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Abstract 

The gravitational field of a massless point particle is first calculated using the linearized 
field equations. The result is identical with the exact solution, obtained from the Schwarz- 
schild metric by means of a singular Lorentz transformation. The gravitational field of 
the particle is nonvanishing only on a plane containing the particle and orthogonal to 
the direction of motion. On this plane the Riemann tensor has a 3-like singularity and 
is exactly of Petrov type N. 

1. Introduction 

The interest in gravitational fields generated by sources which move 
with the velocity of  light has increased in ILhe last years, because of their 
close connection to gravitational waves. The best known source of this 
type is the electromagnetic radiation field~ Already Tolman [1] in 1934 
studied the gravitational field of  light beams and pulses in the linearized 
theory. However, only in 1959, Peres [2] proved the existence of exact 
solutions to the combined Maxwell-Einstein equations for electromagnetic 
null fields. Recently a series of  papers by Bonnor [3-5] discussed the 
gravitational field produced by null fluids, i.e. fluids moving with the 
velocity of  light. The common result of  these papers is that the fields 
produced by null sources are plane fronted gravitational waves. 

In this paper we calculate and discuss the gravitational field from a 
single photon or, to be more precise, the field of  a point particle with zero 
rest mass moving with the velocity of  light. 

We derive this field in two ways: first, in Section 2 we solve the linearized 
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Einstein field equations for a particle with rest mass m moving uniformly 
with the velocity v. We investigate the field in the limit v-~l,  while we let 
the mass tend to zero in such a way that the energy of  the particle remains 
finite. We show that, when this limit is carefully investigated, the result is 
the same as solving the field equations directly with an energy momentum 
tensor for a massless particle, as source term. 

In Section 3 we turn to the full Einstein equations and start with the 
exact metric for a particle at rest, i.e. the Schwarzschild solution. We 
apply to this metric a Lorentz transformation to obtain the gravitational 
field as seen by an observer moving uniformly relative to the mass. How- 
ever, again the limit v ~  1 and m ~ 0  is not properly defined and can only 
be carried out after a suitable coordinate transformation. We show in 
some detail how this is achieved. The remarkable result is that both the 
linearized solution and the exact solution agree completely. 

Physically our result is that the gravitational field of  a particle moving 
with the velocity of light leads to a Riemann tensor Rigtm =0  everywhere, 
except on the hypersurface which contains the particle. On this hyper- 
surface some components have a 3-like behaviour. Further we show that 
the resulting metric corresponds to gravitational plane fronted waves. 
The static Schwarzschild field is thus transformed into a pure radiation 
field. 

Independently, this is also shown by transforming directly the curvature 
tensor of  the Schwarzschild field. Starting with the canonical form of  the 
Riemann tensor, for which the Schwarzschild field is of  Petrov type D, 
we obtain after taking the limit v ~ l ,  a pure Petrov type N field. Again 
the curvature tensor shows the characteristic f-like singularity. 

In the Appendix we prove a useful relation for obtaining the limit 
v ~  1, which is needed for the above mentioned calculations. 

2. The Linearized Solution 

From the Einstein field equations1" 

Ri~ - �89 = 8 zrTl~ (2.1) 

one derives by the standard approximation 

g~  = ~7~ + 2h~ 

with (h~) 2 - 0 ,  the linearized field equations 

[] ~l~ = 8 rrT t~ with elk = ht~ _ b/~hl~. (2.2) 

It  is our task here to solve equation (2.2) for a uniformly moving point 
particle source. The energy momentum tensor for a particle of rest mass 

t W e  use  the  conven t ion  ~/r~ = diag (1, - 1, - 1, - I )  a n d  indices are  raised a n d  lowered  
wi th  ~7*e in this  sect ion only. F u r t h e r  we take  c =  G =  I .  



ON THE GRAVITATIONAL FIELD OF A MASSLESS PARTICLE 305 

m moving with constant velocity v in the x-direction is given by : 

with 
Tie(x) = m ( 1 _ / ) 2 ) - 1 / 2  a(x -v t )  a(y) ~(Z) SiS e 

s i = 8o t + vS1 ~. 

