
GeneraI Relativity and Gravitation, VoL 14, No. 9, 1982 

Supersymmetric Dirac Particles in Riemann-Cartan 
Space-Time 

HELMUT RUMPF 

Institut fi~r Theoretische Physik, 
Universita't Wien, 

A-1090 Vienna, Austria 

Reeeived August 11, 1981 

Abstract  

A natural extension of the supersymmetric model of Di Vecchia and Ravndal yields a non- 
trivial coupling of classical spinning particles to torsion in a Riemann-Cartan geometry. The 
equations of motion implied by this model coincide with a consistent classical limit of the 
Heisenberg equations derived from the minimally coupled Dirac equation. Conversely, the 
latter equation is shown to arise from canonical quantization of the classical system. 
The Heisenberg equations are obtained exact in all powers of~f and thus complete the 
partial results of previous WKB calculations. We touch also on such matters of principle as 
the mathematical realization of anticommuting variables, the physical interpretation of 
supersymmetry transformations, and the effective variability of rest mass. 

w Introduction 

Physicists have been interested in the formulation of  a classical mechanics of  
spinning particles ever since the spin of  the electron was discovered. The tradi- 
tional approach,  which treats the electron as a classical relativistic top,  dates 
back to Frenkel [ 1],  and has recently been revived by Hanson and Regge [2] 
and, in a gravitational context ,  by  Hojman [3] ,  to mention only a few. It is fair 
to say, however, that  all these at tempts  have been only of  l imited success i f  com- 
pared with the prediction~ of  quantum theory.  A second line o f  investigations 
was opened by Pauli [4] in 1932 when he derived a classical equation of  the 
translational mot ion  of  the electron in an external electromagnetic field by a 
WKB approximation to the Dirac equation. Pauli 's result, which contained no 
spin-orbit  coupling, was challenged later by  de Broglie [5].  It was only in 1964 
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that the WKB method was applied to the spin motion by Rubinow and Keller 
[6], who thus reproduced the classical equation of Bargmann, Michel, and 
Telegdi (BMT) [7] with g = 2. A purely algebraic scheme of deriving classical 
equations of motion from Dirac's theory was indicated by Corben [8] and fur- 
ther elaborated by the author [9]. The ultimate version of that method will be 
presented in Section 6 of this paper. In our opinion the physical interpretation 
of the method, as well as of the Dirac equation itself, becomes clear only in a 
supersymmetric framework. 

The merits of a descfiptio~ of classical particle spin dynamics in terms of 
"anticommuting e numbers" had been recognized already in the fifties (see [10] 
for a list of early references). These numbers turned out to be the natural objects 
from which to construct the Feynman path integral for fermions [11 ],  and they 
allowed a concise field-theoretical formulation of the fermionic dual models [12]. 
Unprecedented interest in the use of Grassmann variables was finally aroused by 
the discovery of supersymmetry. Curiously enough, local supersymmetry was 
employed even before global supersymmetry in models of spinning particles. In 
the papers of Brink et al. [13] this effort was inspired by the desire to build a 
one-dimensional model of the interaction between supermatter and supergravity. 
Berezin and Marinov [10], who were the first to treat massive particles in this 
manner, were led by the analogy with the "supergauge" group introduced in the 
dual model by Gervais and SaNta [12]. Essentially the same massive particle 
model was obtained also by Collins and Tucker [14] as a by-product of their 
treatment of the Neveu-Ramond-Schwarz string. Invariance under change of the 
evolution parameter and local supersymmetry are maintained in the massive 
model only at the price of a considerable complication of the formalism, espe- 
cially with respect to quantization. A much simpler theory results, however, if 
the requirements of parametrization invariance and local supersymmetry are 
dropped (while maintaining global supersymmetry), as was shown by Di Vecchia 
and Ravndal [15]. 

A detailed exposition of the general features of the globally supersymmetric 
model will be given in Sections 2 and 3 of this paper. While in the application of 
the model Di Vecchia and Ravndal had confined themselves to the derivation of 
previously established results, the complete classical equations of motion for 
Dirac particles in a Riemann-Cartan (0"4) space-time will be derived in Section 4. 
Only the leading terms, in an expansion in powers of the spin tensor, have been 
obtained so far by WKB methods [9, 16, 17]. Our result contrasts that of Bar- 
ducci et al. [18], who had concluded from their model (which is not supersym- 
metric) that Dirac particles do not couple to torsion. Canonical quantization in 
general coordinates in a U4 space-time is carried out in Section 5, and the mini- 
mally coupled Dirac equation and the exact Heisenberg equations of motion are 
obtained in Section 6. The latter equations reduce to the classical dynamics of 
the model in an obvious classical limit. 



