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Abstract 

Penrose's abstract index notation and axiomatic introduction of eovariant derivatives in ten- 
sor calculus is generalized to fields with internal degrees of freedom. The result provides, in 
particular, an intrinsic formulation of gauge theories without the use of bundles. 

w Introduction 

Traditionally,  tile subject of  tensor calculus was approached in two different 
ways. Physicists, in general, introduced tensor fields in terms of  the transforma- 
t ion properties of  their components  and defined covariant derivatives using 
Christoffel symbols;  all tensorial operations were reduced to  the familiar manip- 
ulations of  functions. Mathematicians, on the other hand,  regarded tensor fields 
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as cross sections of suitable bundles and defined covariant derivatives in terms of 
certain (Lie-algebra-valued) connection l-forms; the emphasis was on geometry. 
Although both approaches are of course completely equivalent locally, the dif- 
ference in orientation can be quite significant in practice. In particular, the first 
approach is much more convenient in long calculations while the second has the 
virtue of bringing out the invariant significance of the various operations. Thus, 
one was always faced with a choice between practical convenience and aesthetic 
elegance. This state of affairs persisted until Penrose [1 ] pointed out that one 
can adopt a third viewpoint which combines the advantages of both traditional 
approaches. The key ingredient in Penrose's approach is the use of the so-called 
abstract indices. These are to be thought of as labels indicating the valence of 
tensor fields and do not take on numerical values. Thus, one can regard a tensor 
field with abstract indices as an intrinsic object in its own right; no mention need 
be made of its components and their transformation properties. The availability 
of indices, however, provides a great flexibility in calculations. The overall view- 
point is a practical one: one introduces the various algebraic operations as well 
as the derivative operators on tensor fields directly in terms of those properties 
which one uses in practice. This procedure pinpoints the mathematical structures 
involved in the operations normally performed, thereby adding a great deal of 
clarity. As a general rule, proofs, e.g., of algebraic properties of Riemann tensor, 
of Bianchi identities, etc., are at least as simple as those in the component nota- 
tion and at least as elegant as the ones in the bundle formalism. 

The current situation in the mathematical formulation of gauge theories is 
analogous to that in tensor calculus prior to the introduction of Penrose's nota- 
tion: in the particle physics literature, gauge fields are treated in terms of their 
components in some specified internal frame field, while in the mathematical 
literature, one regards them as cross sections of suitable bundles. One would 
therefore like to have a framework which combines the computational facility of 
the component formalism and the intrinsic character of the bundle description. 
That is, it is desirable to extend Penrose's framework for tensor calculus to cal- 
culus of gauge fields. The purpose of this paper is to present such an extension. 
The basic idea is to introduce abstract indices also for gauge degress of freedom. 
These indices will again serve as labels indicating the valence of the field (in the 
space of internal degrees of freedom) and will not assume numerical values. As in 
the case of tensors, the algebraic properties of these objects with abstract in- 
dices-the generalized tensor fields-will simply mirror the properties of com- 
ponents of gauge fields and novel features will appear only when a derivative 
operator is introduced. Throughout, gauge and Higgs fields will be described by 
generalized tensor fields on the space-time manifold itself; we will not need to 
introduce any bundles. Overall, the approach is more algebraic than geometric: 
the derivative operators on gauge fields, for example, will be introduced in terms 
of their "algebraic" properties rather than in terms of, say, parallel transport, or, 
horizontal subspaces in a principal fiber bundle. Moreover, the gauge group which 
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plays a dominant role in the geometric picture-one uses it in the very first step 
in the construction of the principal fiber bundle-will play a relatively minor role 
in the present framework. Nonetheless, the final picture is completely equivalent 
to the usual one as far as "local" issues are concerned. The difference, as in the 
case of Penrose's approach to tensor calculus, is in emphasis: computations are 
simplified by bringing to the forefront the properties of  various operations which 
one needs to use repeatedly while the conceptual issues are made clearer by 
avoiding the use of frames and maintaining the intrinsic character of various 
objects. 

In Section 2, we introduce generalized tensor fields together with their alge- 
brai c properties. Section 3 is devoted to calculus. First, we define derivative 
operators on generalized tensor fields axiomatically, construct the curvature ten- 
sors, and derive Bianchi identities. Then, we discuss the issue of uniqueness of 
derivative operators and show that there is a natural one-to-one correspondence 
between derivative operators with zero curvature and equivalence classes of 
frame fields in the internal space, where two fields are considered as equivalent 
if they differ by a global gauge transformation. In Section 4 we consider the 
issue of "trivialization." The generalized tensor fields, the derivative operators, 
and their curvatures are all intrinsic objects. On introducing a basis field, the 
structure trivializes as foUows: first, any generalized tensor field can now be re- 
duced to ordinary tensor fields via contraction of the "internal indices" with the 
basis. Second, the derivative operator with zero curvature corresponding to the 
given basis can be used as an "origin" in the affine space of all derivatives, so that 
any derivative operator can now be represented by (the components of) the gen- 
eralized tensor field which describes the difference of the given derivative from 
the "origin." A different choice of basis leads to a different trivialization and the 
two structures are shown to be related by the familiar gauge transformations. 
The Appendix considers the special case with one internal degree of freedom and 
discusses some examples familiar from general relativity. 4 

In view of the widespread use of Penrose's notation in the relativity com- 
munity, it is hoped that this presentation of gauge theories 5 will be especially 
useful to relativists. 

w The Algebraic Structure 

Fix a fi_nite.dimensional C = manifold M. Let t~l""am#l...~ n denote a real, C ~ 
tensor field of valence (nm). Here, a l . . .  am and ~1 . . .  fin are Penrose's [1 ] "ab- 
stract" indices. We now wish to introduce the generalized tensor fields which will 

4After this work was completed, we learned that a detailed treatment of gauge fields along 
the lines indicated here appears in [2] (R. Penrose, private communication to GTH). 

