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We study the radial motion along null geodesics in the Reissner-Nord- 
strSm-de Sitter and Kerr-de Sitter space-times. We analyze the proper- 
ties of the effective potential and we discuss circular orbits. We find that: 
1) the radius of circular photon orbits in the Reissner-NordstrSm-de Sit- 
ter space-times does not depend on the cosmological constant. We show 
also how this is related to properties of the optical reference geometry. 
2) For a specific range of the cosmological constant, photons with high 
impact parameter may travel radially between the cosmological horizon 
and the black hole horizon in the equatorial plane of the Kerr-de Sitter 
space-times. 

1. INTRODUCTION 

Investigations of the large scale structure of the universe suggest that 
the cosmological constant A is probably non-zero, although very small 
(A < 10 -55cm-2). Even the presence of such a small A will influence 
the properties of the geometries describing black holes, because they are 
then asymptotically de Sitter and not flat. On the other hand, bubbles 
of false vacuum with large absolute values of the vacuum energy-density 
are sometimes considered in recent cosmological models [1,2]. Black holes 
could form inside such bubbles and therefore it is worth considering black 
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hole space-times with arbitrarily high values of A. The properties of such 
space-times can be investigated by studying their geodesic structure, that 
is from the motion of test particles or photons. 

The equations describing the geodesic motion in black hole space- 
times with A # 0 were obtained by Carter (Ref. 3, p.57). A detailed discus- 
sion of the motion was restricted to the simplest case of the Schwarzschild- 
de Sitter space-time [4-6]. The latitudinal motion in the Kerr-de Sitter 
geometry was investigated by Stuchlfk [5]. 

In this paper we consider space-times which are characterized not 
only by the mass parameter and by the cosmological constant (both A > 0 
and A < 0 cases), but also by the charge parameter (Reissner-NordstrSm- 
de Sitter geometry) or by the rotation one (Kerr-de Sitter geometry). Our 
main goal is to describe and analyze the effective potential for radial motion 
along null geodesics, and to discuss their properties. 

2. THE REISSNER-NORDSTR{]M-DE SITTER GEOMETRY 

In the standard Schwarzschild coordinates, the Reissner-NordstrSm- 
de Sitter geometry is described by the line element 

A r r 2 
ds 2 = - - ~ - d t 2 + - : - d r 2 + r U ( d O 2 + s i n 2 ~ ~  dr (1) 

where 
A r4 r2 Q2 A r = ---~ + -- 2 M r  + . (2) 

M is the mass parameter of the space-time and Q its electric charge. How- 
ever it is more convenient to use dimensionless coordinates and parameters, 
defining y = A M 2 ~ 3  and expressing all quantities in units of M. 

Due to the spherical symmetry of the metric we can always consider 
the geodesic motion in the equatorial plane 0 = ~r/2. The radial motion 
along null geodesics is then given by (cf. eq (10) in Ref. 5) 

( )  1 2 1R(r, Q)= [ 4E2-arr v, 7 (3) 

E and �9 being the constants of motions. Defining then the impact param- 
eter ~ = ( ~ / E  it follows from eq. (3) that the r-motion is allowed only in 
those regions where 

r 4 
g2 _< ~fr(r ' y, Q) _- A~ ' (4) 
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g~fr being the effective potent ia l  t ha t  determines the turning points  of  the 
radial mot ion.  

