some basic properties of Godel’s
geometry. The manifold has the structure of H® @ R of a 3-dimensional
hyperboloid—in which coordinate (¢, 7, ¢) are defined with the range —oco
<t<oo,0<r<oo, 0< ¢ <2, respectively—times the infinite linear
coordinate (z) defined on the real line R. In this cylindrical coordinate
system the fundamental element of length takes the form?

ds? = a*[dt? — dr® — dz* + 2h(r)dt dé + g(r)de?). ¢}
The constant a is related to the amplitude of the vorticity €2 of the
matter Q2 = 2/a%. The functions g(r) and h(r) are given by
g(r) = sinh® r(sinh? r — 1)

h(r) = v/2 sinh?r. @)

The source of this geometry is a perfect fluid with density of energy p and
no pressure:

TywpVu V. (3)

2 Note that under this form of geometry it is not possible to obtain the limit metric
for Q@ — 0. This, however, can be achieved if before the limit is taken we make a
re-scaling by setting

t—t'=at, ror =ar, ¢—d =¢, z—2 =az
Then the metric takes the form

2
ds? = [dt’ + % sinh? —‘/22 Qr'd¢’] - 2:} sinh? V2 Qr'dg" — dr'? — ™.

2

In this form the limit € — 0 yields the Minkowskian geometry in the cylindrical
system of coordinates.
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In the cylindrical coordinate system, V,, = §%. The congruence of the fluid
has no expansion (© = 0), no shear (o,, = 0) but has a non null vorticity

Wy = %hﬁhE[Va;ﬁ — Vpial (4)

with hj, = 6, — V,V”. The vorticity vector w™ = %n“ﬁ’"wo,ﬁvp has com-
ponents

we = (0,0,0,9). (5)

Thus at each point of this space-time a privileged direction is defined,.
Einstein’s equations with a cosmological constant A are satisfied if between
constants a,A and the energy p the following relation holds:

p=20%= LYY (6)

a?

Although the above cylindrical system of coordinates can be used
throughout the whole manifold it does not allow a bona fide formulation
of the Cauchy problem.

The best way to provide the necessary conditions to establish a well
defined formulation of the initial value problem in this geometry is to jump
into a frame in which a synchronization can be made (at least in some re-
gion of Godel’s space-time). We will follow this procedure in this work.
The first step towards this is to select a given set of time-like geodesics and
solve a corresponding Hamilton-Jacobi equation ¢g*”(9S/8z#) (05/8z") =
1 for the new time coordinate S. The remaining associated spatial coordi-
nates &’ are obtained from the solution S(z*,)*) of this Hamilton-Jacobi
equation through the derivatives &' = 85/0A*. Let us then look into the
possible classes of time-like geodesics in order to make a definite choice.

The geodesics in G6del’s Universe were studied by Chandrasekhar and
Wright [3] and in an alternative manner by Novello, Soares and Tiomno
(nsT) [2]. We will follow the NsST version in the present paper.

The equations for the geodesics z# = z#(s) with four-velocity v# =
dzt fds = (t,7, ¢, ) are

z= CO>
V24 _ By
cosh?r  sinh’rcosh’r’
i = A, [1_ QSinhzr} V2 B, (7)
cosh? r cosh?r’

2
V2 Agsinhr By ]

= A2 - D? _ [ -
" 0 0 coshr sinh r cosh r
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Instead of going into the immediate integration of this set of equa-
tions it is more convenient for our purposes to pause for a while and look
into the generic behaviour of the time-like families of geodesics from the
examination of their effective potential. In this vein, let us re-write the
equation of 7 in the form

2= A2 - V(r) (8)

in which the effective potential V(r) is given by

_ 2y |V24gsinhr B
V(r)=Dy+ coshr sinh r cosh r

9)

and )
DI=C%+ = (10)

We can thus interpret the constant A3 as the square of the total energy
(per unit of mass) and By as the total angular momentum. Indeed, if we
define the momenta P, = g,,2” it then follows that

Po = Ag, Pr = —-1", P¢ = Bg, Pz = —-Co. (11)

A complete characterization of the main features of the behaviour of
the geodesics can be obtained by just examining eq. (9). We distinguish
three cases,

By > 0, By =0, By <0, (12)

once the associated potentials have distinct features.

It seems worth defining the parameters v = Bg/A¢ and §*? =
(Do/Ao)?. Once we are interested only in time-like geodesics we will limit
our analysis to the case in which 0 < #? < 1. The forms of the potentials
are depicted in Figure 1 for the three cases.

