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The compression yield behaviour of 
polymethyl methacrylate over a wide 
range of temperatures and strain-rates 

C. B A U W E N S - C R O W E T  
Institut des Mat~riaux, Universit~ libre de Bruxelles, Bruxelles, Belgium 

The compression yield behaviour of PMMA has been investigated, here, over a wide range 
of experimental conditions which cannot be reached in tensile tests owing to the brittle 
nature of the material. The plot of the ratio of the compression yield stress to absolute 
temperature, as a function of the logarithm of the strain-rate, gives a set of parallel 
curves which can be accurately superimposed by shifting along a slanting straight line. 
A master curve is built from which the yield behaviour may be predicted for any state of 
stress, or value of temperature and strain-rate in the glassy range, using Bauwens' yield 
criterion. 

The validity of the procedure is checked for compression tests at low temperatures, for 
tensile tests in the range of experimental conditions where PMMA yields and for torsional 
tests under hydrostatic pressure (data of Ward et al). In every case, the fit is found to be 
quite accurate. 

A region of experimental conditions is determined where the compression yield 
behaviour may not be described by the Ree-Eyring treatment involving a hyperbolic sine 
function. In this region, the Bauwens approach, which consists of a modification of the 
Ree-Eyring theory, taking into account a distribution of relaxation times and linking the 
yield behaviour with the/3 mechanical loss peak, is found to give an acceptable fit to the 
data. 

1. Introduction 
The yield behaviour of polymethyl methacrylate 
(PMMA) has been investigated in uniaxial 
compression tests over four decades of strain- 
rates at temperatures in the range of ( -  20 to 
100~ and also at one strain-rate, from 
( -  80 to 100~ 

The plot of ] ~o lIT (ratio of compression yield 
stress to absolute temperature) as a function of 
logarithm of strain-rate at several constant 
temperatures, gives a family of parallel curves 
(one curve for each temperature). Careful 
examination of the graph led us to draw the 
following conclusions: 
(a) the set of curves can be looked upon as 
generated by the shift of one curve along a 
slanting straight line, locus of the intersections 
of  the asymptotes of each curve; 
(b) the shift factor along this straight line 
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accurately fits the Arrhenius relation. Therefore 
a master curve can be built. 

Starting from these important experimental 
features, we decided not to describe the com- 
pression yield behaviour of PMMA by the 
modified Robertson model, developed by Ward 
et al [1 ], because this treatment does not imply 
such consequences. On the other hand, it must 
be noted that over a relatively wide region, the 
master curve exhibits an appreciable curvature. 
In this region, the data do not accurately fit the 
Ree-Eyring equation [2] which, at first sight, 
seemed to agree with the tensile yield stress data 
of PMMA [3, 4]. On the contrary, the compres- 
sion data obtained here, are in agreement with a 
hypothetical mechanism of yielding proposed by 
Bauwens [5, 6] which is useful to describe the 
yield behaviour of polyvinylchloride (PVC) and 
polycarbonate (PC), in compression as well as in 
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tensile tests. Bauwens' approach is based on the 
Ree-Eyring theory; furthermore it correlates the 
yield stress with the mechanical damping peaks 
observed in glassy polymers, and establishes a 
yield criterion [7, 8] which is temperature, strain- 
rate and pressure dependent. 

We agree with Ward [9] in that this treatment 
is not so elaborate as the attractive Robertson 
theory [10], but it has the merit of accounting 
for a number of different aspects of yield 
properties, and the accuracy of the fit to the data 
is fairly good over a wide range of experimental 
conditions. 

We intend, here, to 
1. give a master curve related to the variation of 
the yield stress of PMMA in uniaxial compres- 
sion tests, as a function of logarithm of strain- 
rate; 
2. check Bauwens' yield criterion using compres- 
sion and tensile data as well as values of the 
torsional yield stress under hydrostatic pressure 
(measurements of Ward et al [11 ]); 
3. correlate the yield behaviour with the /3 
mechanical loss peak observed in damping tests, 
following a treatment first proposed by Bauwens 
for PVC and PC [5, 6]; 
4. show that the interpretation of the tensile yield 
behaviour of PMMA, given a few years ago, in 
our laboratory [3] and, independently, by 
Roetling [4], was partially wrong. An apparently 
good agreement between the tensile yield stress 
data and the Ree-Eyring theory was then ob- 
tained because of the narrow range of ex- 
perimental conditions where PMMA yields in 
tensile tests. 

