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Abstract  

The most general time-independent spherically symmetric (in the usual three space dimen- 
sions) solution to the five-dimensional vacuum Einstein equations is found, subject to the 
existence of a Killing vector in the fifth direction. The significance of these solutions is dis- 
cussed within the context of a previously proposed extension of the Kaluza-Klein model in 
which the universe, although (4 + D-dimensional, has evolved over cosmic times into an ef- 
fectively (3 + 1)-dimensional one. 

w Introduction 

The idea that the various forces of  nature might be unified by enlarging the 
dimensionality of  space-time has a long and generally honorable history that  

goes back to the work o f  Nordstrom in 1914 and Kaluza in 1921 [ 1 , 2 ] .  Its 
earlier adherents were mainly those interested in extending general relativity, 
while of  late increased interest has been evident in the particle physics commu- 
nity,  especially among those investigating extended supersymmetry [3-5] .  

Both the appeal and the frustration of  this approach were touched on by  
Einstein and Pauli [6] ,  who wrote in 1943 

When one tries to find a unified theory of the gravitational and electromagnetic fields, he 
cannot help feeling that there is some truth in Kaluza's five-dimensional theory. Yet its 

1Research supported in part (Yale report No. C00-3075-235) by the U.S. Department of 
Energy under Contract No. EY-76-C-02-3075, and in part by NSF grant PHY79-16482 to 
Yale University. 
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foundation is unsatisfactory insofar as, with respect to the group of admissible coordinate 
transformations, the fifth, space-like coordinate is treated quite differently from the others. 

Similar remarks, of course, apply whether one is interested in 4 + n dimensions 
rather than five, or whether one seeks to include the strong and weak interac- 
tions in addition to electromagnetism. 

In a previous paper [7], we argued that while the universe appears to be 
(3 + 1)-dimensional, this appearance may be deceiving. We pointed out that 
there is a simple solution to Einstein's equations (the Kasner solution) which de- 
scribes the evolution over cosmic times of a space-time with more than three 
spatial dimensions, such that at the present epoch the extra dimensions have 
shrunk to a size comparable to the Planck length. The specific example we chose 
had one extra dimension, whose residual effects could be interpreted as the elec- 
tromagnetic interaction together with that of a scalar field. Other examples can 
presumably be chosen to reproduce the effects of other, more complicated, 
gauge theories. 

In this paper, we shall eschew further cosmological speculation in favor of a 
more detailed look at the properties of solutions to Einstein's equations on a 
(4 + 1)-dimensional manifold. We shall demand the solutions be asymptotically 
flat, which is inappropriate for an evolving universe, but which should be relevant 
to describing our local environment. 

Thus, we are chiefly interested in the vacuum Einstein equations 

R~v =0  (1) 

in (4 + 1)-dimensions. When projected down to an effective (3 + 1)-dimensional 
manifold, the degrees of freedom in guu (P, v = 0, 1,2, 3, 5) represent the gravi- 
tational and electromagnetic fields, and an extra scalar field. For most of this 
paper, we shall assume that the metric possesses a spacelike Killing vector ~a 
which can be taken to be 

a a 
g a ,, = (2) 

~X a ~)X 5 

We are not forced to demand the existence of this Killing vector, but since the 
fifth-dimension is so small, it is intuitively reasonable that the gross features of 
matter can be weU described by ignoring any dependence on x s . (From a quan- 
tum mechanical viewpoint, the uncertainty principle tells us that the energy re- 
quired to produce excitations in the fifth direction is of the order of 10 2~ Mev.) 
Furthermore, the existence of ~ provides an elegant and unambiguous way to 
project out the fifth dimension. The formalism for doing this is developed in 
Section 2. 