(2.3) 

(2.4) 

Inserting equation (2.3) into (2.2) one can use the retarded Green function 
to solve for r 

r = [{(x-vt)e+(1 - v  2) (y2+zZ)} (1 -v2)]-1/z m s i s e. (2.4) 

For  v = 0 equation (2.4) reduces to the linearized Schwarzschild solution 

r =__2m 8d30e, with r2=x2+y2+z 2. 
r 

I f  we let v approach 1, the energy of the particle diverges because of  the 
finite rest mass m. Therefore we write 

m =p(1 - v2)+1/2 (2.5) 

and keep p constant when taking the limit v-+ 1. This means that the total 
energy, p, of  the particle is kept constant while its rest mass goes to zero. 

However it is not straightforward to obtain ~bie in the limit v-+ 1 because 

lim {(x - vt) 2 + (1 - v 2) @2 + z2)}-1/~ (2.6) 
V--+I 

is not a tempered distribution [6] and the limit is not defined for all values 
M. To overcome this difficulty one can directly put v=  1 in the energy 
tensor equation (2.3) which gives us, taking into account equation (2.5) 

T t~ = p S ( x -  t) 3(y) 8(z) ~i2e, with ~l = s  i (v = 1). (2.7) 

But we note that integrating equation (2.2) with equation (2.7) as source 
term, using the retarded Green function does not lead to the correct 
result [7]. The reason for this is that the source is moving with the funda- 
mental velocity. 

The correct solution for the source term (2.7) is obtained through an 
ansatz by splitting off the 8 ( x - t )  function, to give: 

~ble(x) = p S ( x -  t) G2(y, z) gige + CHie (2.8) 

where Gz(y, z) = In (y2 + z2)1/~, is the Green function of the two-dimensional 
Poisson equation 

~-~+-fffiz2 Gz(y, z)=2rr  8(y) 3(z) (2.9) 

and ~H le is a homogeneous solution of  equation (2.2). 
In the next section and the Appendix we give a prescription how to 

obtain a meaningful limiting procedure for (2.6). We prove that this 
actually leads to the same result given by equation (2.8). 

Because all r are proportional to 8 ( x - t )  the metric is Minkowskian 
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for x r t and 
Rlkzm=0 

i.e. the curvature tensor vanishes everywhere except on the hypersurface 
x = t .  

The linearized theory predicts therefore that the gravitational field of a 
massless point particle has a Riemann tensor which vanishes everywhere 
except on the hypersurface t - x  = 0 which is determined by the direction 
of  the velocity of  the particle. On this hypersurface several components 
of the Riemann tensor diverge. 

However, the linearized theory cannot be applied to the hypersurface 
x -  t = 0 since the gravitational potentials ~b~ show there a 3-like behaviour. 
In the next section we shall, therefore, repeat our calculation using the 
full nonlinear theory of gravitation. 

3. The Exact Solution 

The exact exterior solution for a mass m at rest is the well known 
Schwarzschild metric, which in isotropic coordinates is given by [8] 

ds~ = (11~- AA~)~ d t Z -  (1 + A) 4 (dx2+dy~+dz ~) (3.1) ( + )  

with A=m/2r and r2=xZ+ y2+ z 2. 
An observer moving uniformly relative to this mass will see the metric 

deformed by a Lorentz transformation. I f  we apply a Lorentz transforma- 
fion in the x-direction 

[= (1 - vz)-l/z (t + vx), 

2 = (1 - v2) -1/2 (x + vt), 

the line element (3.1) changes to 

)7=y 
(3.2) 

ds =(1 (df2-d Z -dy -dz )- (1 +A)4- +A] j l -v2 

(3.3) 
with p(1 - v 2) 

A _ ~  m _  
- 2r - 2{(~ - d )  ~' + (1 - v 2) (y2 + Z2)}l/z" 

Here we see the same characteristic denominator as in equation (2.6). 
However, the factor (1 - v  2) in A guarantees that 

lim A = 0 
v--+l 

for all values of t, x, y and z. 
Again 

P /2 P for : ~ f  
lim2{(2_vOZ+(l_v2)(yz+e2)}l/~= ~ I ~-- f I (3.4) 
~--,1 (divergent ~ = f 
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is only defined for  space t ime points  [# f f ,  while for  f = 2  it cannot  be 
writ ten even in terms of  generalized functions. 

