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Cosmology with G and A Coupling Scalars 
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Received December 3, 1990 

Cosmology with the gravitational and cosmological constants generalized 
as coupling scalars in Einstein's theory is considered. A general method 
of solving the field equations is given. Fifteen exact solutions for zero 
pressure models satisfying G = Go(R/Ro) n are given in the Appendix; 
they are briefly discussed. 

1. INTRODUCTION 

In the last years (Refs. 1,2 and references therein), a theory of gravitation 
using G and A as no constant coupling scalars have been used. Its mo- 
tivation was to include a G-varying 'constant'  of gravity, as pioneered by 
Dirac [3]. It is a straightforward generalization of Einstein's equations 

S ab = - 8 7 r G T  ab - Ag  ab (1) 

where S ab is the Einstein tensor, T ab the matter  energy-momentum tensor, 
gab the metric tensor, G and A are coupling scalars. If we assume the 
principle of equivalence, as in Einstein's theory, such as the equality of 
gravitational and inertial mass, and the gravitational time dilation, we 
must require that  G and A do not enter in the equations of motion of 
particles and photons, i.e., only gab must enter in them. So the interchange 
of energy between matter  and gravitation is given by the usual conservation 
l aws  

b = 0. ( 2 )  
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In this way the role of the scalars G and h is confined to the effects 
on the field equations (1), and, once gab is determined, the gravitational 
phenomena are described in the same way as in Einstein's theory. 

The covariant divergence of (1) , taking into account the Bianchi iden- 
tities and (2), gives 

' 8rG;bT ab q- A;bg ab = 0. (3) 

Equations (1) and (3) may be considered as the fundamental equations of 
gravity with G and A coupling scalars. 

Before the gravitational problem based on (1) and (2), or on (3), is 
considered, some comments are in order. First, since these equations do 
not derive from a Hamiltonian principle, they do not contain the propaga- 
tion equations for the scalar fields. They should be determined to satisfy 
the conservation relation (3). This may be done on heuristic arguments, 
or by cosmological constraints as will be the case shown in Sections 2 and 
3. An alternative way would be the construction of a tensor-scalar theory 
of the 'constants'  G and A, as a generalization of Brans-Dicke equations. 
Barraco [4] constructed a theory in this sense. However this is another 
problem and the simplicity of equations (1)-(3) is largely complicated . 
The cosmological models based on these equations allow the possibility of 
investigating different cases for G, as in Dirac's cosmology for example, or 
to solve some cosmological difficulties [5,6]; they may be useful to study 
the early universe (singular or not) and their relations with particle fields. 
In any case the strongest constraints are the presently observed Go value 
and the observational limits of A0. 

2. COSMOLOGY 

Uniform cosmological models are described by the P~obertson-Walker 
metric, which may be written 

ds2 = dr2 - R2( t )  1 - k r - - - - - - ~  + r2(d02 + sin2 0dr (4) 

where k is the space curvature constant, k = -1 ,  0 or +1, and R( t )  the 
scale factor (the speed of light c = 1 and signature + - - -  are used). For 
perfect fluid cosmology we have the energy-momentum tensor 

Tab = _pgab + (p + p )VaU b. (5) 

p and p are the pressure and density respectively and U a is the 4-velocity 
vector (UmU m = 1). Using co-moving coordinates 

v o = ( 1 , 0 , 0 , 0 )  (6)  
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in (5) and with the metric (4), Einstein's equations (1) reduce to [2] 

3R = -47rGR(3p + p - A/4~rG) (7) 

31~ 2 = 8;rGR~(p + h / S ~ a )  - 3k. (8) 

In uniform cosmology G = G(t) and A = A(t), so that the conservation 
equation (3) becomes 

87rGp -t-/~ = 0. (9) 

Equations (7), (8) and (9) are the fundamental equations. Of course, 
they trivially reduce to standard Friedmann cosmology when G and A are 
constants. The first two equations, (7) and (8), may be written 

8.,~Gp = - 2 i ~ 1 R  - i~21R 2 - ~ I R  ~ + h (10) 

8.~Vp = 3(k + k ~ ) / R  ~ - A. (11) 
Eliminating A between (10) and (11), R with the derivative of (11), and 
using (9), it is found that 

d(pR 3) d(R 3) 
d----T- + p ~- - 0. (12) 

Note that (10) and (11) are formally identical to those of usual cosmology 
[7,8] with G and A constants, as must be, since the LHS of (1) depends 
only on the metric components (4) and G and A enter algebraically in the 
RHS of (1). Also (12) is identical to that of usual cosmology despite the 
fact that it comes from a differential form of (11),  and from (10), both 
involving the time dependent scalars G and A, however, their derivatives 
eliminate with (9) , thus leading to (12). 

