
THEORY OF FILTRATIONAL COMBUSTION OF GASES 

Yu. M. Laevskii, V. S. Babkin, V. I. Drobyshevich, 
and S. I. Potytnyankov 

In [i, 2], the laws of filtrational combustion of gases were considered, and it was 
shown that internal (interphase) and external (between the system and the surrounding medium) 
heat transfer plays a significant role. The presence of finite heat transfer in the combus- 
tion wave leads to the possibility of steady heat propagation on account of a high-tempera- 
ture gas-phase chemical reaction in relatively narrow pore channels. This situation is char- 
acterized by low linear propagation velocities and a significantly two-temperature structure 
of the heat wave (LVC). 

From physical considerations, it may be expected that, with increase in intensity of in- 
ternal heat transfer (for example, with decrease in pore-channel diameter), the temperature 
difference of the phases in the combustion wave will decrease and in the limiting case the 
two-temperature structure of the wave degenerates to a one-temperature structure. The solid 
phase will play the role of a homogeneous heat-conducting inert additive here. On the other 
hand, with decrease in internal heat transfer, the process should pass to a new situation, in 
which the solid phase, actually eliminated from the sphere of thermal interaction in the flame 
region, will not influence the gas-phase combustion. This case of flame propagation in an in- 
ert porous medium, with high linear velocities on account of the transfer properties of the 
gas (HVC), was investigated experimentally in [3, 4]. 

Thus, with variations in the interphase heat transfer, significant change in the role 
of the solid phase in the filtrational combustion of the gases may be expected and, as a re- 
sult, significant change in the structural and velocity characteristics of the waves. The 
present work is devoted to the theoretical investigation of these problems. 

I. Formulation of the Problem 

Steady adiabatic plane combustion waves in an infinite porous inert medium are consid- 
ered, with the gas-mixture fuel supplied to the reaction zone by a filtrational flux. The 
equations describing the steady propagation of the flame front in a coordinate system fixed 
in the wave take the form 

d d'q d~l ~ ~ ~ ~w(~,y)=O, 

d dy ~ 
@ ~r  ~ - -  ~ + ~y~w (~, y) o~ (y - -  Z) = O, 

(1 : l )  
d dz 

~ e ~ - -  (~ - -  t) + = (y - -  z) = O. 

The system of equations (i.I) is written in dimensionless variables: ~ is the relative mass 
concentration of the component present in inadequate amounts; y = (T-- To)/(T r -- To); z = 
(8 -- To)/(Tr-- To); T and 8 are the temperatures of the gas and solid phase; To is the tem- 
perature of the initial mixture; T r is the minimum gas temperature in the reaction zone; ~ = 
x/L; x is an independent spatial variable; L = [mATt + (i -- m)AOr]/mCTC; m is the porosity; 
lTr = IT(1); IOp = A@(1); AT(y) is the thermal conductivity of the gas; le(y ) is the effec- 
tive longitudinal thermal conductivity of the inert layer; c T = const is the specific heat 
of the gas; G = PT(V -u) is the flux density of gas (the mass velocity); pT(y) is the gas- 
phase density; v(y) is the flow velocity; u is the wave velocity, 

From the continuity equation, it follows that 

G = p r o ( r e  - u )  = c o n s t  , pro = p r ( O ) ,  vo = v~O).. 
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Also 

x .  = pToDIGL; XT = ~T/Cr~L; Ue -~- ( i  - ra )AJmc~GL;  

D is the diffusion coefficient; u = uoSspL/mcTG; ao is the heat-transfer coefficient; Ssp is 
the specific surface of the layer; ~ ffi [vo -- (i + o)u]/vo --u; ~ = (I -- m)co00/mCTOT; c 0 and 
p@ are the specific heat and density of the solid phase; Yb = (Tb --To)/(Tr- To); T b is the 