In Section 3, we find the most general time-independent spherically sym- 
metric (in the usual three space dimensions) solutions to equation (1). These are 
characterized by three real parameters. In Section 4, we probe equation (1) by 
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introducing a distribution of pressureless charged matter ("charged dust"). This 
allows us properly to identify the parameters of our vacuum solution as the elec- 
tric charge, gravitational mass, and scalar charge. Some conclusions are offered in 
Section 5. 

w (2): Five-Dimensional Manifolds with a Spaeelike Killing Vector FieM 

Our technique for discussing a five-dimensional manifold with a spacelike 
Killing vector field follows from a minor extension of Geroch's [8] analysis of 
the four-dimensional case; details and derivations of the equations used below 
can be found there. 

We assume that the metric gab of a five-dimensional manifold possesses a 
spacelike Killing vector field ~a, and we let Va be the covariant derivative opera- 
tor associated with gab. Then the manifold of the trajectories of ~a is four di- 
mensional and has a metric with Lorentzian signature 

"~ab = gab - ~a ~ b / r  2 ( 3 )  

where 

02 = ~a~a (4) 

is the norm of the Killing vector field. 
A derivative operator Da can be defined for the four-dimensional metric Tab 

by taking the Va derivative of any tensor orthogonal to and Lie transported by 
~a and then projecting all indices perpendicular to ~a. The Riemann tensor of 
D a, 6Rabcct, is related to the Riemann tensor of Va, Raoca, by the analog of the 
Gauss- Codazzi equation 

~abcd = ]'P [a T q b] ")'r[c "YSa] [Rpqrs + 2r -2 (Vp ~q)(Vr ~s) 

+ 2r -z ( %  ~r) (% ~s)] (5) 

Below, we will identify the electromagnetic field with an antisymmetric 
tensor 

Fa b ~ ~)-2 G-l/2 TaP~[b q V[p ~q] (6) 

which is orthogonal to and Lie transported by ~a. The quantity G is the gravita- 
tional constant. Note that Fab vanishes if and only if ~a is hypersurface orthogo- 
nal. Also, it is easy to show that 

Va}t~ = -2r  -1 ~[aVb] r + dp2GI/2Fab (7) 

Any Killing vector field satisfies 

Va Vb ~c = Rdabc ~d (8) 
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and when antisymmetrized over a, b, and c the right-hand side vanishes. It fol- 
lows that the curl of Fab also vanishes, 

D [a Fbcl = 7 p [a 7 q b 7re] Vp Fqr = 0 (9) 

which is one-half of MaxweU's equations in four-dimensional space-time. 
The four-dimensional implications of the five-dimensional Einstein equations, 

Rab - �89 gabR = 8rrG s tab,  (10) 

(sTab is the five-dimensional stress energy tensor) follow from the projection of 
these indices perpendicular to and parallel to ~a and the use of equations (5) and 
(8). It is first useful to decompose sTab 

sTab =- Tab + r + r (11) 

where Tab and Jb are perpendicular to ~a and Tss is a scalar. Now the 5-5 com- 
ponent of equation (10) implies that 

oOaOa~ = aO4Fab Fab + (8"fiG/3) ~2 [ Zaa _ 2T55 ] (12) 

the 5-1 component is 

Db ((gS Fab ) =47rG a/z J a (13) 

and the • component is 

~ab - 1 ,]tab ~ = (9-10a Db (9 - (9 -1 ]tab OPOp dp + 2G(~: [Fap Fb p - 1 Fpq F pq ] 

+ 87rGTab (14) 

The Bianchi identities in the five-dimensional manifold give two conservation 
laws which are consequences of the above equations, 

OaJa = 0 (15) 

and 

Da((PTab) + Gl/ZJaFab - TssDb~ = 0 (16) 

The great similarity between these equa.tions and the coupled Einstein- 
Maxwell equations is easiest to see by examining the linearized vacuum version 
of the above equations. Equation (12) becomes Laplace's equation for a scalar 
field; equation (13) becomes one of Maxwell's equations with da the conserved 
current (note that ~ should approach a positive constant in nearly flat space); 
and equation (14) becomes the four-dimensional vacuum Einstein equation. In 
fact, in this weak-field limit the scalar field looks only like an addition to the 
Newtonian gravitational potential and the equations look exactly like Newton's 
plus Maxwell's. 