A direct inspection of these graphs gives the information we are look-
ing for. For any geodesic the radial coordinate r oscillates between the
values ry and 7y given by

1+2\/§7—ﬂ2i vl—ﬁz\/(27+x/§)2—(1+ﬂ2)
2(1 + 8?) 2(1 + 8?) ’

This represents a true confinement in the classical regime once the total
energy A2 is a fixed quantity (for each geodesic) and thus the trajectories

sinh’r; =
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V(r)=B2A% 4

2A%:

=,

P

o,
¥< 0

Figure 1. Graphs of the effective potential for the free particles in Gédel’s geometry.

are kept within the cylindrical shell ry < r < r5. For 4 < 0 the potential
V(r) produces the phenomenon of confinement of all trajectories within
the cylinder r < r, with sinh 7. = 1.2 Such powerful attraction of gravity is

3 Note that in case 5 > 0 the behaviour of the particles depends on the momentum

along the axis z; the width of the cylindrical shell diminishes and can attain the value
zero for 52 = 1.



144 Novello, Svaiter and Guimaraes

the reason that forbids the extension of any local gaussian system beyond
a certain region.

3. FROM TIME-LIKE GEODESICS TO THE GAUSSIAN SYSTEM OF
COORDINATES

We are now prepared to undertake the first step toward a synchro-
nized frame. In the geometry (1), the equation satisfied by the associated
Hamilton—Jacobi equation S takes the form

sinh®r —1] /9S\>  2v2Z 8S98S  (8S)’
o] (@) (&)

cosh? r 8t cosh? r ot _3—<; +

1 as as 2
———— =1. 1
+ sinh? r cosh? r (6¢) * ( z) ta 0 (13)

We can make the ansatz
S(t,r,¢,2) = Mt + A2d + Azz + F(r) (14)

where the A; are constants.
The problem is then reduced to the integration of the equation for
F(r). A straightforward calculation yields

L (2Pr+Q) (Qz-2)3)
\/ —4P)2 z/Q? — 4PA2
\/|Q+P+,\§| (Q+2P)z +Q —2)3

+ — arcsin

2 (z +1)\/Q? — 4P)Z

F(r)= \/]_3 arcs

— A2 arcsin — 2t

in which
g=sinh®r, P=A2422+a% Q=2vV2Mh+21-)Mi-d

Inserting F(r) into the expression (14) completes the definition of the
new time. From it we can obtain the remaining spatial components Z*
by taking the derivatives of S with respect to the parameters A;, where
i = 1,2,3. This procedure then provides a local synchronization through
the construction of a set of hypersurfaces which are space-like and such
that the family of geodesics chosen intersects each surface just once. Tt
only remains to identify among the time-like geodesics which satisfy (7)
those characterized by the above choice (14) of S(;,t,r,¢,2). This can
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be made easily once in NST an explicit integrated form for these geodesics
is given. The result of this identification can be summarized as follows.

From the previous qualitative analysis of the behaviour of the geodes-
ics (see Fig. 1) one can infer that in order to set up a gaussian system the
origin of which starts at (an arbitrary) point @ we must select the value
of the constant By as being null.

From now on we will call such a system a Gauss-I system (centered at
0). To complete the system we make the following choice for the values
of constant Ao, By, Cp and Dy which appeared in expression (7):

1
Aozzs, Bo:Co—_—O, DOZE; (15)

in which we have defined g = A;/a and set A2 = A3 = 0, in order to
conform with the solution (14) and F(r).

Let us display here for future reference the explicit formula of passage
from the cylindrical coordinate system (¢,r,¢,z) to the Gauss-I system

({a é: ﬁ) E)

{ = pat + g— V2 + larcsin ¥ + 2 arcsinA

V2

) 1 .
arcsin ¥ 4+ — arcsin A

f=t+ L
2\/[12+1 \/ﬁ (16)
((ﬁ - —Z) + %arcsinA

<3
1]

e
I

z

in which .
1
w=1-251" gnn?y
put—1
2 . 2 (17)
3u+1 sinh”r 1

p2 =1 sinh®r+1 sinh’r+1"
Godel’s geometry in the Gauss-I system takes the from

A=

ds? = di? — a®(u® — 1)d€? + a?g({, )di® + 2ha®({, €)dE dij — a®d5> (18)

in which the functions g and h are the same as those given in (2) with the
substitution of the radial coordinate r in terms of the new ones. From the
transformations (16) it follows that

: 2
| _sinp = oSmb T

(19)

sinh? r,
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with

sinh?r, = (20)

and

M= %M;ﬂ’ +1(f — paf). (21)

Thus, making use of these relations, we can write

9({,€)=—2(5‘2+—_11)—2—(1—sinM)[/12+3+(;42—1)sinM]
ca_ V2 -1 . (22)
h(t,§)=—2—l—;—2-:—1(1—s1nM).