2. Experimental 
Commercially-available PMMA (Perspex ICI) 
in the form of sheets 5 mm thick, was used. The 
equipment used to obtain compression and 
tensile yield stresses, and the shape and the 
dimensions of the test pieces, were described 
previously [12]. 

Over the whole range investigated, load- 
extension curves exhibit a well-defined maxi- 
mum at a few per cent strain. This maximum is 
taken as the yield point; the corresponding load 
is denoted by F. The yield stress was calculated 
using the following equations, respectively valid 
in tensile and compression tests : 

F 
at = ~-(1 + e) (1) 

,3o 

F 
[ae [ = So (1 - e) (:2) 

where a is the corrected yield stress, So the initial 
cross-section and e the measured strain corre- 
sponding to F. This manner of evaluating the 
yield stresses is implied by Bauwens' treatment, 
as already discussed in a previous paper [12]. 

The damping tests were performed using a 
torsion pendulum placed in an environmental 
chamber. The loss tangent was measured from 
( -  80 to 90~ on a specimen 10 cm x 1.5 cm 
x 0.2 cm. The pendulum was set, at room 

temperature, at two different frequencies around 
1 cps, namely: 0.46 and 1.82 cps. 

3. Results 
3.1. Compress ion  yield s t resses  
The plot of I ao i/T versus log d (where d is the 
strain-rate) is shown in Fig. 1. 

The graph shows the set of parallel curves 
which agrees with the data and satisfies the 
following conditions: 
1. the set of curves must be generated by the shift 
of any curve along a slanting straight line 
(called &); 
2. the shift factor along de must fit an Arrhenius 
equation. From this graph we have built a 
master curve, reduced to 100 ~ C, which is shown 
in Fig. 2 (full curve). 

,o' 
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6 -  
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I I I I 1  I ~ e  
-4  -3 -2  0 log 

Figure 1 Ratio of compression yield stress to temperature 
as a function of logarithm of strain-rate. The set of eurve~ 
is generated by the shift of one curve along d~, according~ 
to Equation 7. ( (~ in see-1.) 
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Figure 2 Master compression yield stress curve reduced to 100~ (full curve). The asymptotes are expressed by 
Equations 3 and 4. The dashed curve is calculated from the Ree-Eyring equation (8). 

I f  one assumes that two rate processes, ~ and 
/3, are involved in the deformation at yield, the 
Ree-Eyring theory as well as Bauwens' treatment 
predict that the asymptotes of  a given curve are 
expressed by 

fL-~  = Ace (ln 2 C~, g + -~T)) 4:,<~<~p (3) 

and 

, Q/~ e + Ac~(  l n2  C/~ g + R--T)}i> "e (4) 

where Ace, Ac~ are constants; C a and Cp are 
constants containing a frequency factor; Qe and 
Q~ are the activation energies related to the 
and/3  processes respectively, and R denotes the 
universal gas constant. 4~ is the value of the 
strain-rate corresponding to the intersection of 
the two asymptotes and 4 e the value of the strain- 
rate obtained by extrapolating the curve to zero 
stress. I t  follows that I 

~ # -  2 C ~ e x p  - R-'T (5) 

and 

i ~ = 2 C a e x p  - �9 (6) 

Let us consider two curves belonging to the 
family shown in Fig. 1 and related to temperature 
7"1 and T~, respectively, and let s,,(T~, T2) denote 
the horizontal component  of  the shift factor 
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between these two curves; it therefore follows 
from both treatments that 

sx(Tt, T~)= QB ( 1  1 )  
2.303 R ig" 1 T~ " (7) 