The differences between the above equations and the Einstein-MaxweU equa- 
tions appear in the second order and result from the scalar field which has an 
effect of magnitude comparable to that of the gravitational field. 
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w (3): Spherically Symmetric Solutions 
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The most general time-independent metric with spherical symmetry in the 
three usual space dimensions and a Killing vector in the fifth direction can be 
put in the form 

ds 2 =-e  u dt 2 + 2A dt dx +02 dx 2 + e~[dr 2 + r2(dO 2 + sin 2 0 d~02)] (17) 

where/~, A, q~, and/3 are functions only of r; this is a generalization of the iso- 
tropic form of the Schwarzschild metric. As in the previous section, 4~ 2 is the 
norm of the Killing vector ~a. 

The four-dimensional metric on the manifold of trajectories of ~a is 

7ao dxa d xb = -eV dt ~ + er r2 + r2(dO ~ + sin s 0 d~2)] (18) 

where 
e u = e u +A2/4) 2 (19) 

The electromagnetic field tensor is defined in equation (6), and for the metric 
(17) the only nonvanishing component is 

Frt = -Ftr  = -~ ~-r = e~/2E (20) 

Where E is the radial component of the electric field. 
We assume asymptotically flat boundary conditions in conjunction with a 

normalization of coordinates such that e u, e u, e ~, and ~2 all approach 1 at 
infinity. 

Although it is possible to study the five-dimensional form of Einstein's equa- 
tions directly, we prefer to use the formalism of traditional four-dimensional 
relativity together with the machinery of Section 2 and the four-dimensional 
metric (18). 

The analog of Maxwell's equation, equation (13), is 

~--- (r2cb3 e~/2E) = 41rG1/2r2e(V/2+3~/2)Jt (21) 
Or 

which in vacuum is integrated immediately to obtain 

r2 03 e~12 E--  Q (22) 

where Q is the constant electric charge. 
The scalar equation (12) yields 

d (r2 e~/2§ ~r  )=_ 2Gg)3r2 eV/~+~/2E2 
dr\  

1 
+ - 8rrGr2eU/2+3~/20(Taa - 2Tss) (23) 

3 
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and the (~ and (~) components of equation (14) are 

e-a(~, ,  + fl '~ + 2~ ' l=  e-O v,qa, 4 r I ~ + Gr + 8rrGT~176 

87rGr 2 
(Taa- 2Tss ) 

3 
(24) 

and 

(~2 ~'V' r  e -~12 
e-t3 + 2 " + ' r = T (e-~12~)')' + Gr 

8~Gr 2 
+ 8rrGT~ (Taa - 2Tss) 

3 
(25) 

where a prime denotes a derivative with respect to r and we have made use of 
equation (23). The (~) and (]) components of equation (14) are identical to 
each other and follow from the others via the Bianchi identities. 

The most general vacuum solution to these equations is 

q~2 = aa ~pl + a2 ~0 p~ (26) 

e v = ~2]c~2 (27) 

A = (-ala2)Xl2(~ p' - t~ p' ) (28) 

e # = a2 cP~ + aa ~P~ (29) 

and 

where 

e t~/2 = (1 - B2/r2)/~b (30) 

r -  BlXl2B 
~O = ~ r - - ~ ]  (31) 

and al, a2, p 1, P2, X, and B are constants which satisfy the following relationships. 
Define 

- 4(4B 2 - ~ 2 ) D k 2  (32) 

then 

Px = 1 + (1 + ~)1/2 

P2 = 1 - (1 + ~:)!/2 
(33) 
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and 

al + a2 = 1 (34) 

The electric field E comes from equation (22) where the charge Q is related to 
the other constants by 

Q2 = -ala2 X2(1 +/~) G -l (35) 

Only three o f  these parameters are independent, for example, K, a l ,  and B; the 
others are then determined from the above equations. 