SFor the sake of generality, the entire discussion is carried out on n-manifolds which do not  
carry any preferred structure, e.g., a metric. Therefore, the framework may well have ap- 
plications besides gauge theories. 
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carry, in addition to the Greek indices, contravariant and covariant latin indices. 
Denote by S c*l"''c~m al""aP b the set of symbols [31"" [3n 1... bq 

ta l""am-  [3 al"'aPb b , [31,., n 1... q 

where the stem letter (t, in the example) varies from one symbol to another but 
where the index structure of each symbol is the same as that of S. We shall permit 
only those index structures in which no index appears more than once in each 
of the four slots. Thus, for example, the set 

sal...C~m al...ap [31~1...[3n-1 bl...b q or S~ q 

is not permissible. Denote by S the union of all permissible sets. 
Next, we introduce certain structure on S. We require the following. 
(i) Each S~ n with no Latin indices is precisely the set of C "~ , real- 

valued tensor fields on M with the corresponding (abstract) index structure. 
al...ap Each sal'"amal...[3n bl... bq is an Abelian group inder the operation 0i) 

addition, denoted by +. 
(iii) Associated with any two generalized tensor fields 

al... ap tal""am[3b..[3n bl...b q and 

Uotm+l"'am+i[3n+l,..~n+/ap+l'"aP+kbq+l,,,bq+ l 

(where no index is repeated in any one of the 4-slots), there exists an element 

s~176176176 , 

called outer  produc t  and denoted by the juxtaposition 

al...ap . uam+t'.'C~m+i ap+l...ap+tr 
t~l""am~l...# n bl...bq l~n +l---[3n +/ bq+l...bq+l" 

Furthermore, we demand that the outer product be associative, commutative, 
distributive over addition. 

ala2...a p A generalized tensor field (such as tal  "" amr ... [3 n baa2.., bq) in (iv) 
which the latin index appears both in the contravariant and the covariant slot is 
identified with the generalized tensor field with the same stem letter and with 
the index structure obtained by omitting the repeated indices 

(t l ala3...a p .~ ~m~l... ~n b 1 b 3.-. ~q~" 

We shall say that 
ala3...ap 

t ~'"am[3~...[3n blb3.., bq 

is obtained from 

t~ l ' "am ala2a~"'aPb b b b #1..,On 1 2 3-. q 
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by contraction of indices a2 and 32. We demand that the operation of contrac- 
tion commute with addition and (if carried out between the indices of the same 
generalized tensor field, also with) outer product. 

. . cq . . ,r a l . . . a p  - �9 (v) Given a generalized tensor field ~sucn as t ~l...~n bl... bq) anct 
two Latin indices one of which appears either in the contravariant or the covari- 
ant slot of this field (say, al ) and the other of which appears in neither (say, cl) ,  

. . . .  cq . . . ce  m c l a 2 . . . a  . 
there exists a umque generahzed tensor field (t  r  Pbl... bq) m 
which the second index replaces the first. This operation wilA be called index 
substitution. We demand that it commute with addition, outer product and con- 
traction (provided these operations are well defined both before and after the 
desired index substitution.) 

Remarks. (1) as with tensors [1 ],  addition, outer-product, contraction, and 
index substitution are the only algebraic operations that we shall need while deal- 
ing with gener~dized tensor fields. 

(2) The requirement that the outer product be commutative is a key one. 
This requirement may seem to be contrary to the usual conditions imposed on 
the outer product in the mathematical literature. However, it is not: as is ex- 
plained in [1 ] ,  it is the availability of indices that enables the imposition of this 
condition. Thus, for example, the generalized tensor field l ra l~ b is being identi- 
fied with t4 ~ V a (not with V b W a !). 

(3) Contraction and index substitution are of course well defined also on 
Greek indices. We did not introduce these requirements explicitly simply because 
they follow from condition (i). Each of these operations on Greek indices is re- 
quired to commute with contraction and index substitution operations on Latin 
indices. Finally, note that the operation of index substitution may be denoted 
by 6: V a -+ 6 ~a V a = V b. This operation merely sets up isomorphisms. Thus V b 
in S b is the image under index substitution of V a in sa; V b is not identified 
with V a. 

As a consequence of the requirements imposed on S, one readily obtains the 
following result: 

a l . . . a p  Theorem 1. Each set S aa' ' 'c~m ... en bl... bq is a module over the ring 
of C ~ functions on M. 

Using this result, we impose the last condition on S. 
a I . . . ap  (vi) s~  b l . . . b  q consists precisely of the (functionally) 

. . b 1 a2. . .dt  p linear mappings from S aa to S al''" ~m~i... ~n b2... bq and similarly for other 
index combinations. 

We can now introduce the basic definition which will make the physical in- 
terpretation of S evident. 