LPTI  ~ adiabatic combustion temperature of the gas mixture; ~---- G '~oexp(--I/~); ~ = R Y p / E ' ;  E is the 

activation energy; R is the universal gas constant; ko is the preexponential factor. An ir- 
reversible first-order reaction is considered 

w(~,y)=~exp ~ i~-~-~--i) ' = Tr , V=~- 

The boundary conditions for the system of equations (I.I) take the form 

~---0o: ~--I, y----0, z=0, (l.3a) 

dy dz ~=+oo: 7=0, ~=0, ~=0. (1.3b) 

The order of system (I.i) may be reduced. Premultiplication of the first equation by Yb, 
adding all three equations, and integrating the result from--~ to ~ with the boundary condi- 
tions in Eq. (l.3a) gives 

dT} dy dz 

It follows from the third relation in system (I.i), together with (l.3b) and (1.4), that y = 
z = Ye when ~ = +~, where Ye = Yb/~ is the dimensionless equilibrium temperature. The condi- 
tion ~ > 0 follows from the obvious requlrement y e > 0. Note that the conditions ~ < !, 
m > i, and ~ = I correspond to wave-veloclty values u > 0, u < 0, and u = 0. 

Introducing the variable p(~) according to the formula 

�9 dy dz p f y + ( ~  I) z" xT~--- XeN. (1.5) 

the problem of flame-front propagation with filtrational gas combustion takes the form 

dll 

(1.6) 

The equation for y is Eq. (1.5), and the third relation in system (i.i) remains the equation 
for z 

B=--oo; p=0; ~=q-=: P = Y b . '  (1.7) 

The problem of finding the eigenvalue u will be solved for large activation energies or, in 
the notation adopted, under the condition 

< i. (I. 8) 

The possibility of using a Frank-Kamenetskii transformation of the reactlon-rate function in 
the vicinity of y ffi 1 follows from (1.8) 

Wo(~l, y) = ~ exp t(y-- i)/~]. (I. 9) 

In view of (1.8), some modification of the approach proposed in [5] may be used; this 
approach is referred to below as the method of contrary extrapolation. The limiting case of 
filtrational combustion of a gas in conditions of infinitely intense heat transfer (a ffi ~) is 
considered separately below. The method of matched asymptotic expansions is used to obtain 
an algebraic equation for the zero approximation of the eigenvalue of the problem, which 
transforms, under certain formal assumptions, with an accuracy of 0(B), to the well-known 
formulas for the propagation velocity of a laminar flame front Le ~ 1 [6, 7] and a flame in 
a condensed medium (Le = 0) [8, 9]. For the same limiting case, the method of contrary ex- 
trapolation is demonstrated. Further, using this method, an equation is found for the wave 
velocity at arbitrary u. 
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. Determining the Wave Velocity When ~ = 

Passing to the limit as u ~ = in the equation for z ,  it is found that y ~ z, and the cor- 
responding single-temperature model takes the form 

dN 
ybu~ ~ -  = Yb O1 - -  l )  + p ,  

ap 
~'T = ~y~w OI, Y), 

•  = o)y - -  p,  

where u=ur4"z~, , with the boundary conditions 

=--~: ~=l,p=0, y=0, 

~ = + r 1 6 2  ~1 = 0 ,  p=y~, y=y~. 

(2.1) 

(2.2) 

When u,=xz=O, the given model formally coincides (in the appropriate notation) with the 
model of reaction-front propagation in a motionless catalyst layer [i0], and when x~ = 0 
(Le = 0) and m = i, with the model of combustion-wave propagation in the condensed medium 
[8, 9]. 

In the given case, y varies monotonically from 0 to ! when--o=~ ~ + o o  , and hence 
Ye = i, Yb = ~" Following the standard procedure [II], y is assumed to be an independent 
variable and p = p(y), n = q(Y). Then the problem (2.1), (2.2) is written in the form 

• ' �9 d'q 
~ (OY -- P) d7 = ~ (0 -- t)  + P,  

(2.3) 
~ (coy -- p) ~ = ~o~W (~l, g), 

~(0) = i, p(0) ---- O, (2.4) 

~(1) =0, p~l) = co. 