In the next section, we discuss the ratio of  the electrostatic repulsive force to 
the sum of  the gravitational and scalar attractive forces, as measured at large dis- 
tances, for two identical objects of  this sort. From equations (49)-(51)  and (55) 
this charge-to-mass ratio is 

Q2 4a1(al - 1)(• + 1) Q2 

GM - - - -5  K + 4  +4aa(ax - 1)(K + 1) 4B 2 +Q2 (36) 

So two identical objects will feel a net attractive or repulsive force depending 
upon the sign o f B  2 . Although it is not evident from equation (36), the condi- 
tion that the metric be purely real places restrictions on B 2 and Q2 which keeps 
Q2/GM~ positive. 

For the metric described by equations (26) to (35) K may be freely chosen as 
any real number. This choice then determines the range allowed for a~ and B 
such that the metric is real. We find that the resulting metric falls into one of  
three distinct classes depending on the value o f  ~. 

Class I. If  ~ > - 1, then B is any positive real number, 2 and al and as are 
also real but must lie outside the interval [0, 1]. This class includes five-dimen- 
sional versions of  the Schwarzschild and Brans (with his co = 0) metrics as special 
limits. And a boost in the fifth direction can always be found which removes the 
gxt part of  the metric. The charge-to-mass ratio, (Q2/GM2) 112 , takes on values 
from 0 to 1. 

A metric o f  this class contains a naked singularity at r = B, unless X = 2B. 
For this special case the metric comes from a boost in the fifth direction of  one 
of  the uncharged solutions with either al = 0 or a2 = 0. If  al = 0 and X = 2B, the 
metric is just the Schwarzschitd metric with dx 2 tacked on the end. 3 So its 
boosted version has a singularity inside an event horizon. And with a2 = 0 and 
X = 2B the metric comes from the Schwarzschild metric but with t ~ ix .  This 
metric, curiously, has no singularity at r = B if the points at x and x + 47rB are 

2The metr ic  is invariant under  B ~ -B.  
3If  gab dxa dxb is a four-dimensional  solution o f  Einstein 's  equations,  then  gab dxa dxb + dx2 

is always a five-dimensional solution,  when  x is a new fif th coordinate.  
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identified a ; but for the boosted version this identification is not sufficient for 
removing the singularity and all such solutions have naked singularities. 

Class IL I f -  4 < K < - 1 thenB is any real number; but al anda2 are com- 
plex conjugates with a real part of 1. It is then convenient to define 

al = 1 + ia (37) 

where ot is now any real number. Again (QZ/GM2)112 varies from 0 to 1. The 
singularities in this class of metrics are essentially the same as those in the pre- 
vious class. 

Class IIL If  K < - 4 then the metric is real only if both B is an imaginary 
number and al and a2 are complex conjugates, so that cz may be defined as in 
equation (37). For this case QZ/GM ranges from 1 to co. 

This is an interesting class of solutions. Neither $ nor e # vanishes for any 
finite value of r. As a result, in this class the five-dimensional metric is always in- 
vertible and contains no singularities. A coordinate change to R = r -1 easily 
shows that the region r -~ 0, R ~ ~ is another asymptotically flat region. So the 
metric represents a static, nonsingular wormhole joining two asymptotically flat 
regions which may (or may not) be distinct. 

The existence of such a solution is particularly interesting in the light of a 
theorem proved by Lichnerowicz [9] which states that the only stationary, 
asymptotically flat, singularity-free solution of Einstein's equations in four 
dimensions is flat space. His proof relies on the presence of just four dimen- 
sions. Also Einstein and Pauli [6] considered stationary, singularity-free solu- 
tions to equation (1) in five dimensions and in fact proved that no such solution 
can be imbedded in Minkowski space. 