Let us point out that such a synchronization procedure generated by
the new system (£,&,7, 7) is valid only in a restricted domain. In terms of
the r coordinate it is given by 0 < r < r, for r, defined by (20). Let us
make a final comment on this.

Distinct values of g = A;/a yield (within the same class of geodesics,
e.g. By = Cp =0 and Dy = 1/a) different types of curves and consequently
distinct, although equivalent, coordinate systems. Now, for each fixed fam-
ily (e.g. fixed values of A;) and by noting that u = A;/a = (vV/2/2)A1Q, it
follows that when the vorticity increases (w — oo) we achieve the maxi-
mum possible value for the gaussian domain: sinh?#7, = 1. On the other
hand, by means of a simple re-scaling of the cylindrical coordinates—as
we did earlier—we can show that if the vorticity vanishes the domain of -
validity of the above synchronization can be extended through the whole
space-time manifold (i.e. it reduces to the empty Minkowski geometry).

4. THE FUNDAMENTAL OBSERVERS OF GAUSS-I (GENERALIZED
MILNE FRAMES)

The complete characterization of the gaussian observers can be
achieved through a direct integration of the geodesic equations. In the
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cylindrical coordinate system this is accomplished by setting (NsT)

Z=2p

12
s.mhz r :l[1+coszy/u2+l(s—so)j|
sinh*r, 2 a
~ oy 1 (23)
cos(¢ — o) = \/2——I sinh2r+1
2 241
e bom o] = VL Y

t A
an2

(s — s0).

We can thus read from these formulae the value of the components of
the four-vector [# of this observer. We obtain

o p sinh? 7 — 1

a  cosh?r
oo \//ﬂ ~1—(p241)sinh®r
B acoshr (24)
2= V2p o1
a cosh’r
B=0.

This vector I# in the Gauss-I system of coordinates takes the value [# = 64,
just by construction. We have seen in Section 2 that the matter flow has
components V# = (1/a)éf, which in the gaussian system take the form
V# = (11,1/a,0,0). This can be used to give a simple geometrical inter-
pretation for the parameter p which we have used to distinguish among
the infinite set of equivalent systems of transformation (16): it measures
the angle between the fluid four-velocity V# and the geodesic I#. Indeed,
from the above expressions it follows that

=Vl (25)

Just for completeness let us make one more remark concerning such
kinematical properties. Although the matter content of Gddel’s Universe
is conveniently represented by the form (3), when represented in terms of
the gaussian observers it appears as a more complicated fluid with non-
vanishing pressure and heat flow. This reflects the fact that a tensor
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t,, can be represented by projecting into non-equivalent frames. This is
explicitly realized by the equality

PVaVa = plals — B(gap — lalp) + §(alp) + Tap (26)
in which

p=pu?,  p=3p(?—1), @ =pp(Va—pb). (27)

Let us now turn our attention to the behaviour of the congruences
generated by the I#-geodesics. From the definition of the congruence ©® =
#., it follows, using (24) and (18), that

ur41
a

0=-2 tan M (28)

in which M is given by (21). Thus, © diverges at the boundaries of validity
of the gaussian system (see Fig. 2).

Figure 2. The domain of Gauss-I system of coordinates constitutes the region inside
the lines r = 0 and r = r, which we will call the G* Universe. The null cones are

provided by di = ay/u? — 1d¢.
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The region covered by this system, the Gt Universe, can be described
in an alternative way as the evolution of a solidary, unique, compactified
region which we will now try to describe.

The behaviour of the expansion © suggests the interpretation of the
Gauss-1 system as the establishment of a frame generated by a fictitious
class of observers in Minkowski background as proposed many years ago
by Milne [4].

In order to understand this let us briefly review the properties of this
frame in the case for which it was first created, i.e. that of a Minkowski
background.

According to Milne’s idea, from an arbitrary point @ of Minkowski
space-time an infinite number of idealized particles (without any material
properties, i.e. no mass, no volume—almost ghosts) is shot out in all di-
rections in a completely random way, with all possible velocities. Thus at
O there exists a sort of space-time creation mechanism, a false big bang,
which is nothing but the reduction of the whole Minkowski space-time to a
small portion of it, the region which we denote by U(4. Such U4y consists
of the region inside the light cone H generated from (. This U4 region
is called the Milne Universe.

The geometry at U,y takes the form

ds? = dt? — t2do?. (29)

Milne’s fundamental observers are comoving, i.e. V# = §5. The expansion
factor of the congruence © takes the calue © = 1/¢; it diverges at H, in
which ¢ = 0.

Thus, Milne’s frame contains a trivial Cauchy horizon once it consists
of a chosen limited gaussian system of coordinates, which however can be
extended beyond H by another choice of coordinates.