Let qo(Y) and Po(Y) denote the zero approximations of the corresponding functions in the re- 
gion adjacent to y = 0 (the external region), and qx(y,) and px(y,) denote the zero approxi- 
mations in the region adjacent to y = ! (internal region). Here y, = (I -- Y)/B is the inter- 
nal variable. In the external region po(y) - 0, and the matching condition for the external 
and internal solutions takes the form 

pl(g,)-+O a~ y,-+oo. ( 2 . 5 )  

Linearizing the functions x, • , and T in the internal region (u(i)= I) and using the Frank-- 
Kamenetskii transformation (I. 9), it is found that 

~974~ r d~ (p l  - -  ~)) ~-y" = to (~i  - -  i)  + Pl,  

-~ - -  o~) ~ = ~r ~11 e-~y*, 

~1 (0) = O, Pl (0) = ~. 

The s e c o n d  r e l a t i o n  i n  s y s t e m  ( 2 . 6 )  i s  I n t e g r a t e d  f r o m  0 t o  ~ 
( 2 . 5 )  a n d  ( 2 . 7 )  

o~ ~ ~he_6Y, dy ,. 
0 

(2.6) 

(2.7)  

, taking account of conditions 

( 2 . 8 )  

Finding ql from the first relation in system (2.6), the result is substituted into the second 
relation, and the result is integrated from 0 to ~. Taking into account that 

oo oo 

d~l e-~Y*dg, = 6 S ~he-6V*dg*': J dy, 
0 0 

it is found that 
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Eliminating ~ ~e-~162 �9 from Eqs. 
0 

of the wave velocity is found 

oo 

o~ ~:pfi~. x~ r t vlle_6Y,dy,, �9 r - - - K =  
0 

(2.8) and (2.9), the equation for the zero approximation 

(2.9) 

2 (V/~) z (2, i0) 
~ r  + 2~I~ "or = i. 

Here T r = To + (T b --To)/~. 

If there is no solid phase in the system (m = i), then ~,r=Le, ~ = I, and Eq. (2.10) 
transforms, retaining terms of order 0(8), into the well-known formula for the normal laminar- 
flame velocity [ii]. Setting ~,r=0 and m = I, formally, Eq. (2.10) transforms to the for- 
mula for the combustion-wave velocity in a condensed medium [8, 9]. The distinctive feature 
of Eq. (2.10) is that it gives the wave velocity at any x~ (including small ~,~ ~, the situ- 
ation prevailing in the present case). 

Now, the method of contrary extrapolation is demonstrated for the problem (2.1), (2.2). 
The first relation in system (2.1) is integrated with respect to ~ from--~ to +~. Taking ac- 
count of the boundary conditions, it is found that 

~ 
x w ( ~ , y ) d ~  = L ( 2 . 1 1 )  

I n  t h e  h e a t i n g  zone ,  p (~)  - 0, and t h e  f u n c t i o n s  W and y a r e  e x p o n e n t i a l .  P l a c i n g  t h e  r e a c -  
t i o n  zone in the vicinity of ~ ffi 0, and llnearizlng the functions ~, and ~ at this point, the 
concentration and temperature values extrapolated from the heating zone to the reaction zone 
are found 

~-(~) = f -- exp (~/g,r), 
y-(~) = exp (e~) ~ f + e~ ( 2 . 1 2 )  

(series expansion of the function n is not performed, since x,:~ may be as small as is desired, 
generally speaking). Then the concentration and temperature are extrapolated into the reac- 
tion zone from the product zone (~ > 0) 

~+(~) = o, y+(~) = i. (2.13) 

Next n(~) and y(~) are taken in the form 

(2.14) ~0 (D = ~ [~- CD + ~+ (DL y0 (D = ~ [y- (~) +y+ (D]. 