Definition 1. S will be called a system o f  generalized tensor fields with N 
internal degrees o f  freedom provided the module S a is N dimensional, i.e., pro- 
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vided the maximal number of linearly independent, nowhere vanishing 6 elements 
o f  S a is N. 

Thus, while the Greek indices are "space-time" (or tensor) indices, the Latin 
ones are the "internal"; a generalized tensor field represents, e.g., a tensor-valued 
gauge or Higgs field. 

To probe the structure available on S, it is convenient to introduce two addi- 
tional definitions. 

Definition 2. A collection (eaa), a = 1,2 . . . . .  N, of nowhere vanishing, lin- 
early independent elements ofS  a will be said to constitute a basis in S a. 

Definition 3. The group o f N  • N invertible matrices whose entries are C ~ 
functions on M will be called the local general linear group and will be denoted 
by GL (N, R)loc. 

Remarks. (1) In the terminology of [1], al, bl . . . .  are the "abstract in- 
dices," while a, b , . . .  take on numerical values 1,2 . . . . .  N. T h u s ,  (eaa) stands 
for a collection of N elements of S a. Elements of GL (N, R)loc can be denoted by 
symbols of the type Aab. Clearly, GL (N, R)loc has a well-defined action on the 

r.a 
collection of bases in sa: eaa ---> e a = Abaeab �9 Here, and in what follows, Ein- 
stein's summation convention is used for the numerical indices a, b . . . . .  

(2) It follows from the last requirement on S that Sa-being the space of lin- 
ear mappings from S a to C = functions on M-is  again N dimensional. Given a 
basis (eaa) in S a, w e  acquire a natural dual basis (eaa) in Sa: eaaeb a = t~a b , the 
identity element of GL (N, R)loe. The two bases also satisfy eaaeab = 6ab, the 
index substitution operator. 

(3) From the requirements (ii)-(vi), it follows that any generalized tensor 
al ... ap field t b- b can be obtained, as a sum of outer products of elements of 

- a l  a-1 "'" q a S . . . .  , S P, Sb l  . . . . .  Sbq.  Consider, for example, a field t b- By (vi), tab is 
a linear mapping from S b to S a. Hence, given a basis (eaa) in S a, we can set 
tab = (tab ebb) eaa; tab is an N • N matrix whose entries are C ~* functions 
on M. Therefore, it can be expressed as a sum of decomposable matrices of 
the type Aarb, whence tab can be expressed as a sum of terms of the type 
Aarb eaa~ebb ----Aarb, say. Since the expression of tab in terms of decompos- 
able matrices is not unique, neither is the expression of tab as a sum of outer 
products. 

Lemma 2.1. GL (N, R)loc acts simply and transitively on the collection of 
bases in S a. 

Proof. Let Aab in GL (N, R)loc be such that Aab eaa =eab for a basis (eaa). 
Then, by transvecting with eea we obtain ACb = ~c b . Thus the only element of 

6ka is said to vanish at  a point  p of  M if  the funct ion kata vanishes at  p for all  e lements t a 
o f S  a. 
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GL (N, R)loc which leaves a basis invariant is the identity, whence the action is 
/ ' , a  

simple. Next, consider any two bases (eaa} and {e a} in S a. It is easy to check 
that Aab := ~ b b eab is in GL (N, R)loc and ~a a = Aba eab. Hence the action is 
transitive, u 

Lemma 2.1, leads to the following result. 

Theorem 2. Any two systems S and S' of generalized tensors with N internal 
degrees of freedom over the manifold M are isomorphic and GL (N, R)loc acts 
simply and transitively on the collection of isomorphisms. 

Proof. Fix a basis {eaa} in S a and (e'aa} in S 'a. It follows from the require- 
ments (i)-(vi) that an isomorphism between these bases extends uniquely to an 
isomorphism between S and S'. Hence S and S' are isomorphic. Next, any iso- 
morphism between S and S' provides, in particular, an isomorphism between the 
collection of bases. Hence, by Lemma 2.1, GL (N, R)loc acts simply and transi- 
tively on the set of isomorphisms between S and S'. m 

Remarks. (1) Theorem 2 says that there are "as many isomorphisms be- 
tween S and S' as there are elements of GL (N, R)loc." This, then, is the free- 
dom one has in constructing a system of generalized tensors with N internal 
degrees on a given manifold M. We shall see, in the next section, that the intro- 
duction of a derivative operator reduces this freedom considerably. 

(2) Note that the basic objects in the discussion are fields, rather than gen- 
eralized tensors evaluated at a point. It is this fact that led us directly to the 
local gauge groups without using bundles. 

(3) The restriction to real fields is for convenience only: the use of complex 
fields would have led to two types of indices, a, b . . . .  and a, b, . . . .  and made 
the general formalism in this section more cumbersome. The extension to com- 
plex fields of all our results is straightforward. 

(4) Sometimes, physical considerations lead to the introduction of certain 
preferred generalized tensor fields such as a positive definite metric ga~ or an 
"alternating tensor field" eal...a N .  Then, one can restrict oneself only to those 
bases which are adapted to this structure, e.g., orthonormal, right/left-handed 
bases. This restriction causes a reduction of the gauge group from GL (N, R)loc 
to, e.g., O(N, R)loc or SO(N, R)loc. 

(5) We must emphasize, however, that the framework of generalized tensors 
itself does not require the use of a basis: We have introduced bases only to make 
contact with the more familiar frameworks. The primary objects are the general- 
ized tensor fields with abstract indices; derivative operators, for example, will be 
introduced directly on these objects. If the introduction of bases is avoided, the 
local gauge group GL (N, R)loe makes its appearance at the algebraic level only 
via Theorem 2. 