The three equations (9), (11) and (12) are independent and, in the 
following, they will be used as fundamental. The cosmological problem 
posed by these equations leaves two degrees of freedom; it may be deter- 
mined by a physical assumption p = p(p), i.e. the 'equation of state', and 
from an additional explicit adoption on R, p, p, G or A in terms of t or R 
which itself depends on t. Once the problem is determined, the integration 
constants are characterized by the observable parameters 

R0 
H0 = R--o (13) 

4 rGpo 
(14) O'o-  3 Ho 2 

Yto 
qo = -~oo H~ (15) 

Po e0 = - -  (16) 
p0 
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which must satisfy Einstein's equations at present cosmic time to 

Ao = 3Ho2[(1 + 3eo)Cro - qo] 

k _ H0213( 1 + e0)cr0 _ q 0 -  1] 
2 - -  Ro 

(17) 

(18)  

and the conservation equation 

A.oGo + 6GoH02a0 = O. (19) 

3. SOLUTIONS 

In this section we will use a method similar to that  introduced in [9] 
for G and A constants. We assume the global 'equation of state'  

1 p = (20)  

where �9 is a function of the factor scale R. It should be noted that  this 
assumption makes physical sense when eq. (20) adequately represents the 
cosmic content; simple cases are �9 = 0 for dust models, ~ = 1 for radiation 
filled models, or a function going to unity for the early universe and to zero 
for the present cosmic time, etc. 

From eqs. (12) and (20) we obtain 

1 dqJ 
~- d---R + R - 0 (21) 

where 
= p n  3. (22)  

Equation (21) becomes crucial as a first condition to determine the prob- 
lem: either �9 or ~ may be taken to be an arbitrary function. If ~ is a 
given explicit function of R, then eq. (20) is determined and q/ follows 
from (21) 

r =  0exp . (23) 

Conversely, if �9 is given, ff immediately follows from (21) 

R d~ 
- qt d R "  (24) 
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The Friedmann equation (11) with (22) becomes 

3 R  ~ = 8 r G ~ R  -1  + A R  2 - k.  (25) 

Equations (9) and (22) with d / d t  = i~(d/dn) 

-1 3 dA 8~dd--~G R + ~  R ~ - ~ = 0 .  (26) 

Finally, if G = G(R) is given, (26) integrates to give h = A(R), (25) 
determines/~ = R ( t ) ,  and the problem is solved; note that A = A(R) may 
be given instead, and that G(n) derives also from (26), giving in turn R(t) 
from integration of (25) . 

4. ZERO-PRESSURE MODELS SATISFYING G = G O ( R / R O )  n 

Zero-pressure models are defined by �9 = 0; in this case (23) gives 

= N0 = p0R03 = const. (27) 

and the density derives from (22) and (27) 

p = po . ( 2 8 )  

On the other hand, the condition 

a = G 0  ( 2 9 )  

in (26) with g/from (27) implies 

A = A 0 + C n  1 -  (30) 

for n r 3; Cn is a parameter related to the integration constant of (26) 
and to A0; its value, using (14), is given by 

Cn = 6 n----n--- H02~r0, (31) 
n - 3  

and from (17) 
A0 = 3H02(c~0 - qo). (32) 
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The Friedmann equation (25) by means of (27), (28) and (29) takes the 
form 

R2 = a,~Rn-1 + b,~R 2 _ k (33) 

where 

6 H02tr0R03_ n (34) 
a n -  3 - n  

=('3 n-1 ) 
b,, \ n - 3 ~ ~ 1 7 6  H02 (35) 

for which (30), (14) and (15) were used. 
Finally, the equation for the parameters (18) reduces to 

k 
/~o2 = H02(3tro - qo - 1) (36) 

and (19) is identically satisfied. 
It should be noted that  the models are completely characterized by 

the set of parameters (H0, Go, tr0, q0, n) with n ~ 3. 
The case n < 2 implies Cn < 0 in (31) and an > 0 in (34) and viceversa 

_ > 0 according to n, Or0, and q0 combine in (35); A0 <>- 0 as for n > 2; bn 
tr0 > ~. q0 as given by (32) and the curvature parameter k equals +1, 0 or 
- 1  according to r - q 0  - 1 > 0 in (36) . These relations determine the 
integration conditions of the Friedmann equation (33) and the properties 
of its solutions. 