We now first discuss the existence of horizons which are given by the 
condit ion Ar ---- 0. T he  loci of  the horizons can be determined s tudy ing  
the funct ion 

r 2 - 2r  + Q2 
y = yh(r, Q) - r4 , (5) 

considering Q as a parameter .  The  relevant cases are: 

a) Q=O 
(Schwarzschild-de Sit ter geometry)  The  loci of  the horizons can be given 
in a simple analyt ic  form, see [5]. The  subcases are: 

y < 0: there is only one black hole horizon located at rbh <~ 2. The  
space-t ime is s tat ic  for r > rbh. 
y = 0: it corresponds to the Schwarzschild geomet ry  with horizon at 
rbh ---- 2. 
0 < y < 1/27: there are two horizons which coincide for y = 1/27. 
The  black hole horizon is at rbh, the cosmological one at rch > rbh. 
The  spacet ime is s tat ic  for rbh <: r • rch- 
y > 1/27: there  are no horizons. The  space-t ime is dynamic  every- 
where. 

b) O<Q2 < l .  
In this case the ext reme points  of  yh(r, Q) are located at re• = (3/2)  [1 :t: 
(t-(8/9)Q2)1/~]. Denot ing by Ymin a n d  Ymax t h e  values of  y at the ex t rema  
we have the following cases: 

Y < Ymin < 0: there are no horizons (At  > 0 at  r > 0). The  geomet ry  
is s tat ic  at  r > 0 and describes a naked singulari ty in an anti-de Sitter 
universe. 

Ymin < Y < 0: there are two black hole horizons rbh=l:. The  geomet ry  
is static for r < rbh_ , r > rbh + and describes a black hole in an 
anti-de Sit ter  universe. 

0 < y < Ymax: there are three horizons with rbh-  < rbh+ < rch. The  
geometry  is s tat ic  for r < rbh_ , rbh + < r < rch and corresponds to a 
black hole in a de Sit ter universe. 

Y > Ymax: there is only one cosmological horizon. The  geometry  is 
s tat ic  for r < rch and corresponds to a naked singulari ty in a de Sitter 
universe. 

c) 1 < Q2 < 9/8.  

Now it is ymin ~> 0. The  subcases are: 
y < 0: no horizons. A naked singulari ty in an anti-de Sit ter universe. 
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0 < y < Ymin: one horizon (rch). A naked singularity in a de Sitter 
universe. 
Ymin < Y < Ymax: three horizons. A black hole in a de Sitter universe. 
Y > Ymax: one horizon (rch). A naked singularity in a de Sitter 
universe. 

d) Q~ > 9/8. 
There  are no local ex t rema of yh(r, Q) (if Q2 = 9/8 then ym~x -- Ymin : 

2/27). The subcases are: 
y < 0: No horizons, the geometry is static for all r > 0. A naked 
singularity in an anti-de Sitter universe. 
y > 0: one horizon (rch). The  geometry is static for 0 < r < rch. A 
naked singularity in a de Sitter universe. 

The  effective potential  (4) is well defined only in the static region 
Ar > 0. I t  diverges at the horizons and it is zero at r = 0. In the 
case of  a t t ract ive cosmological constant (y < 0) it is ge~fr(r -+ cr y, Q) = 
- 1 / y .  The local ex t rema of the potential,  which determine the circular 
null geodesics, are given by the condition 

r 2 - 3r + 2Q 2 = 0 (6) 

which does not depend on the cosmological constant y. It  follows that  also 
the radii of the circular null geodesics are also independent of y. Circular 
geodesics are thus located at rr and at re_, that  is at the same radii as 
the ex t rema of yh(r, Q).  Since re-  is located between the horizons, there 
will be circular null geodesics at re+ only, if Ymin < Y < Ymax. For y < ymi,~ 
circular geodesics do exist at both  re+ and at r e - .  Contrary to the radius 
of  the circular photon orbits, the impact  parameter  of these orbits depends  
on the cosmological constant 

3. THE KERR-DE 
GEODESICS 

I~+(Q'  Y) = -yr4~• + re• -- Q~ " 

SITTER GEOMETRY: EQUATORIAL NULL 

In Boyer-Lindquist coordinates, the Kerr-de Sitter geometry is de- 
scribed by the line element 

ZXr 
ds 2 = - ~ (dr - a sin 2 0 dff) 2 

p2 p2 d~ 2 + A~ sinZ-------~P [a dt - (r  2 + a2)d4)] 2 + - ~ d r  2 + -~o_v , (7) 
I2 p 2 
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where 