(6) The algebraic structure on generalized tensors is exactly the same as that 
normally used in the particle physics literature and the "abstract" indices have 
all the familiar properties of "component labels." One might therefore feel that 
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nothing new has been achieved. Recall, however, the motivation behind the for- 
malism: one wishes to obtain the flexibility and manipulation power of the com- 
ponent notation without having to use components. Thus, the fact that abstract 
indices appear to have the algebraic properties of components is not a drawback; 
this is precisely what is aimed at. 

w Calculus 

Fix a system S of generalized tensor fields with N internal degrees of free- 
dom on M. A derivative operator Va on S is a mapping from sets of the type 

al...ap Saa'"arn#l...#n ba...bq to those of the type Sa ~:'''am al""aPb b /31 ...13n 1... q 
satisfying the following conditions. (i) Linearity: 

7a(t"'..."'... + u'"...'"...) = 7a(t"'...'"...) + 7a(u"'...'"...) 

(ii) Liebnitz Rule: 

V~(t"'...'"...v'"...'"...) = (Vat"'..."'...) v'"...'"... + r"..."'...Vav"'..."'... 

(iii) Given any (C ~) function l a n d  a vector field V a on M, 

VaVa f =  s  and 7[aVt3lf = 0 

where, as usual, s  denotes the Lie derivative with respect to V and square 
brackets around a and/3 denote skew symmetrization. 

An immediate consequence of these assumptions is that the restriction of 7 
to tensor fields (i.e., generalized tensor fields with no latin indices) yields a 
torsion-free connection on M. However, 7, as defined, can operate on any gen- 
eralized tensor field. In particular, it is possible to have several distinct derivative 
operators on S whose restriction to tensor fields coincide. The algebraic proper- 
ties of S and the defining properties of V imply that the action of V on elements 
o fS  a (or Sa) and S a (or Sa) determines its action on all of S. 

Fix a derivative operator 7 and consider the operator V[aVt~] �9 We have, for 
any C** function l a n d  any element t a of  S a, 

VtaV#] ( f t  a) = fV[aV#] t a + tav taVOl f  + (V[a f)(V/3] t a) + (V[# f)(Va] t a) 

= f Via Vt~ l t a 

where, we have used conditions (ii) and (iii) in the definition of 7. Thus, the 
operator VlaVt~l maps S a into Sat~ a and the map is (functionally) linear. Hence 
[by the requirement (vi) on the algebraic structure of S ],  there exists an element 
Fa~ab of  saoab such that 

271aV#l t a =" FaOab t b (1) 
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for all t a in S a. An identical calculation shows that there exists a tensor field 
R~0~r 8 onM, such that, for all covector fields tT, 

2VbVt~ l t 7 = Rat~7 ~ t8 (2) 

Combining (1) and (2) and using the Leibnitz rule, we have 

Vic~Vt3l tTa = 1 (Ra~786a b + F~ab  678 ) t8 l~ O) 

for all t7 a in $7 a. The expression in the bracket is the curvature tensor of V on 
S. If we restrict ourselves to tensor fields alone, the curvature reduces to the 
Riemann tensor, while if V is an extension to S of a flat connection on M, the 
curvature expression yields the familiar "Yang-Mills" field. 

Next, we derive certain properties of the curvature tensor. By the very defi- 
nition of curvature, we have 

Fa~a~ = F[a/~t a and Rat37 8 = R[a#17 8 (4) 

Next, since any vector field V u can be written as a s u m f a V u g a  for some func- 
tions f a  and ga (a runs from 1 to dimension of M), we have 

VI~V~Vul = V[aV/3faVu]g~ = 0 

whence 

R[~u]  v = 0 (5) 

This is the first Bianchi identity on the Riemann tensor. Using this, we have, for 
any t a in S a, 

VIa(Ft,71 a tt~) = 2V[~V/3VTI T a 

= R [~t~T] ~ V8 T a a +F[~# miVTl t 

whence, by (5), we obtain 

V[c,F~7]ab = 0 (6) 

Similarly, one has, for the Riemann tensor, 

VI~(R~]~, v vv) = 2v~ v~vTl v~, 
6 

: R t ~ T t  8 V8 Vu + R[~ fu t  V-yl k~ 

whence, from (5), we obtain the second Bianchi identity 

Vi~R~TI~ u =0 (7) 

This establishes the basic properties of the curvature fields. 
Let us now analyze the issue of uniqueness of derivative operators on S. Let 

V and V' be two derivative operators. A straightforward calculation shows that, 
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for all functions f onM and for all t a in S a, 

(Va- V~)( f t  a) = f(Vcz- V~)t a 

Hence there exists a generalized tensor field ~ a b  such that 

(Vc~ - V~x) t a = ~ c ~ a b t  b (8)  

Similarly, it follows that 

(7~  - V~)  t o = CaoVt7 (9)  

for some tensor field Cc~t~ "y satisfying C~0 ~/= C(~a) ~. Thus, the derivative opera- 
tors form an affine space; the difference between any two can be completely 
characterized by a pair ((~aab, Cat~ ~) of generalized tensor fields (where Cat3 ~ is 
symmetric in a and ~). 