The following considerations are used here. The functions n(~) and y(~) are expanded in 
Fourier series in the vicinity of ~ = O, and the width of the reaction zone tends to zero. 
Then, the formal derivatives of the corresponding series tend to discontinuous functions, 
which take the values of the half-sums of the left-hand and right-hand limits at the point 
of discontinuity. 

Linearlzlng the function z at the point ~ = 0, and using Eq. (1.9), the following rela- 
tion is obtained in place of Eq. (2.11) 

O 

~r ff ~0(~)ex~[Y0(~)--il/v}d~=i- ( 2 . 15 )  
- - o o  

S u b s t i t u t i n g  Eqs.  ( 2 . 1 2 ) - ( 2 . 1 4 )  i n t o  Eq. ( 2 , 1 5 ) .  a f o r m u l a  f o r  t h e  wave v e l o c i t y  c o i n c i d i n g  
w i t h  Eq. ( 2 . 1 0 )  i s  o b t a i n e d .  Thus ,  u s i n g  e x t r a p o l a t i o n  i n t o  t h e  r e a c t i o n  zone  o f  t h e  s o l u -  
t i o n s  f rom t h e  h e a t i n g  and p r o d u c t  z o n e s ,  i n  c o n t r a s t  t o  [ 5 ] ,  t h e  c o n s t a n t  c o e f f i c i e n t  o b -  
t a i n e d  in the formula for the wave velocity is ~2 and not unity. 
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3. Determining the Wave Velocity at Finite 

Consider the initial problem. In the general case, the gas temperature is not a mono- 
tonic function. Suppose that its maximum, which is in the reaction zone, is reached when 

= 0, i.e., y(0) = i, (dy/d~)(0) = 0. The concentration is extrapolated from the heating 
zone into the reaction zone 

% (%) = 1 + (~r - -  1) e -~/x~n r. ( 3 . 1 )  

Here it is taken into account that, on reaching the maximum temperature, not all the material 
has reacted, and the reaction continues at temperatures below the maximum. Extrapolation 
from the cooling zone gives 

~I+(~) = 0. ( 3 . 2 )  

Extrapolation of the finite solution of (1.6) from the vicinity of the point ~ = 0, y = i, 
dy/d~ = 0 to the whole of the reaction zone, it is found that 

~o(~) = nre "=, ( 3 . 3 )  
Po(~) = y~ + (Pr --  Yb )e~ ,  

where 

, = ~ ( t  r +%-~7~)<o, 
I ( I P _ L )  (3.4) 

~lr - -  t - -  ~n:r v Yb " 

The latter equation is the condition of finiteness of the solution at large ~. This re- 
quirement corresponds to the fact that the cooling zone is formed because of exhaustion of 
the fuel mixture. For the same reason, the result of using the method of contrary extrapola- 
tion is taken to be 

,~ (3 .5 )  
n% (D = y n~e , ~ > 0. 

Equation (3.2) is used here. 

The temperature profiles extrapolated from the heating and cooling zones are determined 
from the system of equations 

dy t t o -  t ~Or Z' 

XT r ZT r 
dz 
@-~- z ' ,  (3.6) 

dz' ct Y , ~ § 0 ) - - t  Z' ' 
a-'~" = - -  Xor -1- xs r z Xsr , 

where f = 0 when ~ < 0 and f = --yb/xTr when ~ > O. The eigenvalues of the matrix of the sys- 
tem are determined as the roots of the characteristic equation 

/1--~o 1 ~ c o - - t - - ~  aco 
tO + ~ ) ~ o r  ;~r-r" Ix2 + I* + - -  O. ' XTrXO r zrir • r ( 3 . 7 )  

Analysis of Eq. (3.7) shows that, when ZTr < 1/2, all the roots are real and 0<~i<~2, 
Ms < 0. In addition, 