SUPERSYMMETRIC DIRAC PARTICLES 775 

Apart from these concrete results we hope that this paper will also contribute 
to a better understanding of the foundations of supersymmetry. Simple though 
the model is, it excludes a replacement of the Grassmann algebra of variables by 
a nonassociative algebra that was proposed recently [19]. Moreover we point 
out that the apparent unobservability of the supersymmetry of the model is due 
to quantization. A similar remark applies to the variability of the rest mass due 
to the interaction of the spin with external fields. 

w Free  M o t i o n  and  Generali t ies 

According to [ 1 5 ] the supersymmetric Lagrangian for a free spinning par- 
ticle of mass rn is 

L = 2 rla~(jcajcb - i~a~b)  (1) 

The dot denotes differentiation with respect to a proper time parameter s. The 
x a and ~b are even and odd Grassmann variables, respectively. The Grassmann 
algebra may be assumed to be generated by the four ~a. We shall not attach any 
direct physical meaning to the "spin variables" ~, but only to the spin tensor 
constructed out of them according to (9). 

The spin part of the Lagrangian is essentially determined by the requirement 
that the free Hamiltonian should be independent of the ~a, which hence are es- 
sentially canonically conjugate to themselves: 

L -  H = pang a + L 3~---~ 

3L 
Pa - 3jca - m71ab job 

p2 
2m 

(2) 

Left differentiation has been indicated in (2). A factor i has to appear in (1), as 
with any definition of an involution in the Grassmann algebra the product ~a~b 
is "anti-Hermitian" if the ~a are "Hermitian." 

The kagrangian (1) is irtvariant under the supersymmetry transformations 

~ x  a = i e ~  a (3a) 

6~a = e~a (3b) 

with e a (finite) anticommuting parameter. Recently a different interpretation of 
the anticommuting variables has been proposed [19] in which ~a~b is an ordinary 
imaginary number. As a consequence the algebra becomes nonassociative, which 
makes differentiation at least more complicated. In the present model such a 
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reinterpretation of the ~'s would destroy the supersymmetry, since then prod- 
ucts which contain an anticommuting factor twice would no longer vanish auto- 
matically. As a consequence also the relationship of the model with the Dirac 
equation would be lost. Thus an alteration of the Grassmann character of the 
dynamical variables seems highly undesirable. 

A consistent definition of the generalized Poisson bracket of two observables 
A , B  is 

~A ~B ~A aB i ,?ab A ~ 
[A, B} := Ox a OPa aPa Oxa + - -  - -  - -  m ~ a  ~ b  B (4) 

The consistency will be made explicit in a more general context in Section 5. 
The bracket (4) defines a Z2-graded algebra that carries over into quantum theory 
(classically, the grading is that of odd and even Grassmann numbers), 

deg [A, B} = deg A + deg B (5) 

(deg denotes the degree in the grading). Note that in the odd sector of phase 
space spanned by the ~a there is no natural distinction between "coordinates" 
and "momenta," although owing to the even dimensionality of space-time a 
"pseudosymplectic" structure can be made manifest by defining "coordinates" 
~.A and "momenta" flA as follows: 

~1 = (m/2i)1/2(~o + ~x), ~1 = (m/2i )1 /2(~  ~ - ~1) 
(6) 

~2 = (m/2i)1/2(~2 + i~a), ~2 = (m/2i)1/2(~ 2 - i~ 3) 

Therefore all the ~a should be considered as phase space rather than configura- 
tion space variables from the outset. 

As Lorentz transformations are generated by 

j ab  = Lab + sab (7) 

L ab = xap b - x b p  a (8) 

S ab = im~a~ b (9) 

the quantity S ab has to be interpreted as the spin tensor, while L ab and jab  are 
the orbital and total angular momentum, respectively. In contrast to these objects 
the generator Q of the supersymmetry transformation of an observable O implied 
by (3) via 

6 0  = [0,  ieO} (10) 

cannot be defined independently of the dynamics. However, iteration of (3) 
implies quite generally that for any observable O 

[[0, Q}, Q} = - i [ O , H }  (11) 
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By virtue of the graded Jacobi identity 

[ [A, B), C) = [A, [B, C)) - (- l)deg A.deg B [a, [A, C)) (12) 

this implies 

and 

[Q, Q} = 2 i l l  (13) 

[Q,/4) = 0 (14) 

Equation (13) does not mean that the value of Q in the Grassmann algebra is 
fLxed by that of H. In fact there is a continuum of possible values of Q even i f H  
is fixed. As we shall see in Section 6 this situation is completely changed by 
quantization. 