In the rest o f  the paper, for simplicity, we shall restrict ourselves to those 
derivative operators which are extensions to SOfa  fixed fiat connection (i.e., 
a connection with zero Riemann tensor) on M. 

Denote by C the collection of these derivative operators. Then, any two ele- 
ments, V and V' of C, are related via (8) by some generalized tensor field {~c~ab . 

Thus C is again an affine space. 
To conclude this section, let us note certain properties of derivative opera- 

tors ~ in C with vanishing FaOab. 

Lemma3.1. There is a natural one-to-one correspondence between elements 
of C with zero curvature and equivalence classes of bases (eaa) in S a where 

two bases are considered as equivalent if they are related by an element of 
o o a 

GL (N, R). The pair (V, (eaa}) satisfies V~ e a = 0 for all a in (1 . . . . .  N). 

Proof. Fix a basis eaa in S a . Then, by the defining properties of derivative 
operators and property (vi) of S it follows that the action of a derivative operator 
on S a suffices to determine it completely. (Recall that, by ~ assumption, the ac- 
tionoon ordinary tensor fields has been prespecified). Set V~ eaa = 0. Then, since 
0 = VlaVt31 eaa = FcxOab eba for all basis vectors, the derivative operator V has 

Aa 
zero curvature. Let us suppose that there exists, in addition, a basis e a such 

o b 
that Va~ e"a a = 0. Let e^aa = Abaeab �9 Then VaA a = 0, whence for each value of 
a and b, Aba is a constant. Thus, ea  a and  eaa are related by an element of the 
global gauge group GL (N, R). 

Let us now fix a derivative operator ~' with zero curvature. Then, for k a in 
S a we have 

o t o I o o~ . + a o ,  k b  
0 =Vl~xVg]k  a = V I a V 0 I  ka  ~ [ ~  IblV#l 

o o o a o k b  b c k C  
= V[c~V0I ka + V t a ( ~ o ] a b  k b )  + (]Is IblV0] + (~[aaibl(]0l 

= (VIa(]0] ac + ff[aalbl~0] bc) kc 
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whence the field (~aa b relating ~ and ~' must satisfy 

o a 

V [ a ~ ]  c + (~[aalbl(~/3] bc = 0 
o a 

Transvecting this equation with eaa eCc and using the fact that Va e a vanishes, 
we obtain 

~[cr ae + (~[aatbl(~/~l be = 0 

which is a partial differential equation involving ordinary vector fields on M. This 
equation can always be solved on M: 

~ a a b  = ( A  -1 )acVc~Ac b 

where Aab, an element of GL (N, R)loc , is determined up to a global gauge trans- 
formation. 7 Set e'aa = (A -1 )b a eab . Then, one has 

~ ta = ~i V=e a = [(A-1)baeab] 

= - ( A - 1 ) C a ~ a b e e a  b + (A-1)ba~ea b 

=/A-I ab ~ e a t ) a  a b = 0  

Hence ~' determines an equivalence class of bases {e'aa} via ~ e'aa = O. �9 
Using this Lemma and Theorem 2, we can now establish the following. 

Theorem 3. Let S and S' be two systems of generalized tensor fields on M 
with Ninternal degrees of freedom. Let ~ and ~' be derivative operators with 
zero curvature on S and S', respectivel~r such that their action coincides on ten- 

o I t �9 �9 

sor fields on M. Then, (S, V) and (S,  V ) are Isomorphic and GL (N, R) acts 
simply and transitively on the space of isomorphisms. 

o a 

Proof. Fix any basis eaa in S a and e'aa in S 'a such that V~e a = 0 and 
~ t  t a  e a = 0 and consider the unique isomorphism �9 from S to S' which maps 
eaa to e'aa. Then, deafly, 

~(~c~ T al "'" am a~ ... ap ~ f l l ' " f ln  b l . . . b q )  = ~ ' t I t ( T C q  " '~  b l . . . b q )  
cq . . .a  m a l . . .a  . o o t o 

for all T th t3 Pbl b m S; q~ maps V to V �9 Thus, (S, V) and 
, o t " . n  "" q - A 

(S, V ) are isomorp~c. Next, consider any other isomorphism q~. Then, 
o o I a a a t a  0 = g'(Vae a) = VaxP( e a)- Hence, by Lemma 3.1,tIr(e a) is related to e a 

by an element A a b  of GL (N, R); ~(eaa) = Aba e'ab = A b a  ~ff(eaa). Thus, 
GL (N, R) acts transitively on the space of isomorphisms. Since the only ele- 
ment Aab of GL(N, R) satisfying Aabe'b a = e'bb is the identity, the action of 
GL (N, R)  on the space of isomorphisms is simple. �9 

7 ,a a c a a That  is, A b = k c A b solves the  equat ion on ~ a  b i f f k  ~ is an e lement  of  G L ( N , R ) .  To 
a X a a establish the  result,  fix a poin t  p and set A b(X) = P exp ft~ (~a b d S  , w h e r e P  is the  path- 

ordering symbol.  Aah(x),  so defined, is path independent  because Faaah = 0. It satisfies 
a - 1  a - . . ~" ~ . �9 (~a b = (A ) cV~xACb by very cons t ruc tmn.  We thank  V. P. Nalr for suggesting this 

argument .  
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Remarks. (i) Theorem 3 shows that the introduction of a derivative opera- 
tor with zero curvature greatly reduces the freedom in the construction of sys- 
tems of generalized tensor fields; the remaining freedom is trivial since i{ involves 
only global gauge transformations. This fact underlies the particle physicists' 
formulation of gauge theories although tile chosen curvature-free derivative 
operator is not always explicitly exhibited. 