If ZrrCO = i 

~ts<c~ < M I < _ ~ t  < ~ 2  when Z T r ( O < I ,  
~OT ~Tr 

I < ~ i <  ~ - - I  
(3.8) 
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~Tr ~ 

Extrapolating the solution of Eq. (3.6) from the heating and cooling zones into the reaction 
zones, and requiring continuity of the functions z and z' at E = 0, the finite solution of 
the problem may be written in the form 

y_ ---- ae ~t~ + be ~ ,  

z_ ~ = rxae ~ i  + r~be ~'~, (3.9) 

z'_ = lhr,ae "~ + ~t~r~be "~, 

y+ = y~ -- ce~a ~, 

z+ = y~ -- r3ce ~ ,  
, a# (3. I0) 

where The constants a ,  b, and c are defined as follows: 

s = 5 ("s- ~) (~- ~0' b ffi ~,(~- ~) (~8- ~,)' 
-- ~ 1 ~ $ y  e + A 0~' 

c = ", (~  _ ~)  0'~ - ~ )  ,, A = '%r Iv+ (0) - -  v -  (0)].  (3.11) 

Further, it is assumed that 
to Eqs. (3.9) and (3.10) 

y-(~-) = y+(~+) ---- i, where l ~ •  Equivalently, according 

a + be ~'|- = l ,  (3.12) 

ce ~a~+ = Ye -- i. 

I t  i s  t a k e n  i n t o  a c c o u n t  h e r e  t h a t  ~z i s  a f i n i t e  r o o t  when 0 ~ = ~  o= and hence  e~*~-= t .  
a t  any a ,  w i t h  an a c c u r a c y  o f  0 ( 8 ) .  S u b s t i t u t i n g  Eqs .  (3 .11)  i n t o  Eqs .  (3 .12)  and e l i m i n a t i n g  
A, Ye is found. This result satisfies the condition 0 < Ye < i, which follows from (3.8). 
Further, according to Eq. (1.5) 

Pt = yb -- Xrr~Ce ~'~+. (3. 13) 

From (3.8) it follows that 0 < Pr < Yb" 

Now the method of contrary extrapolation is used: 

I dr_ (~) 

, d,+~+). ~+)- (3.14) 

According to Eqs. (3.9) and (3.10), 

~ =  ~a + ~'~-,. ~ _ _ _ ~  aa t, __pace -r. (3.1s) 

The integral balance gives 

�9 0 

I. ,] o} - (3 .16 )  

Substituting Eqs. (3.5) and (3.14) into Eq. (3.16) leads, after appropriate manipulations, to 
the result 
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Fig. i. Curves of u(vo) with the 
following values of d, m: I) I0-I~ 
2) 5"I0-", 3) I0 -s, 4) 2"10 -3, 5) 
5.10 -~ 

( 2-~ 2 _ 

'q' ~X~.r+ 2~" + %~ ) t ,  (3.17) 

where 

~z?. -r ~nr vy_ -- i + 2~?+' y• =-@• (r 
d~ 

The quantities ~, ~r, Yb, dy+(~• d~ are determined from (3.4), (3.12), (3.13), and (3,15), re- 

spectively. Here T r = To + (T b -- To)/y b. Detailed analysis of Eq. (3.17) shows that, when 
a-> O, it is transformed to give 

2~ " i, (3,18) 
Le b q- 2? MTb'6b = 

which ,  i n  t he  a p p r o p r i a t e  n o t a t i o n ,  c o r r e s p o n d s  up to  t e rms  o f  o r d e r  0(8)  w i t h  the  f o r m u l a  
f o r  the  normal  l a m i n a r - f l a m e  v e l o c i t y .  As a + ~,  Eq. (3 ,17)  t r a n s f o r m s  t o  Eq. ( 2 . 1 0 ) .  In  
a d d i t i o n ,  i n  t he  g i v e n  l i m i t i n g  c a s e s ,  ~r = 0, which i s  c o m p l e t e l y  t o  be e x p e c t e d  ( t h e  gas 
t e m p e r a t u r e  i s  m o n o t o n i c  and t h e r e  i s  no p r e c o m b u s t i o n  z o n e ) .  