In this sense it has been argued—not completely without foundation—
that Milne’s Universe is nothing but a self-limited artificial construction
of a handicapped frame used to describe Minkowski space-time.

Nevertheless, in some other class of space-times there are global prop-
erties such that the accomplishment of a class of observers similar to
Milne’s does not suffer from the above criticism; instead this becomes
precisely the most adaptable frame in which a causal history of events
could be displayed.

We will provide an example of this assertion by looking at the prop-
erties of Gédel’s Universe.

From the previous analysis of the behaviour of geodesics in Gédel’s
geometry we concluded that any material particle (or photon) which passes
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through an arbitrary point, say A, is confined into a cylinder of radius
r. encircling A. Once this geometry is completely homogeneous, such
confinement is guaranteed for any of its points. Such a curious confinement
aspect has been analysed extensively [2,3].

Thus if one intends to obtain a gaussian system of coordinates for this
geometry by means of timelike geodesics one faces the above limitation,
which is nothing but the counterpart of the occurrence of closed time-like
curves (non-geodesic) in this geometry.

We are thus prepared to undertake the construction of Milne-type
observers in Godel’s background.

In every plane z = constant we consider an infinite number of test par-
ticles shot out, in this plane, in all directions in a chaotic way. The infinite
“source” of these observers is a string which we may locate arbitrarily at
the origin of the r-coordinate. In the Minkowski case, the origin of the
bang is a point. Here, in Godel’s, it is a string. This means that these
observers are devised in such a way as to exhibit the background sym-
metry. Thus, for r = 0 this part of Gédel’s Universe, expressed through
Milne’s coordinates, evolves as a closed Universe, once © diverges both
at » = 0 and at r = r,, where the critical radius r, is given by (23) as
sinh® 7, = (u2 —1)/(4® +1). There is a false big bang at » = 0 and a false
big crunch at r = r,.

Let us note that inspection of the above dependence of the original
coordinate 7 on the gaussian coordinates (£,£) shows that the bang is not
homogeneous: it can be depicted as a configuration similar to a lagging
core typical of a white hole (see Fig. 4). That is, for the gaussian system
there is no unique moment of creation; separate parts enter the gaussian
domain at distinct moments, viewed in terms of the cosmic time .

Figure 3. Milne’s ghost observers in Minkowski space-time. The false big bang occurs
at (an arbitrary) point O.
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Ly, E
/@6\ / 9kz=z(7

Figure 4. Milne’s ghost observers in Gddel space-time. The false big bang occurs at
r = 0. The false big crunch occurs at r = r..

From the theory of geodesics in Godel’s geometry [2,3] it follows
that the region covered by such Milne observers—which we call the G+
Universe—is the largest causal domain of Gédel’s model (see Fig. 4). Thus
the hypersurfaces f = constant provide Cauchy surfaces for all points in the
Gt Universe.

This in turn can be used to examine the evolution properties of any
field theory described by initial data on surfaces ¢ = constant in G*. Equiv-
alently, one can define standard commutation relations at f = constant and
propagate them throughout G* in order to elaborate a canonical quantum
version of a field theory.

Although in these considerations we have been concerned with Godel’s
Universe, the construction of similar Milne-type observers for different
classes of geometries can be achieved through the generalization of the
procedure shown in the above example. Some of those (e.g. Minkowski)
are of limited importance (generating trivial Cauchy horizon), but others
can be of crucial value (e.g. the G+ Universe) in the set up of a field theory.

Therefore, from what we have learned we conjecture that Milne’s ob-
servers provide the most natural frame in which a Quantum Field Theory
may be established in space-times which contain closed time-like curves.

5. BEYOND THE GAUSS-I SYSTEM

We have seen the reasons which forbid the analytical continuation of
the Gauss-I system beyond a certain finite radius »,. However, we can
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find another gaussian system for r > 7, just by choosing another set of
fundamental observers.

This is equivalent to defining a new local time #, through the choice
of another class of time-like geodesics. Thus, in the new system (call it
Gauss-II), instead of the values (15) for the parameters which characterize
the congruence in Gauss-I, we set

: 1
Ao=E, Bo=Z, Co=0, Do=-. (30)
a a a
Then the constants v and 32 take the values
v s 1
- - 31
7= F=0 (31)

From the previous analysis it follows that we must select u? > 1. Then
0 < 8% < 1 guarantees the existence of the Gauss-II system of coordinates.
We note that the parameter v is the true factor which defines the domain
of validity of Gauss-II. The explicit transformation formula which relates
the cylinder system of coordinates (1) to the Gauss-II system is given by