The values of  the parameters were estimated 
f rom Fig�9 1 and from the best fit of  Equations 3, 
4 and 7 to the data of Figs. 1 and 2; they are 
given in Table I. The procedure followed is 
described in the Appendix�9 

TABLE I Parameters calculated from the fit of 
Equations 3, 4, 7 and 9 to the data. 

process fl process 

Qa = 98.5 kcal mo1-1 
C e = 5 x 1 0  -~asec 
Aee = 7.1 x 10-4 kgmm -2 

K - 1  

A t  e = 5 . 5  x 1 0  - 4  k g  m m  - 2  

K - 1  

Q~ = 25.6 kcal mo1-1 
Cg = 4.67 x 10 -17 sec 
Ae~= 3.74 x 10 -a 

kgmm-~ K-a 

The Ree-Eyring equation may be written as 
follows : 

) 
�9 Qp + Ac~sinh-l (C~Eexp~-T) . (8) 

Using the values given in Table I, the dashed 
curve in Fig. 2 was calculated f rom Equation 8. 
I t  can easily be seen f rom the graph that this 
curve does not give an acceptable fit to the data 
when ( i  ~< log d ~ 3). 

The theoretical expression of the full curve in 
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Figure 3 Plot of the compression yield stress versus 
temperature at a constant strain-rate, 4 = 4.16 • 10 -~ 
sec -z. The full curve is deduced from the master curve of 
Fig. 2; the dashed curve is calculated from Equation 8; 
both curves have the same asymptotic limits. 

Fig. 2, as a function of the /3 mechanical loss 
peak, may be obtained by using a procedure 
similar to that given in ref. [6], but initially, we 
have considered this curve as a semi-empirical 
one, f rom which, using Bauwens' criterion, we 
intend to predict the yield behaviour of  P M M A  
in the glassy range, for an arbitrary state of  stress, 
or value of strain-rate or temperature. For  
example, in order to check the value of the 
compression yield stress at low temperatures 
implied by this master curve, we have deduced 
f rom it another curve representing [~c I as a 

function of temperature at a constant strain-rate: 
d = 4.16 x 10 -a sec -1. This latter curve is given 
in Fig. 3, where it is seen that there is a fairly 
good fit to the data. 

3.2. Tensile yield stresses 
The plot of  ~t/T (ratio of  tensile yield stress to 
absolute temperature) versus log i is shown in 
Fig. 4. Since P M M A  usually fractures before 
yielding, when tested at moderate-to-high strain- 
rates below 50 ~ C, the obtained data do not cover 
a wide range of experimental conditions. A set of  
parallel curves is drawn through the points in 
such a way that: 
1. the extrapolation for small stresses of  the 
curve related to T = 100~ meets the horizontal 
axis at a point having an abscissa equal to log i s 
(same value as in Fig. 2); 
2. the family of curves is generated by the shift of  
any curve along a slanting line (called dr); and 
3. Equation 7 is satisfied although the shift is 
carried out along dt instead of &. 

A master curve, reduced to 100~ is built 
f rom Fig. 4 and is given in Fig. 5. The procedure 
followed implies that 4~ has the same value in 
Fig. 2 as in Fig. 5, but in the latter case, it is seen 
that only one asymptote (related to the small 
stresses) can be drawn through the points. This 
asymptote is expressed by: 

+ Q ~  

where At~ is a constant. Its value, estimated f rom 
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Figure 4 Ratio of tensile yield stress to temperature as a function of logarithm of strain-rate. The set of curves is. 
generated by the shift of one curve along dt according to Equation 7. (g in sec-L) 
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Figure 5 Master tensile yield stress curve reduced to 100~ The asymptote of the curve is expressed by 
Equation 9 where ic~ and dfl have the same value as in Equations 3 and 4. 

the best fit of Equation 9 to the data, is given in 
Table I. 

3.3.  M e c h a n i c a l  d a m p i n g  t e s t s  
The results of the damping tests are shown in 
Fig. 6, where the loss tangent (tan ~), is plotted 
versus temperature. A broad asymmetric peak is 
fotmd. 