4. D i s c u s s i o n  o f  R e s u l t s  

Tak ing  a c c o u n t  o f  the  phase  i n t e r a c t i o n  w i t h  no l i m i t a t i o n  on i t s  i n t e n s i t y  i n  t he  r e -  
g i o n  o f  a t h e r m a l  wave a l l o w s  t he  r o l e  o f  v a r i o u s  c h a r a c t e r i s t i c s  o f  a p o ro u s  medium i n  f i l -  
t r a t i o n a l  gas  c o m b u s t i o n  to  be more c o m p l e t e l y  a n a l y z e d  o v e r  a b r o a d  r an g e  o f  a ,  i n c l u d i n g  
t he  l i m i t i n g  c a s e s  a = 0 and a = ~. Below,  t h e  r e s u l t s  o f  t h i s  a n a l y s i s  a r e  shown, w i t h  the  
f o l l o w i n g  c h o i c e  o f  e m p i r i c a l  f o r m u l a s  f o r  d e t e r m i n i n g  t h e  p a r a m e t e r s  o f  the  p r o b l e m .  

The h e a t - t r a n s f e r  c o e f f i c i e n t  i s  d e t e r m i n e d  from the  f o r m u l a  [12] 

where 

NUE= 0,725Re~ 47, ReE~-~30 , 

Nu E= 0,395Re~ ~ ReE~ 30,, 

2 mdVoPToCT vdE 
NuE ---- %'~-T ~ :  R e E =  3 (i - -  m) ~T0 - -  'v 

It is taken into account here that, for LVC, p r v ~ p r o v o  and Pr = i. If Nu E < 2, then 
Nu E = 2 is assumed. The effective thermal conductivity of the porous medium is found from 
the formula [12] 
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Fig. 2. Regions of existence of LVC and HVC. 

Fig. 3. Dependence of T r (continuous curves) and T e (dashed curves) on d when Vo = 
2 (I) and 0.5 m/sec (2). 

~e = ~ ( l  § ~ Re)cD + (z,d, 

where V -- \tO0/ is the 

ous medium; p = I; To o = 1000~ %T ~%c is the 
porous medium; Re E = 12m/3(i -- m)]Re. 

In determining Ssp , it is assumed that the 
equal to a sphere of diameter d 

4m 
SsP = -~e = 

radiant heat-transfer coefficient in the por- 

thermalconductivity of the material of the 

porous medium consists of elements of surface 

60 - ~  

The results below (Figs, I-5)are obtained from theoretical analysis with the following 
numerical parameter values: ko = 5"101~ sec-1; E = 126 kJ/mole; m = 0.5; 0To = 0.5 kg/mS; 
OG = 5"10s kg/mS; CT = co = i kJ/kg-~ = 0.i W/m-~ T b = 1500~ " 

The Case Where H § ~. In this case Eq. (3.17) transforms to Eq. (2.10). In Fig. I, the 
combustion wave velocity u is shown as a function of the flow velocity of the fuel mixture vo. 
It is evident that the behavior of the curve of U(Vo) is typical for LVC: it is U-shaped. 