1y = pat + vad + % v 12 4+ larcsin Uy
— V—;— arcsin yp + % (v+ V2 i) arcsin A,

- 1
Er=t+ a arcsin Wy + — arcsin Az
(32)

IS V2

1 1
fo=¢+ 3 arcsin Ag — 3 arcsin s

Eg:Z

in which
¥, = % [—2(p® + 1) — 2(u? + 1) sinh? r + W2uv + p? —1]
1 [ (2v2pv + 3u2 + 1)sinh?r — (u® +v20)2 + 1
Ay =— —3 (33)
V1 sinh“r 41
1 |20+ (2v2pv + p?)sink’r
X2 = Va sinh®r
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in which
g= (2V2uv + p? — 1) —w2(p? 4 1). (34)

Just for completeness, we can exhibit the components of the four-
velocity p# of the Gauss-II observers which in the cylindrical coordinate
system are

P’ = —1T [u(1 — sinh®r) + 2]
a? cosh* r
1 .
P = e [(u® — 1) cosh® rsinh® r — (V2 psinh? r — v)’]
1
2 \W/2usinh®r —
P acosh? rsinh? r [\/_/1 sinh”r —v]
p3 = 0. (35)

We can use this to give the direct proof that the angle between Gauss-
I observers four-velocity p# and the four-velocity V# of the matter content
of Godel’s Universe is precisely the same as the Gauss-I observers,

PV =1V, = p. (36)

This reflects the continuity property which yields a coincidence of the
two classes of Gauss observers in the limit #» — 0. Combining the values
of the parameters Aq,By,Co and Dy from (30) with the form (9) of the
effective potential we conclude that the domain of validity of the Gauss-1I
system is bounded by the range ry < r < r9 as given previously by Fig. 1
which is the classically accessible region for a free particle.

One can give an overview of those coordinate systems in the following
terms. The system Gauss-I covers a part of Gédel’s geometry that consists
in those points limited from an arbitrary origin (say point ) which we
gauge r = 0 to r = r, with sinh®r, = (u2—1)/(4®+1). Thus the extension
of such a domain depends on the value of the parameter p.

The range of the second (Gauss-II) system depends not only on p but
also on the value of the parameter v, and it is bounded by r; and ry. We
can choose these parameters in such a way that we have r; < r., with a
non-vanishing intersection of both systems. This allows for the continuity
of the covering of the Godel geometry from 7 = 0 to r = ry.

We can proceed further and define a third gaussian system {call it
Gauss-I1T) which will display the same feature as Gauss-II. This proce-
dure can be repeated. The net result of this is nothing but a piece-wise
synchronization of the whole Godel Universe.
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Let us pause for a while and consider what we have achieved. From
what we have learned above it follows that the impossibility of defining
a unique global time can be interpreted as the requirement of the uses of
non-gravitational forces to accelerate an observer in order to provoke its
passage from a given geodesic congruence (which provides a definite lo-
cal synchronization) to another one (correspondingly, to another gaussian
time).

The set of gaussian observers which we use to define the Gauss system
encounters some unusual properties due to the existence of closed time-like
lines (cTL) in this geometry. It seems worthwhile then not only to look
into the properties of these cTL but also to try to answer the question
of how a material particle could be accelerated in order to follow a ¢TL.
Besides this, one could contemplate that the difficulty of extending the
path of a real particle beyond a certain region in Gédel’s Universe might
be a classical hindrance. Is it possible that some sort of quantum tunneling
effect might lead a particle to escape from the confinement which we have
described earlier? In the next section we will elaborate an answer to these
two questions.

6. BACKWARDS TIME TRAVEL

Godel’s geometry has five Killing symmetries. One of them, which
in a given basis can be characterized by 3/0¢, is of particular interest.
This is because of its unusual property which guarantees that the vector
8/0¢ is space-like for r < r. and becomes time-like for r > r.. This
property has been employed, since Godel’s original discovery, to adapt
an observer to a closed time-like line (cTL). Indeed, the line defined by*
r = ry = constant, z = z; =constant, { = {5 = constant and 0 < ¢ < 27 is
a cTL for ry > r.. Once this curve cannot be a geodesic (cf. our previous
remarks), the question then arises of what the required force is which
constrains a particle to follow such an unusual path.

The most natural candidate for this enterprise should be a rocket
which carries enough fuel to undertake such an incredible journey. How-
ever, it has been shown in a very direct way [5] that the fuel consurmption
on such a path would be so high (almost 100% of the initial mass contained
in the rocket) that it would preclude such backwards time travel.

Instead of considering some sort of technological argument which
might produce more economic utilisation of the fuel, we will turn to a

4 We are using here the cylindrical coordiante system.



Synchronized Frames for Gédel’s Universe 155

more fundamental question: How should a machine operate in order to
send a real particle of well-known properties travelling backwards in time?