5. CONCLUSION 

The gravity with G and A coupling scalars was considered as a sim- 
ple generalization of Einstein's equations with usual conservation laws for 
ordinary matter,  expressed by T;~ b = 0. Its application to cosmology was 
developed in Section 2. It was shown that  the field equations for perfect 
fluid cosmology are formally identical to Einstein's equations for G and A 
constants including eq. (12). So the evolution of matter  is similar to that  
of Einstein's theory, as to its dependence on space-time geometry given by 
R(t)  in (10), (11), and (12). The coupling of the scalar fields with matter  
is given by the additional conservation equation (9). 

A general method of solving the cosmological field equations was in- 
troduced by means of a global equation of state, but without loss of gen- 
eral i ty .  Owing to the freedom mentioned before,the theory allowed us to 
find several exact solutions for zero-pressure models. It may be used for 
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radiation-like early universe models with ~ ~ 1 for t --, ti (say 0), and 
matter-l ike ff --* 0 for t --* to, the present cosmic time, even contMning 
mat t e r  and background radiation. 

The  fifteen solutions given in the Appendix illustrate many  interesting 
cases. Most of  them show intial singularity R(0) = 0 with ever-expanding 
or a finite cosmic era returning to a future singularity R ( T )  = O. These, 
for open or closed space-geometry (k = 1, 0 or - 1 )  and for a wide range 
of the density parameter .  Also, the density condition a0 = 1/2 for flatness 
in s tandard cosmology is released. 

The role of Planck's  units m p = ( h c / G )  1/~, I p = (hG/c3)  1/2 and 
t p = (hG/c6)  1/2, as well as nucleosynthesis in the early universe should be 
discused for each solution. 

Two interesting cases are A.2c and B.1.3b in the Appendix.  They  
have no initial singularity, and the initial condition may be established 
R(O) = Ri  with R~ > R~ ;  where P ~  is the minimum value of R at tin. 
If  t m >  0, the universe s tar ts  contracting from R~ until it reaches the 
min imum Rm and then expansion goes on forever. If  tm < 0, expansion 
starts  from R~. Obviously, for tm = 0 expansion starts  from Ri = P~n, 
i.e., f rom the initial minimum to infinity. A qualitatively similar case was 
discussed in [2]. 

A P P E N D I X :  ZERO PRESSURE MODELS SATISFYING G = G ( R / R )  n 

In this Appendix the notat ion and units of the text  are used. To 
change to conventional units the t ransformation R ~ R / c ,  and p --~ p / c  2 
should be used. 

A. M o d e l s  w i t h  q0 = 3(n - 1 /n  - 3)a0 

A.1 .  M o d e l s  h a v i n g  n = 1 
The class condition for the sub-class n = 1 gives 

q0 = 0, Cn = -A0  = -3H02a0 ,  an = 3Ro~Ho~ao 

G = G o ( R / R o ) ,  and A = 3 H o 2 a o ( R o / R )  2 

while the solutions for the curvature constant are 

A. la .  k - -  - 1  (~r0 < 1/3) 

R -- (1 - 3~0)-1/2t, to = H0 -1 

A. lb .  k = 0  ( ~ 0 = l / 3 )  

R = RoHot ,  and to = Ho -1 

A.lc.  k = +1 (a0 > 1/3) 

R = ( 3 a o -  1)- l /~ t ,  to = Ho -1 
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F i g u r e s  1 -4 .  Figure 1: models A.2a, A.2b, A.3a, A.3b, B . l . lb ,  B.1.2b and  B.1.3a. 
Figures 2 and  3: models A.2.c and B.1.3b. Figure 4: models A.3c and  B.1.2a. 
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A . 2 .  M o d e l s  n = 2 

All models of this sub-class have 

qo = -3o'0, Cn = -Ao  = -12Ho2go 

G = Go(R/Ro)  2, A = Ao(Ro/R) 

and the solutions for the curvature are 

A.2a. k = - I  ( a o <  1/6) 

3 Hoo.o 
R -  2 (1 --6-"~o)1/2 ( t + C ) 2  

where 

R = 0 f o r t = 0 ,  C -  

[1 - (1 - 6o.o)W ~] 

3Ho~o 

cf. Figure 1. 

(1 - 6o.0) 1/2 

6Hoo.o 

(1 - 6o'0) 1/2 

3Hoo.o 

A.2b. k = 0  ( a o = 1 / 6 )  

3 2 2 
R = ~ RoHo o.ot , 

cf. Figure 1. 

to = (2/3c~o)1/2 Ho -1 

A.2c. k = + l  ( c ro>1 /6 )  

3 RoHo2o.o(t _ tin)2 + R = - ~  

2 (6o.o-  1) 1/2 
tm=• TnS  

R = Ri for t = 0, 

(6o '0-  1) I/2 Ho_ 1 
6o'0 

6Cro-1 ]1/2 

J 

R , / >  Ran = (6or~ - 1)1/2H~ = R(tm) 
- 6~o 

Ho -1 
~O-- 

3cro 
- - -  ~t ,~;  i f tm = 0, t h e n R i = R r ~ .  