The result obtained may be given the following physical interpretation. In a coordinate 
system fixed in the flame front, the fuel gas enters the combustion zone at a rate Vo --u, 
and enters the porous medium at a rate lul, i.e., each value of lul when U < 0 corresponds 
to the combustion of a gas mixture with some fixed homogeneous inert additive. As lul in- 
creases, the gas is "diluted" with inert additive, and the flame temperature T e = To + Q/mc T 
falls; ~ increases. In the "standing-wave" state (m = I), there is no dilution by inert ma- 
terial, and the flame temperature, as in HVC, is equal to the adiabatic temperature. However, 
the flame velocity with respect to the fuel gas in this case is higher than in HVC (Fig. I). 
This is because the inert additive not only reduces the flame temperature when u < 0 but also 
increases the flame velocity on account of more effective heat conduction. In fact, if re- 
duction in flame temperature is el~mlnated while retaining the same immobile additive in the 
flame zone (the case when u ffi 0 or m = i), it follows from Eqs. (2.10) and (3.18) that 

| / ~ e f _  Le+ ~ ~ 6.3, 

where Xef = %T + [(i - m)/m]~e; 7 = RT2/E(Tb - To). This estimate shows the capacity of the 
heat-conducting additive for increasing the velocity of gas-flame propagation. 

The Case Where a § 0. In this case, Eq. (3.17) transforms to Eq. (3.18) for the normal 
velocity of a laminar flame [II]. Thus, the case of combustion when a ~ 0 lies in the HVC 
region, and corresponds to the usual process of laminar flame propagation; it is character- 
ized by the normal velocity S u and occurs on account of the molecular transfer properties of 
the gas phase. As noted in [ill, the connections in the system (l.1) break down here: The 

598 



I?m.fO 2 

12 

i , 

4 

4 

"t 

0 1 2 5 d.lO 5, m 

-4 - 2  0 2 Uo'10, m/see 
m i I L L - - T - - - /  i I I I 

m/see 

Fig. 4 Fig. 5 

Fig. 4. Curves of qr(d) for the following values of Vo, m/see: I) 0.5, 2) I, 3) 
1.5, 4) 2, 5) 5. 

Fig. 5. Curves of u(vo) in HVC with d = 5'10 -3 (i) and 10 -2 m (2)~ 

weak heat flow from the gas, taken into account by the equation for the porous medium, has 
practically no influence on the flame propagation against the flow. This means that the cy- 
cle of heat recuperation in the system combustion products-porous medium-fresh gas-combustion 
products is broken. 

The model does not give a solution for HVC with motion of the wave downstream in the di- 
rection of the combustion products, and this corresponds to reality: In a sufficiently long 
tube, the flame cannot propagate downstream indefinitely at large linear velocities, since at 
the small but finite real value of a the temperature of the porous medium rises over time to 
large values determined by the value of Te, and HVC gives way to LVC. Hence, the natural 
constraint for HVC is the condition v < S u. 

Note that the given model of the process takes no account of the aerodynamic interac- 
tion of the gas with the porous medium. The gas-velocity field in the transverse directions 
is taken to be homogeneous. Therefore, the limiting case = § 0 corresPonds to a process of 
laminar flame propagation at the normal velocity S u = v -- u. In fact, as shown experimental- 
ly [3, 4], not laminar but turbulent combustion is observed in HVC, as a rule. The velocity 
of combustion-wave propagation relative to fresh gas here is Spu > S u. Taking this into ac- 
count entails a modification of (I.I), using, in particular, the turbulent characteristics 
of heat and mass transfer in the gas phase, which goes beyond the scope of the present inves- 
tigation. 

The Case Where 0 < ~ < =. At finite ~, LVC may be realized with adjacent singularity 
conditions [I, 2]. The dependence U(Vo) has the characteristic U shape with a minimum ve- 
locity Umi n at some value v m (Fig. i). When m > i, Vo > O, the heat wave moves against the 
flow, and when m < I, Vo > 0 it moves with the flow; the condition m = I corresponds to a 
standing-wave state. The velocity characteristics of the wave depend on the internal heat 
transfer, in particular, on the pore-channel size d and the flow velocity Vo. 