We will discuss the case of setting an electron to undertake such travel.
We decide to proceed in this way because it seems to us that, if we answer
this question for the electron, then we would quite naturally gain some
insight into the corresponding question of travelling backwards in time for
macroscopic bodies, at least as far as theoretical arguments are concerned.
The problem can thus be clearly stated as follows.

Consider an electron which follows the trajectory I' characterized (in
the cylindrical coordinate system) by

t=1tp =const.,, r =1y =const., z=z=const., 0<¢<2r. (37)

The normalized four-velocity b# of the electron is given by

1
" =10,0, ,0 (38)
( asinh r\/sinh®r — 1 )

The corresponding four-vector acceleration b* defined by b* = bhb” is
directed along 8/0r, that is

. 2 _
i (0 cosh r(sinh” r — 1) ’0,0>' (39)

" a?sinh r(sinh? 7 — 1)

As we have stated above, the gravity field alone cannot provide for
such travel. The question we face is then the following: What force main-
tains the electron in such a strange orbit? What is responsible for such
motion?

Our strategy for solving this problem is simply to lock for a com-
bined effect of gravity and electromagnetic forces. We decided to turn our
attention to these two forces because they are the only long-range forces
known. This seems a good criterion, once we know that the breakdown of
synchronization is a global effect (see the analysis in the previous section
of the limitation of gaussian domain for a coordinate system).

We will examine the orbit (37) in Godel’s Universe. Thus, any electro-
magnetic field present on it must be treated just as a small perturbation.
In order to simplify our model we restrict the analysis to a sourceless pure
magnetic field, as viewed in the frame comoving with the rotating matter,
which is the source of the geometry. In the cylindrical coordinate system,
the unique non-vanishing component of the electromagnetic field is set to
be

F?2=H (40)
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For the comoving matter with four-velocity V# [cf. eq. (3)] this is
indeed a pure magnetic field directed in the z-direction. However, in the
electron’s frame which has four-velocity b# [cf. eq. (38)] this is not a pure
magnetic field. Indeed, for the electron we have a non-null electric-tensor
given by

E, = Fub* = Fab® #0. (41)

The Lorentz force provides the necessary acceleration to keep the elec-
tron in the orbit T, for r = rg, if the strength of the field is given by

m cosh r(2sinh? r — 1)

ea? sinhr

H(r)= (42)

Solving Maxwell’s equations as a test field in the background of Godel’s
geometry yields the dependence of H,

~ sinh2r

(43)

Combining eqs. (42) and (43) for a given value r = rq yields the value
of the intensity Hy, that is,

_ 2m cosh? ro(2 sinh? rg — 1)
™ ¢a3 sinh ro(sinh®ro — 1)3/2

(44)

This is the strength of the magnetic field which maintains the electron
in the T orbit. It remains to be proved that the energy of such field is small
enough compared to the matter density p as given by (6) in order not to
disturb significantly the geometry of the background.

Let us look for the physical components of the stress energy tensor in
a local inertial frame. We choose to work in a tetrad eZ such that

€{a)€(p)14B = ap (45)

in which indices A, B, ... are tetrad indices, 74 g is the Minkowski metric,
diag. (+ — ——). Using the cylindrical coordinate system we have

ey = e(1) = €fs) = @
e(()z) = v2asinh®r (46)

2 _ .
e(z) = asinhrcoshr
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and its inverse

1
e® = V= o) = -
o0 - Y2 sinhr 47)
a coshr
1 1
=l

a sinhrcoshr’

In the tetrad frame the energy of the matter is a constant given by [cf.

eq. (6)] .
Too=p= ol (48)

The energy of the magnetic field is also given by a constant

4
mag. a
T8 = 5 . (49)
We should then require
16
HY < — . (50)

Substituting the previous results in this inequality yields

h?ro(2sinh?rg — 1 e
c?s ro(. ! ro ) <2t (51)
sinh ro(sinh® ro — 1)3/2 m

Thus, given the value of the ratio e/m, (51) yields a limit value for
ro in order not to violate the above requirement. Using the values of
the properties of the electron we conclude that the minimal value of the
radius 7o of the orbit I' is near the critical value r.. Thus, it suffices to
choose a massive charged particle to allow for travel backwards in time,
circumventing thus the difficulties pointed out by Malament [5].