A metric of  this class does have one pathological property. There always 
exists some value of r for which $2 is negative; in this re#on the Killing vector 
~a is timelike. The pathology arises when, as in Paper I [7], we choose the 
topology of the extra dimension to be a small circle to explain the unobserved 
nature of the extra dimension. Thus a curve with constant t, r, 0, and ~0, withx 
running from 0 to 27rL, is a closed timelike line. 

Another class of asymptotically flat solutions of the five-dimensional 
vacuum Einstein equations has recently been found by Belinsky and RufFmi 
[10]. Their class has three free parameters which might be chosen to be the 
mass, electric charge, and angular momentum; the scalar charge is uniquely re- 
lated to these others. These solutions appear to us to be the Jordan-Brans- 
Dicke Kerr solutions found by Mclntosh [11 ] coupled with a boost in the fifth 
direction. Our solutions overlap with the Belinsky and Ruffini solutions only 

when our electric charge vanishes. And, in particular, their solutions never allow 
a charge-to-mass ratio greater than unity. 

41n this  case the  surface r = B is an axis o f  the  x coordinate and the  topology of  the  extra 
dimension arises rather naturally.  
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w Weak-Field Limit  

887 

It is useful to analyze weak-field, nonvacuum solutions of equations (21)-(25) 
in order to make some correspondence between the electric charge, gravitational 
mass, and inertial mass of this theory with those of the traditional Einstein- 
Maxwell equations. We let the source of the metric be a static, spherically sym- 
metric, perfect fluid of radius R, density p, and pressure p with p ~ p, so that 

Tab = (p + p) v a u  b + pgab (38) 

where U a, the four-velocity of the fluid, has only the t component nonvanishing. 
We also assmne that 

j a  = qpU a (39)  

where q is the electric charge per unit mass and that 

Tss = sp (40) 

for some quantity s which we call the scalar charge per unit mass. I f  there is no 
magnetic field the only component of Fab will be the rt  component which is the 
electric field. 

In the weak-field limit, e v ~ 1 + ~p, e ~ ~ 1 + 6~, and ~ ~ 1 + 6~b where ~p, 
~/3, and 6~b are presumed small. In this limit and with the above Tab , equations 
(21)-(25) become 

and 

1 d (r2E)=47rGl/2q p (41) 
r 2 dr 

1 d (r 2 d6q~l_ -8zrGp (1 + 
2s) 

r ~ d r _  ~r]- (42) 

1 d (r 2 d8131_ -167rGp 
r dr \ 

(1 8) (43) 

1 d (6~+6v)  = d26~ 81rGo 
r dr ~ + 3 ( l + 2 s )  (44) 

For simplicity we assume that p, q, and s are all constant throughout the 
source. Then, with the definition m = 4 zrGpR 3 ' equations (41)-(44) are im- 
mediately integrated to yield 

E - 4rcGII~2 qpRa = G 112 q---m-m 
r 2 3 r 2 (45) 

2 m 
6q~ = ~ (1 + 2s) - -  

r 
(46) 
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4 m 
6iG : ~ (1 - s) - -  

/, (47) 

and 

6v = - 4 (2 + s) m (48) 
3 r 

Note that ifs = - �89 then 6q~ = 0 and the rest of the solution looks exactly like the 
leading terms of the Reissner-NordstrSm solution. 

The spherically symmetric metric of the last section may be expanded in 
powers of r -1 . This leads to a one-to-one correspondence between the strong- 
field spherically symmetric solutions and the weak-field solutions of this section. 
The quantities m, q, and s are related to the parameters of equations (32)-(35) 
by 

m =X[1-  �88 (axPx +a2p2)] (49) 

and 

=_ [ 2 + a l p 1  +a,m] 
s [.2 + alp2 +a2Pa J 

(50) 

Gqm = [-ala2 ?~2(1 + ~)] 1/2 (51) 