The Lagrangian (i) is invariant under separate Poincar6 transformations of 
the x a and ~a. The corresponding constants of motion are Pa, Lab, ~a, and S ab. 
Thus orbital and spin angular momentum of a free particle are conserved sepa- 
rately. The "supercharge" is 

Q =pa~ a (15) 

and has vanishing bracket with Pa and jab,  but not with ~a, Lab, and S ab. There- 
fore a supersymmetry transformation constitutes a transformation of the particle 
without change of its momentum and total angular momentum, which forces the 
particle to change its spin angular momentum. Classically this leaves the possibil- 
ity for the particle to "spin faster or slower." Quantum mechanically, however, 
the magnitude of the spin vector becomes fixed, and this reduces the supersym- 
metry to a part of ordinary Lorentz invariance. 

w (3): Explicit Supersymmetry and Interaction with External Fields 

The supersymmetry of the Lagrangian (1) can be made manifest by introduc- 
ing an anticommuting evolution parameter 0 and a "supercoordinate" X a which 
depends both on s and 0 and which comprises x a and ~a via the familiar Taylor 
expansion about 0 = 0: 

Xa(s, O) = xa(s) + iO~a(s) (16) 

The supersymmetry transformation (3) can now be represented by 

0 ~O+e ,  s ..... > s - i e O  (17) 

The supercovariant derivative 

a 
D = ~-~ + iO 8s  (18) 
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is form-invariant under (17) and a "square root" of i~/~s 

aX a 
- iD2X a (19) 

OS 

With the usual definition [11 ] of the "integral" over Grassmann variables, 

f dO = O, f dO 0 = l (20) 

(/is a real number with the dimension of length), the Lagrangian (1) can be 
written as 

L =- ~ll ~IO (D2Xa)DX a (21) 

which is of the desired form. 
There are two possible directions in which this Lagrangian can be generalized. 

One way is to require invariance under arbitrary reparametrizations of the evolu- 
tion parameter s and local supersymmetry. These requirements are equivalent to 
general coordinate invariance in the (s, 0) superspace and can be fulfilled by in- 
troducing a bosonic ("einbein") and fermionic "gauge coordinate," and, in the 
massive case considered here, an anticommuting Lagrange multiplier ~s. The dy- 
namics that emerges can be viewed as a one-dimensional model of supermatter 
interacting with supergravity (which in the massive case includes a "cosmological 
term"). Details can be found in the work of Brink et al. [13]. Interesting as this 
model is in its own right, it contains more degrees of freedom than are needed 
for the description of a spinning particle. Therefore we shall proceed in a differ- 
ent direction, namely, to introduce "interactions" and "self-interactions" among 
the x and ~ coordinates that will produce couplings of the particle to external 
fields. 

A fundamental role of supersymmetry is suggested by the fact that it uniquely 
determines the coupling to external fields so as to anticipate the Dirac equation. 
We illustrate this by the example of an external electromagnetic potential A a. 
The only input that is needed for the construction of the corresponding Lagrang- 
ian is the demand that for a scalar particle (~a = 0) the latter should reduce to 

Lse = m jr + eA a~r a (22) 
2 

All the rest is determined by supersymmetry and is most conveniently evaluated 
using the explicitly supersymmetric formalism. The result is 

_ rn 0 

(:~ e h a )  = m 2 +2 eAa~c a+i~a~ a + 2 i m A a , b ~  ~ (24) 
2 m 
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Because of the anticommuting character of the parameter 0 the "superfunction" 
A a ( x )  is simply 

A a ( X )  = Aa(x)  + iOA a, b(X) ~b (25) 