(ii) The derivative operators with zero curvature are often referred to as "clas- 
sical vacua." Lemma 3.1 shows that each classical vacuum is left invariant by the 
global gauge group GL (N, R) and that the quotient, GL (N, R)loc/GL (N, R), of 
the local gauge group by the global one acts simply and transitively on the collec- 
tion of classical vacua. Classification of vacua by topological quantum numbers 
rests on this fact. 

(iii) In Section 2, we saw that the introduction of preferred generalized ten- 
sor fields reduces the gauge group. For example, if we introduce a (positive 
definite) metric field gab, the local gauge group reduces from GL (N, R)loc to 
O(N)ioc: if, in the statement of Theorem 2, we consider only those systems of 
generalized tensor fields which are equipped with such a metric, then we must 
also replace GL(N, R)loc by O(N)loc in that statement. How does the introduc- 
tion of gab affect calculus? It is now natural to restrict ourselves to derivative 
operators V in C which satisfy Vagab = 0. Given any two derivative operators, 
V and V' satisfying this condition, we have 

0 = (V~ - Vc~) gab = (~aCagcb +SeeCbgae = 2(~(ab). 

(Internal indices can now be raised and lowered by gab.) Hence, the compo- 
nents (~ab of~aab in any basis which is orthonormal with respect to gab satisfy 
8~(ab) = 0; (~ ~ab is a 1-form which takes values in the Lie algebra of O(N)loe. A 
corresponding result holds if one introduces, in place of gab, other generalized 
tensor fields with no space-time indices. More precisely, it is easy to establish the 
followingresult. Fix an N-dimensional, vector space V and denote by G the sub- 
group of GL (N, R) which preserves a specified list 

tral...ap {Ta l ' "amb l . . . bn ,  u b l . . .bq . .  .} 

of tensors on V. (The reason behind the use of latin indices here will be clear 
from what follows.) Then, if we introduce on S, generalized tensor fields 

al. . .am al...ap . 
[r bl. . .bn, U bl. . .bq,  . .} 

which have the same algebraic properties as 

{Ta l ' "ambl . . .  b n, Ual" 'aP bl... bq. �9 "}, 

respectively, then, the difference between any two derivative operators which 
annihilate these tensor fields can be represented by a 1-form ~aa b which takes 
values in the Lie algebra of Gloc. 
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The space of derivative operators V in C has a natural affine structure. In 
many circumstances-e.g., in the variational calculations, quantum field theory, 
etc.- i t  is convenient to reduce this affine space to a vector space by choosing an 
operator ~ with zero curvature as an origin and labeling any element V of C by 
the generalized tensor field Aaab defined by (Va - ~a) ka = A~ab kb for all k a 
in S a. (From now on, we shall use the symbol Aaab in place of~aab when one 
of the connections, i.e., the "origin," has zero curvature.) However, by Lemma 
3.1, the choice of such an origin is not a natural one: By selecting a particular 
~, one introduces an auxiliary structure which is not available naturally. One 
must therefore investigate how the resulting framework changes in response to a 
change in the choice of origin. It is via these transformation properties that gauge 
makes its appearancein the "intrinsic," basic-independent framework. 

Fix an operator V with zero curvature and coordinatize C by generalized ten- 
sor fields Aaab: to each point, there corresponds a unique A J b ,  and, conversely, 
every generalized tensor field Aaaa labels a point of C. One can therefore express 
any property of elements V of C in terms ofA~aa. Associated with every V in 
C, we have a curvature field Fa# a b: V[a Vfl] k a = Fat3ab k b for all k a in S a. We 
can express this curvature in terms of Aaat, as follows: Since 

1 F  a k  b o a g ~ t, = VI~Vr ka = Vl~VNk +Alo~alt,lVr kt, 
o o o a b + a o b bc]fc 

= V[aVr a + V[a(At~ 1 ~k ) Ala it,lVolk +A[JlblA#] 

= (~[~Aalar +AIaalalA[~] bc) k c 

for all k c, we have 

I a _ o a c + A  a b c (10) ~ F ~  c -  VI~A~I [~ It,lA~l 

an expression familiar from the Yang-Mills theory. One can now express Bianchi 
identities (and, Yang-Mills source-free equation, V~Fa~a b = 0) in terms of 
and Aa a t,. 

Let ~' be another derivative operator with zero curvature. By Lemma 3.1, 
there exists a generalized tensor field Aab such that 

(~7" - ~a) ka = ((a-1)at,vo~abc)kC, 

where (A -1)at, and Lab are related by (A -1)acAc b = lab. Let us choose V' as 
t a  the origin in C and label elements V of C by As t,, defined by 

~ k a (V,~- Va) =A'~at,k b. 