[s ( 1 - 3 r B )  (r2+a2)-2?TIr , (Sa) 

Ae = 1 + 3 a2A c~ 8, (8b) 

1 
I = l + ~ a  A, (8c) 

p2 ~- r2 _}_ a 2 cos ~ 0; (8d) 

a = J /M denotes the specific angular momen tum of the source. 
Since we restrict ourselves to the s tudy of equatorial null geodesics, 

the radial motion will be governed by (see eq. (10) in Ref. 5) 

r4 

R(~, y, a) --  ~ { I ~ [ ( ( ~  ~ + a ~ ) E  - aO) ~ - a ~ ( a E  - O)~]}.  (9)  

As before we introduce the impact  parameter  ~ = O/E, but it is more 
convenient to use a new one defined as: X = (~ - a). Radial motion is 
then allowed only if 

X>_X+(r,y,a) or X <X_(r,y,a); (10) 

the two effective potentials X+ (r, y, a) are given by the simple relation 

r 2 
x~ - a + - - - - - - - ~  " (11) 

In the following we assume a > 0. 
We again first discuss the existence of horizons in the space-time (7), 

varying the parameters  y and a. We describe only the main steps of the 
procedure which is straightforward. The loci of the horizons are deter- 
mined by the condition 

r ~ -- 2r + a s 
y-=yh(r,a)-- r2(r 24_a 2) " (12) 

The local ex t rema of yh(r, a) are determined by the equation 

r3(r -- 3) + 2a2r 2 -- a2r-[- a 4 ---- 0 (13) 
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so that  for a given a the extrema are  determined by 

r [1- 2r+(8r+1) 1/2] (14) 

The maximum of the function a~(r) is at rcr -- (3 + 2x/~)/4 and the corre- 
(1/16){2(3+ 2vr~)(7§ sponding critical value of the parameter  a 2 is: acr -- 

4V~)  1/2 --  Vf3(8 + 5X/r3)} ~ 1.212. 
2 the function yh(r ,a)  has two local e x t r e m a  Ymin(a) and If a 2 < act 

Ymax(a) which can be determined graphically by combining the functions 
(12) and (14). i f a  2 _-- acri t 2  these extrema coincide at Ycr -- 16[(7+4V~) 1/2 
-3]{3(7 + 4v~)[1 + (7 + 4v/3)1/2]} -1 ~ 0.0592. 

The discussion of the existence of horizons and of their character, as 
a function of the parameters y and a, is formally the same as in the case 
of the Reissner-NordstrSm-de Sitter metric. 

We are now able to discuss the behaviour of the effective potentials 
X• y, a). Clearly they are well defined only i n t h e  stationary regions 
A~ > 0. However, contrary to the Reissner-NordstrSm-de Sitter case, they 
do not diverge at the horizons, but  only X+(r ,  y, a) diverges somewhere 
between the black hole and the cosmological horizons, if it diverges at all. 
The loci of divergence of the potential X+ are given by 

r - 2  
y = Yd -~ r(r2 + a2 ) �9 (15) 

Since the condition cOX+/Or = 0 implies that  the equation 

y2a4r3- i -2ya2r2(r+3)+r(r-  3) 2 - 4a 2 = 0 (16) 

must be satisfied, the relation 

y = yox (r, a) 