7. FIELD THEORY IN CAUSAL DOMAINS: A GENERAL SCHEME

From what we have learned in the preceding sections we conclude
that the gaussian coordinates (¢,£, 7, 7) consitute a natural framework in
which the evolutionary equations for an arbitrary test field ®(z*) should be
examined. In this section we present an overview of the standard scheme
which allows for such analysis. We consider a real scalar field ®(z#) which
satisfies the wave equation

0% =0 (52)
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where [ is the d’Alembertian operator in the metric
ds® = di* — a*(p* — 1)d€* + g(£,€)dif* + 2h({,§)dE dij — dF*  (53)

in which the functions ¢ and A are given by

1
gL 2 2(1 sin M) [u® + 3 + (4? — 1) sin M]
4 (u + 1)
V2 P (54
= 1-—
5 T ( sin M)
and 5
M= -C;\/u2+1(t~—-pa£). (55)
Using the definition of the d’Alembertian in the metric (53) it follows
that
2 /12
ne=22 v+l w2
ot? a ot
1 1 , Y- -
a?(p? -1 (p?+1) l+sinM[IJ +3+(u )sin ]652
42 1 9%
a?(p? — 1) 1+sin M §€95
2u 1

Vi +1a2(p? 1) cosM(1+smM)
x [u? + 3 + (p? — 1) (sin M — cos? M)]aa—?—

B 4/ 2u\/p? +1 1 0%

a*(p2—1) cos M(1+sin M) 05
4241 1 80 10

= —=0.
apZ—1cosM 92 a2 072
In order to solve this equation let
®,(z) = e™e I F (M) (56)

in which F/(M) is a solution of the equation

o MYF" + B(M)F' + y(M)F =0 (57)
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where F' = dF/dM and

(2~ 1)sin M — (3p? +1)

M) = Tz 4 D) (1 + s 2
n2\/§,u
M) = —tan M
A(M) (2 = 1)/p2+1(1 —sin M) f
o #2102 ) + (2~ 1) (sin? M 4 sin b - 1)
(12 — 1) (2 + 1) cos M(1 + sin M)
7(M) = - n2p ,
(B2 = D/p? 4+ 1 cos M(1 + sin M)
n? k?

B (2 = 1) cos2 M + Au? +1)° (58)

We define the scalar product of functions ®; and ®, in the standard
way:

(®1, ;) =i / 19 , Bod W, (59)
1Y)

We know that a foliation of space-like surfaces in G4 is provided by
the hypersurfaces ¥ = { = constant. The time-like vector N » normal to
these hypersurfaces is given by N, = 9,% = (1,0,0,0) and thus it yields
d¥# = N#,/[det g, | dédijdz.

Let us point out that the time-like Killing vector which allows the
above definition of the scalar product is provided by K¢ = (g,1/a,0,0)
which in the cylinder coordinate system (t,7,¢,2) reduces to the form
K* = (1/a,0,0,0) tangent to the velocity flow of the matter. Note that

V/Idet g, is equal to

\/|detg |::-(f-uz—_——l-[(;ﬁ—1)(1—sin2M)]1/2
1214 9 ﬂ2+1 .

We are thus prepared to pass to the quantization in G4 by setting the
canonical commutator relation, for instance

[®(f1,61), 8(F2, &) ]z = 0. (60)
From the Lagrangian

L=+/—g0,89,09""
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We can proceed to obtain the associated moment

5(0®/0t)
and the remaining conventional procedure of field theory.

It seems worth pointing out that some authors [7] argue that the
standard quantum field theory may not make much sense in a space-time
which contains closed time-like lines (oTL) as in Gddel’s Universe. Note
however that by using the generalized Milne coordinates, it is possible to
construct a frame in which the local causal structure of the space-time is
explicitly guaranteed. One could envisage applying this method to any
space-time which contains cTL. We postpone the complete analysis of this
question to a forthcoming paper.

8. CONCLUSION

In this paper we have analysed the main properties of the synchro-
nization mechanism in Godel’s Universe.

The impossibility of constructing a unique global gaussian system of
coordinates is related to the confinement properties of the geodesics in this
geometry. This unusual behaviour is demonstrated in a direct and simple
way through the method of the effective potential introduced earlier to
reduce the analysis of the geodesics to the dynamics of a single particle
submitted to a central force.

After a review of the geodesics we present a set of gaussian system of
coordinates in such a way that their union provides a complete cover for the
whole manifold. We have identified the existence of closed time-like lines
(c1L) with the property that forbids the extension of a local gaussian frame
beyond a certain range, Thus, we recognize the impossibility of establishing
a global Cauchy surface. This yields two alternatives; either we abandon
the project of constructing a causal chain of events from a given set of
initial data, or we should restrict the description of the evolution of a field
to a finite region inside the frontiers of a causally related bounded domain
of space-time. This has led us to contruct a convenient frame which is
the generalization of Milne’s idea of special observers. This generalized
Milne’s observers constitutes a special frame to which a causal field theory
can be constructed.