I t  must be noted that the maximum value of 
tan ~ rises slightly with increasing frequency, 
indicating that the observed peak is the combina- 
tion of two or more component  peaks [13]. 
Owing to this fact, the case of  P M M A  is more 
complicated than those of PVC [5] and PC [6], 
where a single peak, having the same activation 
energy as that of the/3 process, was found at low 
temperatures. I t  was, therefore, necessary to split 
the measured peak, in order to isolate the com- 
ponent  which we intend to relate to the compres- 
sion yield stress curves of  Figs. 2 and 3. 

A hypothetical split is given in Fig. 7, where 
the components have the following character- 
istics: 
1. the shift of  the maximum of the pl component, 
f rom Pl, to ply, corresponds to an activation 
energy equal to that of  the /3 process, i.e. 25.6 
kcal tool -1 (see Table I);  
2. the existence of a symmetric peak, p2, is 
assumed, whose maximum is located at 65~ 
and whose shift is negligibly small for the 
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variation of frequency considered here. This peak 
may perhaps be associated with the ~' transition 
revealed by Thompson [14]; and 
3. the peak related to the main transition of 
P M M A  is also supposed to interfere by means 
of its low temperatures wing: P3. 
The addition of peaks Pl,, P~, P~ and Plb, P~, P3 
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tan 8. I(~ 2 

b 
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Figure 6 Loss tangent of PMMA as a function of tempera- 
ture in the /~ transition range. Curves a and b are the 
combination of the hypothetical peaks PI~, P2, P3 and 
Plb, P2, P3 of Fig. 7. The frequency varied from 0.62 to 
0.36 cps (data related to curve a) and from 2.4 to 1.5 cps 
(data related to curve b). 
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Figure 7 Hypothetical components of the curves a and b 
given in Fig. 6. The shift of the maximum of peak p~ from 
p~ to P~b is related to an activation energy equal to Q/~. 
Peaks P2 and pa are supposed to be fixed. 

gives rise to the curves a and b, respectively 
(Fig. 6), which are in agreement  with the data. 

4. Interpretation 
4.1. Relation between the compression, 

tensile and torsional yield stresses 
I t  has been shown previously [12], that  Bauwens '  
criterion mnst  be applied separately to the ~ and 
t he /3  processes. Let]  ao~ ], ] a~/~] and ate, atB be 
the ~ and /3 contr ibut ions to the compress ion  
and tensile yield stresses, respectively. The 
expression o f ]  ac~ [ and at~ is supposed to be 

] a~ [ = A~  T (ln 2 C~ ~ + - ~ )  (10) 

and 

Values of  ao/~ and at~ are obta ined by sub- 
tract ing a ~  I or at~ (as expressed by Equat ions  
10 or 11) f rom the I ao [ and at (as measured  or 
extrapolated f rom the mas ter  curves). 

Al though Bauwens '  yield criterion is tempera-  
ture and strain-rate dependent ,  it leads to the 
following equations : 

c~t~ ~/2 - F At~ (12) 

and 

Icr,~__~ = ~/2 + / ~ '  Ar (13) 
atfl ~/2 -- t z' Atfl 

where F and F '  are constants.  Plots o f  I a ~  I 

TABLE I I  Parameters determined by fitting the yield 
criterion to compression and tensile data 

process fi process 

/z = 0.178 F' = 0 
Ac~=3.58 x 104kgmm -2 Afl=2.16x 10-~kgmm -2 

K - i  K - ~  

Comparison between theoretical and measured values of 
z (same experimental conditions: atmospheric pressure, 

= 4 • 10 -4 sec -l, T = 25~ 

Calculated from Equations Data of Ward et al [11 ] 
15 and 16 ~- = 5.12 kg mm -~ 

~- = -r + 7 k, = 4.94 kg mm -2 

versus a t ~  and ] ae/~l versus ate  are given in 
Fig. 8a and b, respectively; values of  F and /z', 
calculated f rom the fit o f  relations 12 and 13 to 
the data, are presented in Table  H. 