Variation of L yields the following equations of motion: 

e _ad~, cbc  (26) m3r = eFabJcb + 2m ,t l'bc, ao  

~a e L'a ~ (27) = 1' b g  
m 

The spin-orbit coupling appearing in (26) is exactly that which has to be ex- 
pected for a particle whose gyromagnetic ratio is g = 2. Equation (27) is formally 
identical with the BMT equation [7] for g = 2. But since the identification of ~ a  

with the polarization vector is problematic, the comparison with the BMT result 
is better carried out in terms of the spin tensor (9), 

~ab = e (FacSC b + FbcSaC ) (28) 
m 

which indeed establishes the equivalence. However, whereas the BMT equation 
was derived only under the assumption of homogeneity of the external field, 
equations (26)-(28) are not subject to this restriction. Note also that any anom- 
alous magnetic moment would spoil the supersymmetry of the Lagrangian (24). 

The Hamiltonian and the "supercharge" in the electromagnetic field are 
given by 

1 ie 
H = -~m (pa _ eAa)(pa _ eAa) _ - 2  Fab~a~b (29) 

Q = (Pa - eAa) ~a (30) 

pa = mica + eA a (31) 

It will become evident in Section 6 that they imply the minimally coupled Dirac 
equation after quantization. As H is a constant of motion, the spin term in (29) 
introduces an effective variability of the rest mass of the particle. Therefore the 
parameter s can no longer be interpreted as the arc length along the particle 
world line. This will be discussed further at the end of Section 6. 

w (4): A Generalized Supersymmetric Action 

Recently alternative theories of gravitation based on a Riemann-Cartan (U4) 
geometry have attracted much interest. A space-time endowed with this geom- 
etry is not only the natural arena of supergravity, but arises also in classical 
gauge theories of gravitation that employ the Poincar~ group (see, e.g., [20] ). It 
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is well known that torsion will influence the motion of spinning test particles 
but not that of scalar ones. In the so-called teleparallelism theories of gravitation 
[16, 21] this effect provides the only conceivable tool to detect deviations from 
Riemannian geometry experimentally. Therefore the derivation of classical 
equations of motion for spinning particles in a U4 background is not merely of 
academic interest. For Dirac particles the leading terms of these equations in an 
expansion in powers of/f  have been obtained recently by WKB methods [9, 16, 
17]. In this section we derive the complete version of these equations (which 
contains also terms quadratic in the spin tensor) from a supersymmetric Lagrang- 
ian variational principle. 

In contrast to the electromagnetic and Riemannian gravitational case (which 
were both considered already in [15] ) the supersymmetric action in a U4 space- 
time cannot be determined from the knowledge of its scalar part alone, as scalar 
particles do not couple to torsion. However, supersymmetry strongly restricts 
the possible generalizations, and the following one is essentially unique, if a third- 
rank tensor is to be involved, as is suggested by the presence of torsion: 

L = - dO [guy(X) D 2 X  u D X  v + S~o~(X) D X  a D X  ~ D X  ~'1 (32) 

2 (gv";cu;c" + igu.(~v + r~oxX~a ) ~ - s ~ , ~  ~ 8  ) (33) 

/ x  

Here S~fl.~ is a totally antisymmetric tensor, and 

Pup = + 3Suo (34) 

is a connection compatible with the metric guy, i.e., 

v . g ~  = o (35) 

gu denoting the P-covariant derivative and { ) the Christoffel symbol. In passing 
from (32) to (33) we have introduced the inverse guy of the metric guy [it enters 
through the Chlistoffel symbol in (34)]. In order for this to exist we have to as- 
sume that the metric determinant g = det guy belongs to the multiplicative group 
of invertible elements of the Grassmann algebra (Grassmann numbers that are 
not in this group are nitpotent [22] ). This assumption is very natural as in the 
special case g~r = ~t~ it is certainly fulfilled. Note that owing to the commuta- 
tivity of the functions guy(x) the evaluation of the matrix inverse proceeds ex- 
actly as in the case of real matrices. 

All the indices appearing in (32) and (33) are to be interpreted as holonomic 
space-time indices, and using the fact that supersymmetry (3) requires the ~u to 
transform as vectors it is easy to prove that L is a scalar under general coordinate 
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transformations. The non-Riemannian contributions to L vanish if S ~ .  r = 0. The 
equations of motion implied by (33) are the following: 

{t~8} -2i -21 g u v { ) ^  5C u =- JCc~JC e + RUvaeJcv~~ e - gvS[a~,y,81 ~a~'r~a (36) 

~la * A = _pu~jc,x~,~ _ 2igUVSDe.,/,vl ~o~e~.y (37) 

{) �9 

We have denoted by g u the Christoffel covariant derivative and by Ruvo~ ~ the 
curvature tensor of the connection P. Owing to the total antisymmetry of 
A * 

Sa#7, { ) may be replaced by P wherever it appears in (36). Equation (37) im- 
plies an especially simple evolution of the spin tensor (9): 

�9 , * . 