We are thus led to conjecture that it is possible to use this kind of
frame in any space-time which contains closed time-like lines in order to
provide for a formulation of a causal field theory.
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On the other hand, we have presented a mechanism which consists
of a combined action of long range fields (electrodynamics and gravity)
that induces a real particle—say, an electron—to undergo backwards time
travel.

Finally, we argue that going into a quantum version of the theory does
not modify the confining character of Godel’s geometry.

APPENDIX. SCHRODINGER’S QUANTUM EQUATION

In this appendix we will present an overview of the arguments pre-
sented in Section 4 and which aim to anser the following question: Can a
quantum mechanism induce a particle — interacting only via the gravita-
tional process — to go beyond the classical confined region [6]7

We have seen in preceding sections that the mechanism of confinement
depends only on the behaviour of geodesics under an r-displacement (we
will work here in the cylinder coordinate system).

Using the momentum P, defined previously we can re-write the equa-
tion for the = variable (7). It is sufficient to consider the case in which
By = Cy =0 [cf. eq. (15)]. We then have

2
P2+ Dj + A} [1 - ——2—} = 0. (A1)
cosh”r

Following the standard prescription of the first quantization, we will treat
P, as the operator,

fd 1

to obtain Schrédinger’s equation

2 2d . 2A2 2

[Zlﬁ o Dy + oshZr r] U= A5¥ (A.3)

or, setting

) _ 243
2mV(r) = D§ — 5 (A.4)
cosh” r
2mE = —A} (A.5)
thus,

@2 2d
- (EJTQ += E) ¥ = 2m(E — V)V, (A.6)
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We set 1

U= - u(r) (A7)

to arrive at -2 ,\(/\ N
ETTZ— + k + — cosh (7’) =0 (A8)

in which
AA - 1) =243
(A.9)
= —(D§ + A}).

Thus, the dynamical behaviour of a particle in Gédel’s background
under the standard Schrodinger quantization is reduced to the problem
of a particle in a Posch—Teller potential (A.8). This potential has a well-
known structure, and appears in connection with completely integrable
many-body systems in one dimension. It appears also in soliton solutions
to the Kortweg—de Vries equations, etc.

Changing to a new variable y = cosh? r (which maps the domain
0 < r < oo into the transformed one 1 < y < 00) eq. (A.8) can be written
in the more fashionable form

d*u 1 du k2 A(A-1)
-wgi+ (3-v) G- (5+7% ) v=0 @)

Write
u =y (y) (A.11)

to obtain the equation for v as

d?v dv 1 ,., .,
y(l—y)a?-l-[(/\-l-l/Q)—(/\-l)y]@—z(/\ +k)w=0 - (Al12)

Re-defining .
=s(A+ ik
@< 04k (1)
b= 3(A—ik),
we re-write this equation for v as
d%v dv
— ) — — — —abv = Al4
yd-y)5s +le—(a+b+ 1yl —abv=0 (A.14)

withc=a+b+1/2.

This procedure led us to eq. (A.14) which can be recognized as a
typical equation for hypergeometric functions. The radius of convergence
of this series is given by |y} < 1.
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It is possible to extend analytically this function for the whole complex
plane through the cut [1,00). Define the variable z = 1 — y; then

d%y

dv
z(l~z)p+[l/2—(a+b+l)z]gz—zbv—0, (A.15)

the solutions of which are given by
v=c1F(a,b,1/2,2) + co(1 —y)"/2F(a+1/2,b+1/2,3/2,2). (A.16)

In order for ¥ to be finite at the origin r = 0 we must set ¢; = 0. In the
other limit » — oo we can write

O n & -1 A4 1)rp3 I'(b—a) 92a+1,—(2a41)r

r 2 T +1/2T(1 ~a)

I'(a~b) 2641, —(2b41)r
MSCESTO N N

and thus
eXr

eAr 0
¥ T 8—2ar + T e T, (Al?)

In order to normalize ¥(r), the first term of the expression above
should be null. Thus,
l-a=-n (A.18)
or
3+b=—n. (A.19)

Thus, the I' function has poles in these values. Setting

1

a1 (x_,/DngAg)
1

— 2

/\_2 <1+\/1+8A0) (A.20)
_ A2

E= 9
2m "’

we can find a functional relation
E, = f(n, Dy, m) (A.21)

where n is an integer and > 0.

We can now interpret particles of mass m following geodesics in
Godel’s Universe as quantum particles submitted to a Posch-Teller po-
tential. The functions ¥, being normalized, permit us to achieve the ex-
pression of the energy which depends only on Dy, the mass m and an
integer number n.
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