It is evident from Fig. i that as ~ decreases (as d increases), the curve of U(Vo) is 
shifted toward negative values of u. At some values Vo.er, dcr, transition to HVC occurs. 
From a mathematical viewpoint, the following picture is seen. At a fixed Vo < S u and suffi- 
ciently small d, Eq, (3.17) with the condition m > 0 has a single solution corresponding to 
LVC. With increase in d to d'cr, two more solutions appear. One corresponds to HVC and the 
other (unstable) solution is shifted toward the root corresponding to LVCWIth further in- 

I! 
crease in d, coalescing with it when d = dcr. With further increase in d, there remains a 
single solution, corresponding to HVC. In Fig. 2, bifurcational curves are shown in the plane 
of the parameters Vo, d. Below curve 2, only LVC is possible; above curve I, only HVC is 
possible; in the intervening region, both LVC and HVC are possible, depending on the initial 
state of the system (the region of nonuniqueness of the solution). The question of the at- 
tainment of a particular outcome in this case is not investigated specially in the present 
work. It is evident from Fig. 2 that as Vocr ~ S u (dashed curve) ' " , dcr ~ ~ and dcr ~ ~. ~en 
vo > Su, HVC is impossible. 

The distinctive feature of LVC is the peak profile of the gas temperature in the chemi- 
cal reaction zone. In the course of the reaction, the gas temperature "breaks away" from the 
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temperature of the porous medium, passes through a maximum T r, and then relaxes to the final 
temperature of the system T e. Curves of T r and T e as a function of the pore-channel diameter 
at different flow velocities are shown in Fig. 3. It is evident that as d § 0, the differ- 
ence between T r and T e decreases, and the phase temperatures coincide at the limit. When 
d > dcr , the combustion process transforms to HVC, and T r and T e instantaneously take new 
values (the steps on curve 2). With increase in vo, the two temperatures increase. Because 
of the large values of lul in HVC, T e is very low. Thus, HVC is fundamentally a two-tempera- 
ture situation. However, on account of the slow relaxation of temperature in the gas, the 
existence of the two temperatures is not a significant factor influencing the flame propaga- 
tion. 

A new result of the present analysis is the incomplete burnup nr at T r. Curves of 
~r(d) with different flow velocities are shown in Fig. 4. It is evident that, other condi- 
tions being equal, the greatest incompleteness of burnup corresponds to small d and vo. 

The given model of filtrational gas combustion admits of the existence of combustion 
waves in the region vo ~ 0. As in the case where vQ > 0, two cases Of combustion are possi- 
ble in principle: LVC at large a and HVC at small a (Fig. i). In fact, this means that com- 
bustion is maintained only by the intrapore heat content of the gas. Since interphase heat 
transfer is small in HVC, the porous medium does not hinder flame propagation and the prac- 
tical realization of the given situation in HVC provokes no doubts. Curves for this case are 
shown in Fig. 5. As regards LVC, the very low values of T r and T e make this situation very 
improbable in normal conditions. However, at high pressure, with high porosity of the medium 
and large thermal effects, this situation may evidently be realized experimentally in LVC. 
The heat losses to the surrounding space will be significant here. 

CONCLUSIONS 

i. A two-temperature adiabaticmodel of filtrational gas combustion has been investi- 
gated; the model takes account of molecular transfer in the gas phase and the finite width 
of the chemical reaction zone, thereby permitting a general analysis of the role of thermal 
interphase interaction, including the limiting cases. Usinga modified extrapolationalmodel, 
approximate relations have been obtained for determining the basic characteristics of the 
process. 

2. The possibility that two cases of combustion -- LVC and HVC --may be realized has 
been demonstrated. The parameter ranges corresponding to these two cases have been deter- 
mined. The nonuniqueness region has Been identified. 

3. The possibility and conditions of realization of three types of flame propagation 
have been shown: combustion-wave motion in the direction of the combustion products, in the 
direction of the fresh gas, and in the direction opposite to that of the fresh gas, in par- 
ticular, with zero filtration velocity. 

4. The possibility of slowing of the reaction on account of internal thermal interac- 
tions leading to incomplete burnup in the region of maximum gas temperatures has been shown. 
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