Then, we have 

A ~ a a b k b = ( v a  - ~ ) k  a = ( v o t -  ~ ) k  a -  (Voz~ _ ~a)  ka 

=Aof t ,k t , -  ((A-1)acV~ACt,)kb 
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whence 

t a  -1 a e Aa b = A a a b -  ( A )  cVaA b (11) 

is the transformation law. Since the curvature field Foti a b of V depends only 
on V and not on the choice of origin, we have 

, a ( 1 2 )  Fail b = Fotiab 

a result which may also be verified by a direct substitution in (10). 
The transformation laws used in the particle physics literature differ from 

equations (11) and 02).  This is because the framework there is not intrinsic but 
depends on the choice of basis. More precisely, one chooses, at the outset, a 
basis {eaa) in S a and expresses generalized tensor fields in terms of their com- 

al ...ap ponents; one trivializes generalized tensor fields totl""otrnll...l n bl.." bqotO 
al.. .  ap ordinary tensor fields t otl"'" otmtx...l n b a... bq. The derivative operator V 

which annihilates the choen basis (eaa} is then selected as the origin in C and 
derivative operators V are labeled by the components Aotab of Aotab in the basis 
(eaa): Aotab = Aaab eaa ebb. Under the change of basis (eaa) --> {e'a'a}, the label 

Pa 
Aotab is transformed to Aot b which, in view of equation (11), is given by 

t a _ - - r  a tb 
Aot b : d o t  b e be laa  

= A~" b(A -a )% ebc Aaa eda 

(Aotab -1 a o c -1 e b a d = - ( A )  cVotA b)(A ) be cA de a 

= AadAotde(A:l )e b - (A-I)dm(~ot Am e)(A-1 )c b Aaa 

= AadAotdc( h-1)eb + Aae~ot( A-1)eb (13) 

Similarly, for the curvature field, we have 

t a _ ~ , t  a ta tb 
F a i  b - l ' a i  b e a e b 

= F a l a b (  A - 1  ) e b  e ' b  e ( A ) a d  eda 

= AadFotidc(A -1 )c  b (14) 

Thus, the change in basis has a dual effect: components of generalized tensor 
fields transform according to the familiar law [equations (13) and (14)] and the 
origin in the space C of derivative operators is shifted. 

To summarize, one can work at three levels. The first level is the most in- 
trinsic one. One introduces generalized tensor fields abstractly (Section 2) with- 
out any reference to bases or any other auxiliary structure, def'mes derivative 
operators axiomatically (Section 3), and analyzes properties of curvature tensors. 
The fundamental variables are the derivative operators in C. Yang-Mills equations 
can be introduced directly on these variables and the subspace of C satisfying 
these equations can be given the structure of a symplectic manifold. At the sec- 



A GENERALIZATION OF TENSOR CALCULUS 4 2 5  

ond level, one introduces an origin V in C and labels elements V of C by gen- 
eralized tensor fields Aaab. Under a change of origin, these labels transform via 
equation (11). However, no basis is introduced and one deals, throughout, with 
generalized tensor fields, rather than with their components. It is because of this 
that the curvature Fa~ab remains invariant under the change of origin [equation 
(l 2)]. (Thus F~[3ab is thought of as an intrinsic object which is manifestly gauge 
invariant and not merely gauge covariant. That is, Fa#a~ is treated in the same 
spirit as, say, the Riemann tensor R~t~7 ~ is, in general relativity.) This level is the 
most convenient one in computations and in the problem of quantization. The 
last level is the least intrinsic one. Here, the entire framework is tied down to the 
choice of a basis. Thus the generalized tensor fields are trivialized to ordinary 
tensor fields and the emphasis is on transformation properties under the change 
of basis [equations (13) and (14)]. 
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Appendix." N = 1 Case 

Generalized tensor fields with only one internal degree of freedom arise nat- 
urally in several different contexts in relativistic physics. Therefore, in this 
Appendix, we consider this case in some detail. 

Since GL (1, R) [and GL (1, C)] is Abelian, applications of this framework will 
yield only Abelian gauge groups. Moreover, since the module S a is one-dimen- 
sional, an important simplification occurs: S al"'" ambl ... bn is also one-dimensional 
for all m and n. Hence a generalized tensor field taa'"%~ ~ al"'amb, b can 

�9 Otl...O~ . P I ' "  q 1""  n 
now be denoted simply by (mtn) Pj31 #q, where the Integer below the stem 

letter is the difference between the number of contravariant and covariant latin 
indices. [Let us, for simplicity, suppress the tensor indices. Then, in a basis e a 

a 1 ...  a m in S a, t b:... bn reduces to a function tal""ambl...b n onM and the change 
e a ~ Ae a induces the transformation t a: "" arab1 ... bn "+ (A) n-m tal ""arab1 ... bn ; 
only the difference (m - n) matters.] Note, in particular, that generalized ten- 

~ I " "  ~ sor fields t "th...&t are naturally isomorphic with ordinary tensor fields 
~ 1  "'" ~ 0 

t ~ ' f l t ""  f la"  

Consider a derivative operator V in C. We have, for any t a ~ t in S a, 
1 

V[~ Vt~] ~ = F~t~ ~; the curvature is represented by a 2-form F~t 3 on M. More gen- 
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erally, we have V[aVt3]nt = nFat3 t. Thus, n may be interpreted as the "charge" of  

the field t. Bianchi identity imp]~ies that Fat3 is closed. Given a ~ with zero cur- 
n 

vature, one can introduce a vector potential Aa:  (\Ta : ~a)  t = Aa t. Thus, Aa 
o o t 1 1 

satisfies VlaAt~ 1 = Fat3 on M. The change of origin V -+ V in C causes the famil- 
iar gauge transformation: Since ~ and ~ '  are  related by 

( V ~  - ~ a )  ~ = ( A - 1  Vc~A) tl ~ ( V a f )  t,s 

say, Aa  is transformed to A~ = Aa - Vaf.  Thus, the main simplification in the 
calculus of  generalized tensor field is that the curvature Far and the potential 
Aaab are now ordinary tensor fields o n M  since the difference between the num- 
ber of  their contravafiant and covariant internal indices vanishes. 