~uv + i,~#xaS~V + pV xaSta# = 0 (38) 

i.e., parallel transport with respect to the connection P. 
/ x  

In the Riemannian case (S~o.~ = 0) equations (36) and (38) accord with the 
well-known momentum and spin propagation equations of Mathisson [23] and 
Papapetrou [24] for a classical pole-dipole particle, if the simplest momentum- 
velocity relation, namely, P u = mJcU, is assumed. For the U4 case analogous 
classical propagation equations have been derived by Hehl [25], Trautman [26], 
and, under slightly more general assumptions, by Yasskin and Stoeger [27]. In 
this general case there is at least no obvious choice of a momentum-velocity rela- 
tion for which the latter equations would agree with (36) and (38). What is par- 
ticularly remarkable about these equations is that owing to the total antisym- 

/x * 

metry of S the connection P is not the most general one that is metric compatible 
(this property requires only antisymmetry of the torsion tensor in the last two 
indices). On the other hand in the Hehl-Trautman equations the connection is 
allowed to be of this general type. Thus one might suspect that the supersym- 
metric particle couples only to part of the full U4 geometry. But of course the 
meaning of the "full" geometry is not clear as long as this geometry has not been 
given operational significance. If one takes the point of view that the particle 
model under consideration constitutes the very attempt to explore a new kind of 
geometry, one mightvery well be inclined to ^ interpret this geometry as that of a 
(-;4 with connection P (and hence torsion 3 S). At the level of the Lagrangian 
(33) this is certainly legitimate. However, we are going to quantize this theory in 
the next section and thus to construct a field theory. The corresponding field 
will turn out to be the Dirac field minimally coupled to a U4 geometry with con- 
nection P and torsion S related to P and S in the following way: 

/ x  

S~t~. ~ = S[~t~/l (39) 

�9 cx oL r#-r = P~-r + 2S,y.a (40) 
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It is for this reason that we will eventually consider I" to be the Cartan connec- 

tion rather than P, although the latter appears to be more relevant in an opera- 
tional sense. 

w (5): Hamil tonian Formal ism and Canonical Quantizat ion 

It follows from the covariant version of the bracket (4) that in a general 
Riemannian metric (and hence even in Minkowski space, if curvilinear coordi- 
nates are introduced) the ~u and Pv cannot together be canonical degrees of free- 
dom, since 

i gUV(x ) (41) 
[~"' ~"} = m 

and hence 

[Px, [~u, ~v}} = _ ~ ,x 4:0 (42) 
m 

This in itself suggests to base a Hamfltonian dynamics on the anholonomic 
variables 

~a := ea#(x)  ~# (43) 

with eau an orthonormal tetrad field, 

rlab eau e bz, = guv (44) 

But in order to substantiate the very definition of the bracket (4) we shall in 
the following supply a more explicit argument for the replacement (43), which is 
derived from Dirac's analysis of Harniltonian systems with constraints [28]. Al- 
though this theory was originally developed for a real phase space, its generaliza- 
tion to Grassmann variables is straightforward. 

In a first step, consider the ~u as configuration space variables and evaluate 
their conjugate momenta from the Lagrangian (33), 

zr u = L a~ u - - -~ m g u v ( x  ) ~v (45) 

The fact that ~u is not expressible in terms of ~ and lr is due to the existence of 
I four primary constraints ~u, which are conveniently taken from (45) to be de- 

freed as 

i f cI'u(~, 7r) = lr. + -~ m g u v ~  v "- 0 (46) 
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where " ~ "  denotes equality in the weak sense [28]. According to the general 
theory equations of motion can be obtained from a total Hamiltonian 

, 

n Ix ,Pv, ~c~, 7r~, Xo) - p u x  + 7ru~u - L + Xucb'u (47) 

with 

, OL 

p~ = ~ x a,~# 

and anticommuting Lagrange multipliers X u. The evolution equations are 

(48) 

OH OH 
k u = - -  ' = - - -  (49) Op' u ' P u 3x u 

~" = -  H, i~,~ = 14 (50) 