Fo r  [ #  g one easily sees that  the line element becomes 

4p ( d / -  d2) 2 (3.5) ds 2 = d[2 - d 2 ~ -  d)92- d22 [ [ -  2 [ 

for  which ~zm(2) =0. 

In  order  to carry out  the limit v ~  1 also for  space t ime points [ =  2 we make  
use of  the following relation, which we prove  in the Appendix  

lira { [(2 - v[)Z + (1 - v z) p2]-1/~ _ [(2 - vi)z + (1 - re)] -1/2} = - 28(2 - D In 0 
v--+l 

(3.6) 
with p~ =pz + e2" 

To apply this relation we need to generate in equat ion (3.3) a te rm equal 
to the second one on the 1.h.s. o f  relation (3.6). This can be achieved by 
the coordinate  t ransformat ion  T(v) 

T(v) : x ' -  vt' = 2 -  v[ (3.7) 

x' + vt' = 2 + v f -  4p In [ ~ / (2- -  vf) 2 + (1 - v 2) - (2 - 0] .  

This t ransformat ion  leaves the coordinates 2 and )7 and the funct ion A 
invariant.  Since we are interested in the limit v + l  we may  expand the 
metric  in powers  of  A : 

(1-A 2 
~ ]  - ( l + A ) 4 = - 4 A + 2 A  2 - 1 6 A 4 + .  . .  

When  t ransforming the metric  equat ion (3.3)  with T(v) we retain only those 
powers  in 1 - v ,  which contr ibute  to the metric  as v tends to 1. After  some 
calculations we are left with the following metr ic:  

ds z = dt '2 _ dx,2 _ dy,2 _ dz,2 

{ 1 U ; - - ~  - - - - l ( d t ' - d x ' ) L  
- 4 p  ~/(x,_vt ,)2+ p2(l_v2) V'(x - v t  )2+(1-v2)J 

(3.8) 

I t  is now possible to take the limit v-~ 1 which is given by relation (3.6), 
to obta in  

ds 2 = dt ' 2 -  dx '2 - dy '2 -  dz '2 + 8p~(t' - x') In (y,2 + z,2)1/2 ( d t ' -  dx ' )  z. 

(3.9) 
Finally, we return to the coordinates  2 with the inverse t ransformat ion  
I T ( v =  1)] -1 which can be read off  f rom equat ion (3.7). The result is 

{ 1 23([2_22)ln(f~_l_2)l/2}(df_d2)2. d s Z = d t 2 - d x 2 - d y 2 - d z 2 - 4 p  ] [ - 2 1  

(3.10) 
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For f # 2  this is exactly the metric equation (3.5) for which Rikzm=0, 
since the term I # - ~  ] -x does not contribute to the Riemann tensor. 
Because of the appearance of 8-functions in the g,g one should be cautious 
when working with this metric. However, det(g,D = -  1, and the g*#~ are 
well defined. Moreover, one notices that the metric (3.10) has the form of a 
gravitational plane fronted wave, which has been extensively studied [9, 10]. 

For the metric (3.10) one shows that the non-vanishing components of 
the curvature tensor are given by: 

R ( H, ac for b = d  (3.11) 
abca= l _ H, ac for b # d  

where a, c can take the values 2 and 3 only while b and d are restricted to 
0 and 1. 