A s / ~ '  was found equal to zero for  P M M A ,  it 
follows f rom Equat ion  13 that  

Acp = A,~ .  (14) 

Now,  let z and  p denote  the yield stress and the 
shear-rate related to torsional  stress-strain tests, 
respectively. I f  the torsional  tests are pe r fo rmed  
at  a tmospher ic  pressure at a shear-rate equiva- 
lent to ~, the a and /3 components  of  T m a y  be 
expressed as a funct ion of  [ac~ I and ]ar ], 
respectively, using Bauwens '  criterion. This 
au thor  considers that  strain-rates are equivalent 
if they produce,  during the same time, plastic 
strains corresponding to the same value of  the 
first strain invariant  [7, 8]. Therefore,  torsional  
and compress ion  yield stresses are related to 
equivalent  strain-rates when p = ~/3 d, and it 
follows tha t  

and 

Ap 
rp  = ~--c~ [ ao~ l (16) 

where A n and A~ are constants  such that  

An = 2 A ~  
+ Ar 

and 

A~ = 2 A c ~ - -  

~/3 (1 + At/~]" 
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From these equations, a value of ~- = ~-= + 7p 
under atmospheric pressure, is calculated for 
T = 25~ and ~ = 4 x 10 -4 sec -1, the result is 
given in Table II, where it is compared with the 
data of Ward et al [11 ] obtained under the same 
conditions. 

Bauwens' criterion predicts that the depen- 
dence of ~-= and -r~ on hydrostatic pressure ( - p ) ,  
for tests performed at constant strain-rate and 
temperature is given by 

3 
~'~ + --~6 F ( -  P) = constant (19) 

and 

3 
7# + -76 F ' ( -  P) = constant. (20) 

The variation of z with ( - p )  was calculated 
from Equations 19 and 20 and plotted in Fig. 8c, 
where it is compared with the data of Ward et al 
[11 ]. The accuracy of the fit is satisfactory. 

4.2. Correlation between compression yield 
behaviour and the/3 loss peak 

Bauwens' treatment states that the molecular 
movement related to the/3 process considered in 
the Ree-Eyring theory is that which is associated 
with the fl mechanical loss peak. For an initial 
approach, let us assume that the /3 mechanical 
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Figure 8 (a) Plot  of the compression yield stress versus 
tensile yield stress, in the range of  experimental conditions 
where only the = process is involved in the deformation. 
The straight line drawn on the graph is calculated from 
Equat ion  12 using Table [. (b) Plot of the/~ contribution 
to the yield stress in compression versus the /3 contr ibu-  
t ion in tension (full circles: both quantities are measured; 
open circles: one quantity is measured while the other is 
extrapolated from the master curve). (e) Torsional yield 
stress as a function of pressure (T = 25~ ~, = 4 • 
10 -4 see-i) .  (Data of  Ward e t  al [1 l ]). The  straight line 
drawn on the graph is calculated from Equations 19 and 
20 using Table II. 
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loss peak of PMMA is Pl (Fig. 7). Bauwens 
correlates this peak to the relaxation spectrum, 
H ( -  In cog) corresponding to the /3 transition 
range. Let A In co# denote the half-width value 
of the spectrum; cog is the characteristic radian 
frequency of a given element whose response to 
free oscillation tests may be calculated using the 
three element model of Fig. 9. 

Gp 

~qp 

Figure 9 Simple three-element model used in Bauwens' 
treatment. 

Taking the following expression for cog [6]: 

co#= G g -  'JggcG # ( Q # )  (21) 
~7# - A #~ exp - R--T 

where ~Tg is the Newtonian viscosity of the 
viscous element and Gg is a constant, it is seen 
that a distribution of In cog can arise from a 
distribution in the value of either Cg or Q#. The 
latter case was found to give a good basis for 
describing the yield behaviour of PVC and PC 
[5, 6]. Data obtained on PMMA allow one to 
check, over a wide range of experimental 
conditions, that the curves of Figs. 1 or 4 can 
accurately be superimposed even in the region 
where they exhibit a definite curvature. The 
snperimposability of the data in such regions 

implies that the dependence of the yield behav- 
iour on an activation energy spectrum may be 
neglected initially. Therefore, we will consider 
here that H ( -  In cog) arises from a distribution 
in the values of C#. Let this distribution function 
be expressed by 

~OoP(ln C#) C# = . (22) d In 1 
0 

It can be derived from Equation 21 that 

d lncog = - d i n  Cg. (23) 

a relation which allows the half width value of 
P(ln Cg) to be taken as equal to A(ln cog). 