From these equations we infer the following definition of the "primitive" 
Poisson bracket: 

OA OB 8A ~B ~ -~ ~ 
[A,B}p ,  - . . . .  "l- a 

ax. ap'~ @'. ax. a~. a . .  B+A a, .  a~. B (51) 

Because of the plus sign connecting the last two terms (51) defines also a grad- 
ing. In the U4 case H '  is given by 

H ' -  p,2 i m * * 
2m 2 ~XaPx ~ ~  - -ff guvp"c~pv'~8 ~ ' ~ a  

m ( i  
2 Sc~3.r, a 7ru -~ (52) 

I m *  
Pu = mg~v~c" + i -~ Pu,~e~c~ ~ (53) 

Solving (49) and (50) yields 

" = - X ~ (54) 

and the equations of motion (36) and (37). 

For the purpose of quantization we would like to get rid of the Lagrange 
multipliers in the Hamiltonian. This is indeed possible by a "canonical reduc- 
tion" to the true dynamical degrees of freedom. To this end the canonical struc- 
ture is redefined by the so-called Dirac bracket: 

[A, 8 ) >  = [A, B ) e .  - [A, ~h)p.C '"v [~;, B)e. (55) 
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with 

C,Oefl ra,, , t'elS, dPT}p. = 8a 7 (56) 

(In general C' is the matrix inverse of the Poisson brackets of the so-called 
second-class constraints, which in our case coincide with the primary ones, how- 
ever.) Specializing again, we have 

C'UV = # guy (57) 
tm 

i [~", ~}~. = - g " ~  ( 5 8 )  
m 

, i m  . v  - o 

[P~,P#}D. =- --4- g~' guo, agva,#~u~ (59) 

1 
[P~,~ }o. = -~ guv, a~ (60) 

Now we see from (59) and (60) that the reduced set of canonical variables can- 
not encompass both the ~u and the p~. The dilemma is solved by replacing all of 
them, the ~u by (43), and the Pu by 

i)~X~ x v, ~a In ~ ~.a~.b Pu = = mguv jcv+ i -~ l#ab ~ ~ (61) 

This replaces the constraints ~ by 

gPa = ~a + ~ "t'lab ~b (62) 
Z 

and makes the Dirac bracket indeed coincide with definition (4)! Rewriting the 
Lagrangian (33) in terms of x u and ~a yields most readily the "reduced" 
Hamiltonian 

I - I ( x " ,  p . ,  U )  - - -  
p2 i m * * 
2m ~ ~,habpx ~a~b_ Uv a b c d -~g P#abI~vcd~ ~ ~ 

m �9 
+ ~ (VaSat,c) ~a~b~c~a (63) 

Of course H = H', ifp~ and ~ ,  rr# are expressed in terms ofpu and ~a. 
The Hamiltonian (63) generates the evolution of any observable O according 

to 

0 --- [O, H) (64) 
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The supercharge Q generating the supersymmetry transformations (3) via (10) is 
given by 

Q = p u ~ U  - i m  ^ 
Puab ~#~a~ b (65)  

where 

P~a  = a 

is another metric connection. It is instructive to express the conserved quantities 
Q and H in terms of x, ~c, and ~ only: 

Q = mguvJcu~ v + imSa~c~a~b~ c (67) 

m i, 
H = T (~2 + Sa~v,8 ~ e ~ v ~ )  (68) 

We recognize in (68) an effective variable rest mass term as in the electromagnetic 
case (29), whereas the second term in (67) has no analog in electromagnetic and 
Riemannian backgrounds. 

Having cast the dynamics into Hamfltonian form we can now perform canon- 
ical quantization in the same way as for the free system (cf. [15] ). Thus we 
regard the x u, Pv, and ~a as self-adjoint generators of an abstract algebra with 
involution and postulate 

i 
[A, B} ) ~ [A, B] if deg A �9 deg B is even 

(69) 
i 

[A, B} ---+ ~ (A, B) if deg A �9 deg B is odd 

[,  ] and ( , )  denoting the algebraic commutator and anticommutator, respec- 
tively. In particular we have 

[x u, Pv] = - igt6uv (70) 

(~a, ~ }  = , h  r/aO (71) 
m 

[x u, ~a] = [Pv, ~b] = 0 (72) 

The representation of this algebra is essentially unique and is generated by the 
standard position and momentum operators ~u and iVv and by the matrices 

~a = (gt/2m),/2,ya (73) 
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where ~a are the Dirac matrices. These operators act on the space of Dirac 
spinors ~ with the indefinite scalar product 

(~1, ~2> = f d4x (det eat,) ~1 ~2 (74) 

denoting the Dirac adjoint of ~0. The indefiniteness of (74) is a consequence of 
the indet'mite Minkowski metric appearing in (71). Although this scalar product 
is neglected in standard quantization approaches, one may attribute to it a funda- 
mental role in the definition of physical states in quantum field theory in ex- 
ternal fields [29]. 