1 {--r(r + 3) 4- 2[r(3r 2 + a2)] 1/2} 
~-- a2r2 (17) 

gives the local extrema of the effective potentials X+(r, y, a), i.e. the cir- 
cular photon orbits. At the horizons the effective potentials coincide and 
their value is 

r 2 
X:t: (rb(c)h) - b(c)h (18) 

a 

In order to study the behaviour of the functions X+(r, y, a), we must 
first discuss the functions yd(r,a) and yex+(r,a). The function yd(r,a) 
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F i g u r e  1. T h e  funct ions  yh(r,a) (solid line),  yr (dashed line) a n d  ya(r,a) 
(dot-dashed line) are shown for a = 0.8. They govern the behaviour of the effective 
potentials X+ (r, y, a). Note the important, although small, region of y in the interval 
ya . . . .  < y < yr . . . . .  These values of y give rise to the most interesting features of 
the motion. The function y~.**_ (r, a) is not shown; it monotonically goes from -oo  at 
r = 0 and for r --+ +oo it has the same horizontal asymptot as y***,+. 

d iverges  a t  r = 0 to  - ~ ;  it  is zero a t  r = 0 a n d  goes to  zero aga in  for 

r --+ c~. The re fo r e  X + ( r ,  y, a) can  d iverge  also for naked  s ingu la r i t i e s  in  a 

de S i t t e r  s p a c e - t i m e  a n d  i t  m u s t  a lways  diverge  in  a n  an t i -de  S i t t e r  space-  

t i m e  for b o t h  b lack  holes a n d  n a k e d  s ingu la r i t i e s .  I t s  local  m a x i m u m  is 
d e t e r m i n e d  by  the  c o n d i t i o n  

a 2 : a~ ~ r2(r - 3). (19) 

For  each  va lue  of  a > 0 we have  o n e  m a x i m u m  of  yd(r ,  a) ,  which  we d e n o t e  

Vd-m x(a). 
T h e  f u n c t i o n s  yex• a) diverge  a t  r = 0 (Yex+ ~ + c o ,  Yex- --+ - c o ) .  

T h e  r e l a t i o n  
a 2 2 r ( r  - 3) 2 (20) = aex(z)(r ) ~ 

yields  the i r  zeros, i.e. t he  loci of  the  p h o t o n  c i rcu la r  o rb i t s  in  the  Ker r  

s p a c e - t i m e  [7,8]. Moreover ,  s ince  

Oy~x 3r 
0n - + { + a2)]1/  T + a s) } (21) 

on ly  Yex+(r, a)  has  local  e x t r e m a ,  wh ich  are g iven  by:  

a 2 = aex(e)(r  ) 2  = 2r {1 -- 2 r  :t: (8 r  + 1) 1/2 } ~ a~(r). (22) 
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F i g u r e  2 .  T h e  effective po tea t l~ t s  X ~ , ~ , ~ )  ~re p lo t t ed  for typ ica l  va lues  of  t h e  
poxarneter  y a n d  for f ixed a = 0.8. T h e  vaxious figures co r re spond  to: y = 0.1 (a); 
V = 0.04 (b); V = 0.025 (c); V = 0 (d); V = - 0 . 5  (e) a n d  V = - 2  (f). In  the  
m o s t  in te res t ing  case  (b) the  m i n i m u m  of t he  curve  is deno ted  wi th  Xc,z in  the  t ex t ,  
while the  m a x i m u m  wi th  Xc,2. T h e  r epu l s ing  barr iers  be tween  the  black hole a n d  the  
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F i g u r e  3,  T h e  s a m e  a s  in  F ig .  2 b u t  for  a = 1.5. T h e  v a r i o u s  f igures  c o r r e s p o n d  to :  
y = 0.05 (~); y = 0.025 (b); y = o (r ana y = -0.5 (d). 

Therefore  the local ex t rema  of  the two functions yh(r, a) and ycx+(r, a) 
coincide. 

The  funct ions yh(r, a), ya(r, a) and Ye• (r, a) are plot ted in Fig. 1 for 
two values of  the pa ramete r  a, namely  a = 0.8 and a = 1.5, which give 
quali tat ively different behaviour  of  Yh and Ye• By means of  Fig. 1 we 
can now easily find out  the qual i ta t ively different cases for the behaviour  
of  the effective potent ials  X+(r, y, a). T h e y  are plot ted in two sequences 
character ized by the value of y. The  first sequence is drawn in Fig. 2 for 
a = 0.8 and the second one in Fig. 3 for a = 1.5. For comparison we have 
included also the pure  Kerr cases y = 0. 