We now consider some examples. 
(1) Tensor densities. Let M be n dimensional and orientable. Then, any 

two nowhere vanishing n-forms, eas.., an and e-~ s... an are related by 

e o q . . . a  n = A e a s . . . a  n 

a s . . .  OZ~ for a nowhere vanishing function A. A tensor density t vOl...~p of weight n 
n 

is an assignment to each n-form eas...an of  a tensor field tas'"aPO~ t~.(e) such 
aSH. a 

that t P~I ... t3q (Ae) - A n t cq''" apes ... ~q (e) for all nowhere vanis~ngVfunc - 

chgrts on M, it is easy to verify that this definition is tions A. (By introducing n 

equivalent to the familiar one involving transformation properties and Jacobians.) 
A derivative operator V defined on tensor fields can benatural ly  extended to one 
on densities: Using the fact that Va eas.., a n = Xa eaa.., a n holds for some vector 
field Xa on M, one sets 

ax...ap a s . . . a  - a s . . . a p  
= Va(t Pl3s... f lq (e ) )  - n (vat ~...~.)(e) n nha t h...~q(e) 

It is easy to verify that (\Ta ta:"'aP~s...~q)is again a tensor density of  weight n.  
n 

To show that tensor densities yield a system of generalized tensor fields with one 
internal degree of  freedom, one can first verify, step by step, that the algebraic 
axioms of  Section 2 are satisfied. Next, a simple calculatio n yields 

via %1 [ = - (via x~l) t. 
S 

Thus, the curvature Far is given by Far = - Via [t~]- (Note that, although the 

definition of  Xa involves a choice of  eas...an, Fa~ is independent of  this choice 
since under the transformation eas.., a n "" Aeas...a n one has ]k~ -+ Xa + A-s Va A.) 
However, since the action of V on ordinary tensor fields extends uniquely to 
that on generalized tensor fields in this example, the "internal" curvature Fat 3 is 
intertwined with the "manifold" curvature~Ra~ ~ to a certain extent. For ex- 
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ample, if R a ~  ~ = 0, there exists an n-form ~al... an such that Va ~al... an = O, 
whence Vaeal...an = (A-: VaA) eal...a n for any n-form, for some A, so that 
Fat~ = 0. This is a special feature of this example;it is not universal even in the 
N = 1 case. Finally, note that the choice of a specific n-form, e-~l.., an, say, 
corresponds to the introduction of a basis e in S - S a: e is the density of 

1 1 1 
weight 1 which assigns to any n-form ec~:.�9 the function A defined by 

e~:.., an = Ae~l... an. 
(2) Charged tensor fields. Fix an electromagnetic field F ~  on the space- 

time manifold M and consider a matter field with a given spin and mass interact- 
ing with this fixed, background F~t ~. Such a matter field with charge n will be 
represented by a "charged tensor field" al �9 an t Vth...O q which assigns to each 

n 
choice A a of  vector potential of Fa# a tensor field t at"�9 ~p#:... #q(A) such that 

a l . . .  a p  + _ . a l . . .  a p  n . . .t ~1�9149 Oq(A dr) - (exp lnf) nt ~1--- Cq (A). A denvaUve operator V on 

ordinary tensor fields can now be extended to charged tensor fields as follows: 
�9 , Oq ... ~ p  , o, 

(~atnal""aP[31...[3q)(A) = ~a(tnal'"aPfll . . . f lq(A))- i n  Aotnt  [31...[3q(A) 

- a 1 O~p It is easy to check that (Vat "'" ~l...#q) is again a charged tensor field with 

charge n. The structure of charged tensor fields is similar to that of  densities 
except that the "internal" curvature F ~  is now detached from the space-time 
curvature R~&r ~ . It is easy to verify that the charged tensors provide an ex- 
ample of the system of complex-valued s generalized tensor fields with one in- 
ternal degree of freedom. In addition, the system is now equipped with a 
Hermitean metric field gag which reduces the gauge group from GL(1, r  to 
U(1). Other examples include conformally weighted tensor fields, spin and 
boost weighted fields on null infinity, ~, and normal modes of perturbations on 
a nonstatic, stationary background. 

Finally, we wish to point out a curious property of the N = 1 case which, to 
our knowledge, has not found an application in physics. In the framework above, 
n denoted the difference between contravariant and covariant latin indices and 
could therefore assume only integral values�9 However, having obtained the frame- 
work, we may let n, the "charge," assume any real value. (Indeed, tensor densities 
do assume nonintegral weights in physical applications�9 one can generalize fur- 
ther and consider objects whose "charge" takes values in any Abelian group. This 
can be achieved by letting the curvature depend on the charge g in such a way 
that Fo~(gl + g2) = Fa#(g:) + Fa~(g2). The charge group may either be chosen 
arbitrarily or intertwined with the gauge group by requiring, e.g., that it be dual 
to the gauge group in a suitable sense. The resulting framework, however, is 
tied down to the N = 1 contexts and Abelian charge groups. 

8 S e e  R e m a r k  (3 )  a t  t h e  e n d  o f  S e c t i o n  2.  
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