cf. Figures 2 and 3 
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A.3.  M o d e l s  w i t h  n = - 1  
All models for this sub-class have 

3 
qo = 7 ~o, 

3 
an - ~ Ro 4, 

R~ 
G = Go-~-, 

3 
Cn = - A 0  = ~ Ho2ao 

R~ 2 = Ho 2 -~ cro-1 

h = --~ Ho~ao - -  

and for different values of curvature we have 

A.3a. k = - I  ( a o < 2 / 3 )  

R = [(t + V/-~ ) ~ - a,~] 1/2 

an = ~roHo -2 1 -  -~o  

to= [1 - (3~ro)1 /2]  ( 1 - 3 ~ o )  Ho -1 

R = O f o r  t = O .  

of. Figure 1. 



Cosmology with G and A Coupling Scalars 1275 

A.3b. k = o (~o = 2 / 3 )  

R = ( 2 H o ) l / ~ R o t  1/2 

1 1 
to = ~ H o -  �9 

cf. Figure 1. 

A.3c. k = + l  ( ~ o > 2 / 3 )  

R = [an - (t - vC~n )2] ' /2 

3 GoHo -2 
an --  --  R M  2 : t M  2 

e ( 3 / 2 ) ~ o  - 1 

~1/2-- 1] (~ -- 1) 

R : 0 f o r t  = 0 a n d t = 2 t M .  

cf. Figure 4. 

B.  M o d e l s  w i t h  qo r 3[(n - 1 ) / (n  - 3)]~o 

B .1 .  M o d e l s  h a v i n g  n = 1 
These  models  are character ized by 

qo ~ 0, Cn = - 3 H o 2 a o ,  an = 3CroRo~Ho 2, 

Ao = 3 H o 2 ( a o  - qo) ,  

G = G o ( R / R o )  and 

bn -- - q o H o  2, 

k / R o  2 = Ho2(3~o - qo - 1), 

h = 3 H o 2 [ C ~ o ( R o / U )  2 - qo] 
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and the solutions are 

B.I.1. k = - i  ( q o > 3 r  

B. l . la .  q o > O  ( a o > 1 / 3 )  

(1 + qo)ll2Ho -1 
R= (~-qo = ~  2 sin(qol/2Hot) 

t o -H~  sin-l[ q~ ] l / ~ q o l / 2  

~rHo -1 
T - - - ,  R = 0 f o r t = 0 a n d t = T  

q 

cf. Figure 4. 

B . l . lb .  q o < 0  ( r  

H ~  sinh( Iqo[l/2Ho t) 
R = (1 + qo - 3ao)Iqol 1/~ 

Ho -1 
t o -  Iqoll/2 sinh -1 Iqol 1/z. 

cf. Figure 1. 

B.1.2. 

B.1.2a. 

k-- -0  ( q o = 3 r  

a o > 1 / 3  ( q o > 0 )  

R -- (30"0 - 1)-'/2(3r sin[ (3r - 1 ) - l P g o  t] 

to = Ho- ' (3r  1)-'/2 sin - '  [3r  ,1 

T = 7r(3r - 1)I/~Ho -1 

R=-O at t=O and t= T. 

of. Figure 4. 
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B.1.2b. ~ro< 1/3 (qo < 0 )  

R = (1 - 3ao ) - l / 2 (3ao ) l / 2Ro  sinh[ (1 - 3Cro)l/2Ho t] 

to = (1 - 3~ro)-l/~Ho -1 sinh -1 [ - 3 ~ o  ] " 

ef. Figure 1. 

B.1.3. 

B.1.3a. 

k = + l  ( q o < 3 a o - 1 )  

qo > - 1  

R = H ~ 1 7 6  + 1)1/2 s inh[ Iqo l l /2Ho  t] 
(3r - qo - 1) 

t =  H ~  r qo 1 
iqoll/---- ~ sinh -1 L q ~ - ' ~ j  �9 

cf. Figure 1. 

B.1.3b. qo < - 1  

Ho- l lqo  -F iI 1/2 c o s h [ l q o l l / 2 H o ( t  - t in)] 
R = (3cr ~ _ qo - -  1)x/~[qo]~/2 

H o - l l q o  + 1] 1/2 
P ~  = R ( t m )  = 

(3Cro - qo - 1)1/21qol I/2 

P~ = n(o) > n.~. 

cf. Figures 2 and 3. 

Ho-1 
to = l m  + ~ c~ Iqoll/2 

]q0 + 1] 1/2 ' 
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