4. NULL GEODESICS A N D  THE OPTICAL REFERENCE FRAME 

In Section 2 we have shown tha t  the radii of circular null geodesics 
in the Reissner-Nordst rSm-de Sitter geometry  do not  depend on the value 
of  the pa ramete r  9. This fact can be explained in a way similar to the 
one used in [9] for the  Schwarzschild-de Sitter geometry,  by means of  the 
optical  reference geomet ry  studied in [10,11]. 
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In static space-times with a time Killing vector ~(t) = O/Ot the optical 
reference geometry with metric components gik is defined by the relation 

ds 2 = q l ( - d t  2 + ~ ikdx i  d x k ) ,  (23) 

where the conformal factor @ is given by: 

ql = --~(t) " ~(t) = --gt t .  (24) 

Spacelike projections of the photon trajectories are geodesic lines in the 
o~tical reference geometry, which means that  the geodesic curvature radius 
7~ is infinite in each point of the projected photon trajectories in the optical 
geometry [11]. 

In the case of the Reissner-NordstrSm-de Sitter geometry we have 
= A ~ / r  2 = (1 - 2 / r  + Q 2 / r 2  - yr2) ,  and grv = 1 /~  2, goo = r2/~1, 

~'0r = r ~ sin ~ 0 /~ .  
Circles in the optical geometry, i.e. trajectories of the axial Killing 

vector ~(r have a proper radius 

g =  (~(~). ~(r r s in0  
- ~ 1 / 2 "  ( 2 5 )  

The geodesic curvature 7~ of the circles ~ = const, is given by [11]: 

~_~ = i ( 9 i~  ( 9 ~ y k .  (26) 

Considering m a i n  circles, i.e. circles in the equatorial plane (0 = ~r/2) 
which have the origin of coordinates as their center, we find that  

( 2q2  -1 
7 ~ = r  1 - 3 +  (27) 

r r 2 / 

We see that  the geodesic curvature of main circles does not depend 
on y. Therefore it follows that  also the radius of the circular photon orbits 
(which, we stress, are just main circles with 7~ ~ ~ )  do not depend on 
y: So the property of the optical geometry, namely the independence of 
7~ on y, can be considered as an explanation of the independence of re+ 
on y itself. On the other hand circles outside the equatorial plane ( n o t  
main circles) have geodesic curvature which depends on the cosmological 
constant [(   2(2Q2 ) ]_1,2 

7 ~ = r  1 3 +  + 1 - - +  - y r  2 - ~  r 2 /  r -;~ cot s0 (2s) 
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However such circles are not geodesics of the optical geometry and cannot 
correspond to photon circular orbits. 5 

For a s ta t ionary (rotating) space-time the optical reference geometry 
is given in a more complicated way [10]: 

ds ~ = �9 [ - (d t  + 2aidxi) 2 + "gikdx~dx ~] , (29) 

where the off-diagonal terms a i = -gt i /2gl  are the contribution of the 
rotation of the source to the gravitational field. In the equatorial plane of 
the stationary regions of the Kerr-de Sitter space-time we have: ~ = 
(At  - a2)lS2a 2, grr --- /2r4/Ar(Ar - a2), g00 -- / 2 l ( A r  - a2), gr162 -- 
[(r 2 + a 2 -- a 2 A r ) ( A t  - a 2) + a2(r 2 + a 2 - Ar)2]/(A~ - a2) 2. 