The expression of tan ~ (approximation of first 
order) given in Bauwens' treatment, may be 
rewritten in terms of a distribution in the values 
of Cg 

tan 3 - ~r Go P (In C)# 
2G# (24) 

where Go is the shear modulus when both o~ and 13 
processes are frozen in. Therefore, from Equa- 
tions 5, 21 and 24, an equation may be estab- 
lished between, on the one hand, the value of 
Vma,, (i.e. the frequency corresponding to the 
maximum value of the loss tangent, for tests 
performed at various frequencies at a given 
temperature), and, on the other hand, the value 
of ~# related to the same temperature. 

Vmax T = V3 Go 2A# (tan S)max A(ln cog) d# (25) 

where 1/[A(lncog)] is approximately the maxi- 
mum value of P(ln C#). Unfortunately, we are 
not able to measure tan 3 as a function of 
frequency at constant temperature, a measure- 

tan 6 . 1 0  -z 

9 -  

Vn~ I I 
7- ~ t a n 6  ( i f  

6- 

5- 

3- 

2- 

5.4 52 5 &.8 &6 l, Z,.2 /~ 3.8 3.6 3 3.2 3 2.6 .16 

Figure lO Contribution of peak PI~ to the tan s ( l /T)  curve and integral of this contribution from 0 to 1/7/. 

975 



C. B A U W E N S - C R O W E T  

ment which allows the direct evaluation of 
A(lnoJB); but using peak P~b, for example, we 
can obtain a plot of  tan S versus I/T (see Fig. 
103 

Provided that the condition 

vT = constant (26) 

is satisfied for every point of  the curve (which is 
approximately true for this peak), it may be 
derived f rom Equation 21 that 

d In C~ = - Q-----~ d ( l /T)  (27) 
R 

and, therefore, the half-width value of POn C e) 
may be obtained f rom the half-width value 
A(1/T) of the peak given in Fig. 10. 

Equation 25 may be rewritten 

,]3 Go R 
vnaax Tmax = 2A~ (tan 3)max Q~ A(1/T) ~ (28) 

In this last equation, Tm~x denotes the tempera- 
ture at which the loss tangent reaches its 
maximum value, for tests performed at a 
frequency equal to Vmax, as well as the tempera- 
ture at which the imposed strain-rate, in a tensile 
or compression test, equals ig. For example, in 
the case of  uniaxial compression tests performed 
over a wide range of temperatures and at 
constant strain-rate ~ = 4.16 x 10 -3 sec -~, the 
value of T which satisfies Equation 5 for 

= d~ is Tmax = 29~ = 302 K. The corres- 
ponding value of Vmax may be calculated f rom 
Equation 28 using Table III ,  if one assumes that 
(tan 3)max and A(1/T) do not depend on the 
location of the peak, and, therefore, can be 
evaluated f rom Fig. 10. 

TABLE I I I  Constants of Equation 28 

Constants Determination Value 

(tan ~)m~x From peak Pl (the value of 7.15 • 10 -~ 
the background has been 
subtracted) 

A (l/T) From Fig. 10. 1.06 • 10 -8 K -I  
Go From data of Heijboer [17] 260 kg mm -2 
Qp and Aft Are given in Tables I and 

II, respectively 

The obtained value, Vma,: = 1.57 cps, is close 
to the measured value, Vrnax = 1.79 cps, related 
to peak Pxb whose maximum is precisely located 
at Tmax = 302 K. The last two values of  
frequency and temperature satisfy Equation 28. 
Although much rough approximation has been 
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made, we may then conclude that Bauwens' 
treatment may be applied to correlate the yield 
stress curve of Fig. 3 to the peak P~b" In order 
accurately to check this treatment, we have 
plotted, in Fig. 11, the /3 contribution to the 
compression yield stress versus temperature; the 
data, as well as the full curve which is, therefore, 
deduced from the compression master curve, are 
obtained f rom Fig. 3. 