The Bianchi identities determine the equations of motion of the matter. In 
the weak-field background geometry of equations (45)-(48) distribute some 
pressureless dust with mass density p* and scalar and electric charges per unit 
mass s* and q*. If only small velocity radial motion is allowed then equation (16) 
implies that the dust moves along a trajectory governed by 

d2r Gqq*m 2 m 2s* m 
dr ~ r 2 3 (2 + s) ? 3 (1 + 2s) ~ -  (52) 

which illustrates, from left to right, the electrostatic force and traditional gravi- 
tational attraction from go0 along with an additional attraction caused by the 
scalar field. Equation (52) can also be written in the more symmetrical form 

d2r 1 
r2m * - ~  = Gq*qrn*m - m * m  - -5 (1 + 2s*)(1 + 2s) m * m  (53) 

which demonstrates that Newton's third law is satisfied. 
The equivalence principle asserts that the path along which an object falls in 

a gravitational field is independent of the composition of the object. It is clear 
from equation (53) that this principle forces s to be the same for all types of 
matter and the gravitational mass as determined by the Kepler orbits to be 

M = m G  -112 [1 + �89 (1 + 2s) 2 ] 1/2 (54) 
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In this weak-field limit the ratio of the electrostatic repulsive force to the 
sum of the gravitational and scalar attractive forces for two identical objects can 
be interpreted as the charge-to-mass ratio squared for the object. So Q2/GM2, 
which was used in Section 3, is 

.Q~ _ q~ 

GM 2 1 + 1 (1 + 25) 2 (55) 

A theory based upon equation (10) is incomplete until the stress-energy 
tensor of five-dimensional matter, sTab , is specified. We know of no way to 
choose sTab a priori. It is clear, however, that the 16 components of sTao which 
correspond to the usual four-dimensional space-time components should look 
like the four-dimensional stress energy of traditional matter. In addition, in 
equations (13) and (16) it is clear that the k-5 components of s Tal,, where k runs 
from 0 to 3, look like the electric current. Only the 5-5 component seems to 
have no traditional analog in general relativity; however, in the five-dimensional 
theory it plays an important role as part of the source of the scalar field which 
contributes to the gravitational attraction in the Newtonian limit. 

If we arbitrarily set s Tss = 0 then, with no electromagnetic field, equations 
(12) and (14) reduce to the Brans-Dicke theory of gravity with their constant 
co = 0, which is not consistent with experimental evidence. On the other hand if 
we set Tss = 1 Taa, which is equivalent to s = - �89 for the weak-field fluid, then, 
in the absence of an electromagnetic field, the source of the scalar field vanishes 
and equation (14) reduces to the traditional Einstein equations. 

Today all experimental tests of gravity examine the weak gravitational field 
exterior to a spherically symmetric, uncharged object and are consistent with 
Einstein's equations, sometimes to within a few percent [12, 13]. Hence we can 
interpret these tests as putting a small upper limit on the quantity s + �89 for the 
weak-field fluid. 

It would be satisfying to have a five-dimensionally covariant argument for 
why s should be approximately - �89 Unfortunately, such an argument is lacking 
at the present time. 

w Conclusions 

In this paper we have displayed the most general time-independent spheri- 
cally symmetric solution to Einstein's field equations in five dimensions, subject 
to the existence of a Killing vector in the fifth direction. With the appropriate 
choice of parameters, this solution can be expected to play much the same role 
in our theory that the Schwarzschild solution does in ordinary general relativity 
as the unique, spherically symmetric, static solution. And the charged nonrotat- 
ing black holes of this theory are.just the uncharged solutions with a boost in the 
fifth direction. 
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Of special interest are those solutions with Q > M ,  which may serve, at the 
classical level, as candidates for models of  elementary particles. It is noteworthy 
that they are entirely singularity-free and only suffer from the blemish of  closed 
timelike lines which result from the global topology (specifically, the fact that 
we have chosen to wrap the fifth dimension up on itself) and not because of  any 
local property of  the manifold. 

On the classical level this theory is still incomplete. Why the scalar field is 
absent in experiments i s one conundrum we face and is intimately related to the 
nature of  five-dimensional matter. 
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