The  proper circumferential radius of the main circles (0 = 7r/2) is 
given by 

r2A~/2 
(~  _ ~2)" 

One can then show that  

= 

I r 2 {  [ - w 2 ( ~  ~ + a~) + ~(~ - 2 ) ]  [ - w ~ ( r  ~ + a~) + ~2 _ 2~ + ~2] )1/~ 
[ Y 2 a 2 r 3 ( r 2  q-  a 2 )  - -  y r 2 ( r  3 - -  3 r  2 - -  5 a  2)  + r 3 - -  5r 2 -k- 6," -- 2a 2] (30)  

In this case even the geodesic curvature of the main circles depends on the 
cosmological constant.  However this is not too surprising as in stationary 
space-times the photon trajectories do not coincide with the geodesics of  
the optical reference geometry. Therefore circles with 7~ -+ ~ do not 
correspond to circular photon orbits. As shown in [11] this is due to the 
fact tha t  in the generalized version of the force equation, a new te rm arises 
( that  corresponds to a Coriolis type force) as a result of the rotation of 
the source. 

Note that ,  contrary to the case of static space-times, for stationary 
space- t imes there is no simple connection between the optical geometry 
and the motion of photons. 

5 The connection between the photon motion and the optical geometry can be presented 
in a more obvious form, as shown by Abramowicz, Miller and Stuchlik (1990, in 
preparation). For static, spherically symmetric space-tlmes 

ds ~ = g t td t  ~ + grrdr ~ + gsed92 + g ~ d r  2 , 

the photon motion is determined by the effective potential V -- 1/~: = - g ~ J g ~ r  

Therefore the derivative of the effective potential and the~eodesic curvature of main 
circles ~ = const are related by: (dr~dr) 2 = 4g~,grr/(g**n 2) = (4/~ 6) (de~dr) ~. 
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5. C O N C L U S I O N S  

We have shown that  the radius of circular photon orbits in a spheri- 
cally symmetric Reissner-Nordstr6m (Schwarzschild)-de Sitter space-time 
does not depend on A. We have moreover described the interesting relation 
between this property and the fact that  in the optical reference geometr~ 
defined in the static regions of these space-times, the geodesic curvature 7~ 
of the main circles ~ = const., 0 = 7r (which have the origin of coordinates 
as their center) does not depend on the cosmological constant. 

In the Kerr-de Sitter space-times the loci of circular photon orbits 
depend on the cosmological constant (as also the geodesic curvature of 
main circles does). Contrary to the Reissner-NordstrSm-de Sitter case, in 
Kerr-de Sitter space-times circular photon orbits do exist for each value of 
the parameters y and a. Since the functions yh(r, a) and Yex+(r, a) have 
common local extrema, we can conclude that  three circular photon orbits 
exist in metrics describing black holes, while only one such orbit exists in 
the case of naked singularities (for both de Sitter and anti-de Sitter cases). 
All circular photon orbits are unstable to radial perturbations. 

The character of the radial motion can be easily inferred from Fig. 2 
and Fig. 3. The most interesting and surprising feature appears for Kerr 
black holes in a de Sitter universe: the effective potential X_ does not 
diverge at rch, but  it diverges at some rd < rch (we recall that  for static 
holes the potential diverges just at reh). By increasing the impact param- 
eter X up to the value X+(rch) = r2h/a, photons will be repelled by the 
barrier at rt increasing up to rch. However as we further increase X, rt 
starts decreasing to ra. In the case of a very fine tuning of the param- 
eters y and a, namely when the condition: Yd-m~x(a) < y < Ymax(a) is 
satisfied (and such interval exists for each a 2 < ac2r), photons with impact 
parameter high enough (X > Xcr2) can travel between the horizons rbh 
and rch (the repulsive barrier disappears in this case), in addition to the 
standard photons with a low enough impact parameter (X < Xcrl) and 
moreover, for photons with negative values of the impact parameter there 
is no repulsive barrier at all (Fig. 2, case y = 0.04). Therefore the coop- 
eration of both black hole rotation and cosmological repulsion can lead to 
rather unexpected features of the geodesic structure of the Kerr-de Sitter 
space-times. 
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