Following a derivation similar to that of 
Bauwens, I~rc~l/T may be expressed as a 
function of P(ln CB) by 

I [ 
- K ~  ~ P( lnC~)dlnC~ (29) (Tcfl 

where K is a constant and CpT is related to the 
frequency factor of an element whose 13 transi- 
tion occurs at temperature T. Taking into 
account Equation 27, Equation 29 may be 
rewritten 

~2/~'P(1/T) d l/T 
810T a~fll = K ~  (30) 

Jo P(1/T) d 1/T 

which leads to the following expression: 

l ac~I = B ,~;dT f2 /TP(1 /T)  d l /T  (31) 

where Bc is a constant. 
In order to check Equation 31, we have 

integrated, f rom 0 to l/T, the curve of Fig. 10 
giving tan 3 as a function of 1/T(afler subtraction 
of  the background estimated on Fig. 6); the 
results is also given in Fig. 10. The integral has 
then been plotted as a function of T and integra- 
ted once again from T t o  oo. The dashed curve of  
Fig. 11 is proportional to this double integral 
and therefore represents Equation 31; the 
constant was chosen to obtain a coincidence at 
T = - 80~ for both curves on the graph. 

Although the fit of  the dashed curve is not 
perfect, we think it is sufficient, according to the 
crude approximations made, to conclude that 
Bauwens' treatment enables one to describe the 
yield behaviour of PMMA. Obviously, the same 
treatment may be applied to generate the curve 
giving the tensile yield stress as a function of 
temperature, at constant strain-rate. I t  leads to 
the following expression: 

atp = Bt T at P (1/T) d l/T. (32) 
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Figure 11 fl component of the compression yield stress as a function of temperature at constant strain-rate. The 
data and the full curve are deduced from Fig. 3; the dashed curve is calculated from Equation 31. 

5. Discussion 
It  has been pointed out previously [5, 6] that for 
tensile yield data on PVC and PC, theoretical 
yield stress curves (i.e. ~rt = f ( T ) ,  at constant 
strain-rate) calculated from the Ree-Eyring 
equation and f rom Equation 32, are very close 
together. Even in the case of  compression tests 
on PC, where Bauwens' treatment gave a quite 
accurate fit to the data [6], the fit of the Ree- 
Eyring theory was still acceptable [12]. 

The present paper shows that for P M M A  both 
treatments differ greatly in the/3 transition region 
and that only Bauwens' approach is applicable. 

However, an apparent agreement between tensile 
data and the Ree-Eyring theory was found 
previously [3, 4]. Comparing Figs. 2 and 5, we 
understand how important  it is that a wide range 
of strain-rates and temperatures be explored or 
it may not be possible to determine, with accu- 
racy, the position of the asymptotes of  the curves. 
A wrong position was assigned, previously, 
which led to values of  the constants differing 
from those presented in Table I. The agreement 
between the theory and the tensile data merely 
seemed to be good because of the narrow range 
of experimental conditions investigated, but 
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using the parameters thus determined, it is not 
possible to fit the compression or torsional data 
presented or recalled here. The derivation 
followed, links together, quite accurately, the 
compression, tensile and torsional yield behav- 
iour of PMMA; it is obvious that such a good 
agreement was obtained by iteration, a procedure 
which is sometimes long and inconvenient. 