Calculating Rikzm from the metric (3.10) with the help of (3.11) leads 
to t  

1 
R020~ = 4p 8(#- L(y2 + e2)  k =8(#) 8(s)] 

[ 8( 1] Roaoa =4p 8([-  ~) [ ( # ~ ) ~  ~r807 ) 

. . . . .  2yg 
R020a = - 4p ~ ( t -  x)  (#2-~-~2)2" (3.12) 

All other components are either vanishing or related to the ones given 
above by symmetry, 

For the Ricci tensor the nonzero components are given by 

R00=Rll= - R o l  = - ( H ,  ~2+ H, aa)=8~rpS(/-~) 8(9) 8(~) 

so that the energy tensor has the required form 

T~'~(~) =p a f t -~)  8(y) 8(~)g~. 

The reason why it is possible to carry out the limit v-+l, in the metric 
equation (3.8) after transforming with T(v) is 

O T ( v ) ~ o ~ l i m T ( v ) = o ~ T ( 1 ) .  lira 
v---,1 v--+l 

Next we shall rederive (3.12) in a different manner. 
Instead of transforming the Schwarzschild line element (3.1) we apply 

the Lorentz transformation (3.2) directly to the components of the Riemann 
tensor and investigate their behaviour for v-+ 1. 

For this we work in the Vierbein formalism, The Riemann tensor of 
the Schwarzschild metric (3.1) can be transformed into canonical form 

t W h e n  differentiating we use the  m e t h o d  of  generalized funct ions  [6]. 
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by the choice of a Vierbein ;~: 

I + A \  0) 1 
(o) 

1 z x  1 3 =  1 
+A) 2 V'x~+y2 zy r(1 +A) ~ " A2=r(1 _ (x  2 +y2) 

(i) 
(3.13) 

the form 
R~7e= RAB c~+ A, ~,3-+ B, A, B=0,  1 . . . .  ,6  

- ~ / 2  0 ) 

- ~/2 
Q = [01 (3.14) 

where the scalar invariant a=2m/r a. Thus the field is of type D [9]. From 
equation (3.14) we deduce that the Ricci tensor vanishes everywhere. 
However, equation (3.14) is only valid for space-time points where r # 0 ;  
for r = 0 the curvature tensor has an essential singularity and 3-like terms 
should be added in order that the Einstein equations are satisfied for a 
point source. 

For simplicity we restrict ourselves to the exterior field, i.e. r#0 .  
The Vierbein frame (3.12) is at rest relative to the Schwarzschild singu- 

larity and on the plane x = 0, ~1 is parallel to the x-axis. In order to calcu- 
late the Riemann tensor as seen by an observer moving in the x-direction 
with velocity v, we have to apply a Lorentz rotation to (3.13), given by (1 ) 
)~; = A;~ ~p A~P = 1 1 ( 3 . 1 5 )  

~/1 - v ~  ~/F2b~ 

The components of RAB transform under this rotation according to 

RAB =LACLBDReD (3.16) 
where 

L A  B = �89 ~ - A-~SAu]. 

The Vierbein components R~ve=R~lra Aj1~e,~vl)iem of the Riemann 
tensor take then, written in six-dimensional space, 
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The local coordinates i and 2 of an observer who is at rest with respect to 
the transformed Vierbein are parallel to W6o and h~. The quantity ~(x) 
contained in (3.14) becomes a function of the new coordinates 2: 

~(~z) = 2p(1 - v2) [(~z-  vi)2 + (1 - v2) ( ~  + ~2)]-3/% 

Now lim ~(2) is well defined (see App.) and gives: 

lim ~ ( 2 ) = - 2 p  3(f-2)  [y2+2211/2. (3.17) 
v--+l 

Performing the Vierbein transformation (3.15) with the aid of (3.16) and 
inserting for ~(2) in (3.14), we finally obtain the Riemann tensor for 
points where y2 + gg, # 0: 

~ !t 1~:--0~2+.~2)1/2 1 , Q=079.+g2)l/~ 0 . (3.18) 
0 - 1 

In accordance with (3.12) we obtain the 3-like behaviour of R,k~ra on the 
hypersurface 2 =  L The functions 3(37) 3(g) are missing in equation (3.18) 
because of the restriction to values 37 2 + ~ # 0 .  Therefore Rtk(2)=0, i.e. 
we have only the exterior solution here. From equation (3.18) we see that 
the field is exactly Petrov type N. 