The split of the loss tangent peak in order to 
isolate the /3 contribution, is certainly highly 
schematic but relies on the following experi- 
mental features : 
1. the value of the activation energy Q~ deter- 
mined from the Compression yield data (Table I) 
and assigned to govern the shift of the maximum 
of the fi peak, is in agreement with results 
obtained by several authors, among others, 
Iwayanagy and Hideshima [15], and Thompson 
[14] (when this last author does not normalize 
his creep curves by the McCrum and Morris 
method [16]); 
2. the hypothetical existence of the pz peak may 
be supported by the fact that Thompson found a 
peak (called c~') in the same region, but also, that 
the c~ maximum for the isotactic polymer is 
located at 65~ at 1 cps [17]. As the conven- 
tional polymer is about 15~ isotactic, peak P2 
may perhaps arise from the presence of the iso- 
tactic fraction (with an intensity depending on 
this fraction). In this case, it is allowable to 
assume that the shift of p~ with increasing 
frequency is negligible compared to that of the 
peak. 

6. Conclusions 
In conclusion, it appears that compression and 
tensile data on PMMA, giving the variation of 
]~o lIT or at/r as a function of the logarithm of 
strain-rate, can accurately be time-temperature 
shifted along a slanting straight line. The 
comparison made between compression, tensile 
and torsional yield measurements shows that the 
yield criterion established by Bauwens fits the 
data fairly well, provided it is applied separately 
to each of the two kinds of activated rate 
processes (c~ and ~) which are supposed to be 
involved in the deformation at yield. 

Compression data, which cover a wide range 
of experimental conditions, only fit the Ree- 
Eyring equation in the case where the approxima- 
tion that sinh x ~ 1/2 exp x, is valid, and, there- 
fore, indicate that the hyperbolic sine function 
fails to describe the yield behaviour of PMMA. 
Bauwens' approach, which may be considered as 
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a modification of the Ree-Eyring theory provi- 
ding for a distribution of relaxation times, is 
found to give an acceptable fit to the yield stress 
data. 

The time-temperature superimposability of 
the data, in the region where the yield stress 
curves, [[ ere i/T = f(log ~)]T = cons~, exhibit a 
definite curvature, allows one to neglect the 
influence of an activation energy spectrum on the 
yield behaviour and, therefore, to assume that 
the distribution of relaxation times arises from a 
distribution in the values of the frequency 
factors of the/~ elements. 
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Appendix 
Evaluation of the constants: Ac=, C=, Q~ and 
Ao/~, Cp, Q~ 
The values of the parameters, reported in Table I, 
were estimated, as follows, from the data of 
Fig. 1. 

It is first assumed that the curves related to the 
highest and the lowest temperature regions, reach 
the asymptote expressed by Equations 3 or 4 
respectively, within the explored range of 
experimental conditions. A set of straight lines is 
then drawn on a transparency througbout the 
data related to the highest temperatures and the 
lowest strain-rates. The mean slope is taken as 
Ac~" 

A set of parallel straight lines having a slope 
equal to Ac~ is tried; from the horizontal shift of 
these lines and from the extrapolated value of the 
abscissas for I c~e I/T = 0, mean values of Q~ and 
C a are calculated respectively. Then, a set of 
parallel straight lines (called set c 0 is recalculated 
from Equation 3 using the mean value of Q~, C~, 
Ac~, for each temperature from - 20 to 100~ 
at which the tests have been performed (see 
Fig. 12). 

Another set of straight lines is then tried 
throughout the data, in the region of Fig. 1, 
related to the highest strain-rates and the lowest 
temperatures. From the mean slope, Ac~ is 
evaluated. A set of parallel straight lines (called 
set/3) is drawn which meets set c~ in such a way 
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Figure 12 Graphical method of evaluating the constants of Equations 3 and 4 (schematic). 

tha t  the locus o f  the intersect ions of  s t ra ight  
lines, related,  in bo th  sets, to the same tempera-  
ture, is a s t ra ight  line called de (see Fig.  12). This 
p rocedure  al lows one to consider  tha t  the 
asympto tes ,  so ob ta ined  at  each tempera ture ,  can 
be super imposed  by a s lant ing t rans la t ion  a long 
&. F r o m  measurements  o f  Sx (expressed by  
Equa t ion  7), the hor izon ta l  componen t  of  the 
shift factor ,  Q~ has been eva lua ted ;  and  f rom the 
abscissa o f  the intersect ion of  two asympto tes  at  
a given tempera ture ,  C~ has been  ca lcula ted  
using Equa t ion  5. 
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