4. Discussion 

We first note that transforming the exact Schwarzschild metric (3.1) 
has led us to the same result as obtained from the linearized theory, 
i.e. equation (3.10) and equation (2.8) respectively. This result is mathe- 
matically expected because lim A->0 for v-+l, which corresponds to a 
linearization of the metric (3.1). 

Secondly, we see that the metric (3.10) is of the type of a plane fronted 
gravitational wave. This result is confirmed by showing that the Lorentz 
transformed Riemann tensor of the exterior Schwarzschild field becomes 
a pure Petrov type N field. Pirani [11] has previously pointed out that the 
leading term of the gravitational field of a fast moving particle, is of type N, 
although the exact type remains D. In our case the type changes from D 
to N, which is due to the singular character of the Lorentz transformation 
for v->l. 

Physically the gravitational field of a rapidly moving particle shows the 
same characteristic behaviour as its electromagnetic field: it is dilated in 
the direction orthogonal to the particles motion and compressed in the 
direction of the motion. This can be seen by investigation of the quantity 
~(x) in equation (3.17) or in equation (2.7) for large values of v. In the 
limit of a massless point particle moving with the speed of light, this 
compression becomes extreme and the field is non-vanishing only on a 
plane containing the particle. 

The metric (3.10) represents therefore a pulse of a plane fronted gravi- 
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tational wave. The gravitational field travels along with the particle and 
being zero everywhere except at the hypersurface t = x. We should mention 
that Bonnor [3] and Penrose [12] have independently discussed this type 
of a gravitational wave pulse. 
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Appendix 

In this appendix we sketch the proof of relation (3.6) which is essential 
for carrying out the limit v-> 1 in the metric (3.1). 

If  one defines 

fv(x  i) =-- [(x - vt) 2 + (1 - v 2) (y2 + z2)]-1/2 __ [(X - - / ) / ) 2  -]_ (1 - - / ) 2 ) ] - 1 /2  (A. ]) 

the relation (3.6) reads 

l imfv(x i) = - 23(t - x) In (y2 + ze)l/Z (A. 2) 
V--+I 

to be valid in the sense of generalized functions for all values of t, x, y 
and z. We prove this by showing that 

(i) lim Fv(x i) = - 20(t - x) In (y2 + z2)i/2 (A. 3) 

where 

Fv(xi) = (x dx' fv(t ,  x', y, z). 
- - c o  

This relation has to be valid pointwise, i.e. for almost all points. 
(ii) There exists a local integrable function h(x i) independent of v 

for which 
[ gv(x ~) [< h(x i) 

for all values if v is valid. 

Integratingfv(x i) with respect to x we obtain for Fv(x ~) 

f ( x -  vt) + [ (x-  vt)  + (1 - v2) + z )]1/2 t 
Fv(x t) = In [ (x - ~ ~ +  0 - ~  j - In (y2 + z 2) (A. 4) 

thus 

~llim Fv(x i) = { - In (yZ +0 zz) fOrfor Xx_t<O- t > 0 (A. 5) 

which proves (i) for all values except 

x = t  and yZ+z2=0. 

Further, one shows that 

[ Fv(xi) I -< ] In Cv 2 + z 2) ]. (A. 6) 
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This is seen f rom relation (A.4)  by discussing the four  possible cases: 
x -  vt ~ 0 and yZ + z 2 ~ 1. The extrema of  Fv(X ~) are at the boundary  o f  the 
v interval, i.e. for  v = 0  and v =  1. Because In (y2+zZ)  is locally integrable 
this completes the p r o o f  o f  (ii) and thus o f  relation (A.  2). I n  the same way 
one verifies equation (3.17). 
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