Equations (70)-(72) define the quantum kinematics of a supersymmetric 
particle. Its quantum dynamics is implied by (64) and (69): 

i 
(9 = -~ [O,H] (75) 

The version of relativistic quantum mechanics embodied by (70), (75) may seem 
unconventional in that the evolution parameter s is distinct from the physical 
time x ~ , which is just an observable like the other coordinates. As a matter of 
fact, this approach dates back to Stueckelberg [30], and there exists an exten- 
sive literature on it (for a recent article with a fairly complete list of references 
see [31 ] ). In our opinion the "proper time formalism" suggests itself in view of 
the difficulties inherent in the more common formulation of relativistic quantum 
theory (see, e.g., [32] ). Its role in quantum field theory is discussed in [33], 
where also further references can be found. 

w (6): The Dirac Equation and Its Classical Limit 

The spin-1/2 particle states ff observed in nature are all eigenstates (or very 
nearly so) of the universal constants of motion H and Q: 

m 

Qff = +(m~/2) llz ~k 

Because of 

(76) 

(77) 

{Q, Q) = 2~H (78) 

[cf. (13) and (69)] the "mass condition" (76) is implied by the "superselection 
rule" (77). This is the reason that in the standard treatment more emphasis is 
laid upon the Dirac equation [the two possible choices of sign in (77) are physi- 
cally equivalent], although it is (76) that governs the dynamical evolution of the 
particle. This has given rise to many misunderstandings. For instance in many 
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textbooks on relativistic quantum mechanics one finds the statement that the 
spin and the orbital angular momentum of a free particle are not conserved sep- 
arately. This statement is based on a "Hamiltonian" constructed out of the time- 
independent part of Q and appears to be completely out of place from the point 
of view of the formalism considered here. In fact there is no experimental evi- 
dence supporting that statement. In contrast to the classical situation [cf. the 
remarks following (14) and (15)] supersymmetry is made unobservable by the 
condition (77). 

The Heisenberg equations of motion (75) were first proposed by Corben [8] 
on rather flimsy heuristic grounds. A more elaborated motivation was attempted 
in [9], but still rested heavily on the apparent success of (75) in the electromag- 
netic case, where it yields (26) and (28). Of course in the supersymmetric frame- 
work (75) is self-evident. 

Before we derive the Heisenberg equations of motion in the U4 case we must 
resolve a difficulty which arises in a general Riemannian metric (and hence even 
in Minkowski space, if cur~linear coordinates are used). It is connected with the 
fact that in the standard representation the momentum operator i~ u = ih Ou is 
not (even formally) self-adjoint with respect to the scalar product (74): 

Pu = Pu + i4~ X (79) 

(The bar denotes the Dirac adjoint.) One could live with this fact, but it turns 
out that it is related to a problem of factor ordering that introduces undesired 
orderh and4~ 2 terms into the Heisenberg equations. For simplicity we shall 
illustrate this by the example of the scalar particle in a Riemannian metric. In 
the standard representation one has 

/ x  

Hsc - pug pv = -~2 (-g)-l/2 3u(-g)l/2 gUV3v 

1 

A 4 " I )  
Now if (81) is inverted in order to express Pu in terms o f x  , one obtains anti 
term from (79) which makes the Heisenberg equations very messy. Without at- 
tempting to write down these equations we can conclude this also from 

/ ~ =  m ~, ~ "h 2 
2 xUguvxV + 4m #a guy 

and from the apparent-impossibility of  getting rid of the second term at the 
right-hand side of (82) by rearranging the factors in the first term. 

The problem is solved by choosing a different representation based on wave 
functions 

= (_g)1/4 ~ (83)  
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Now 

(l~1, ~J2} = {t1/1, 1])2> = 4X ~11~2 (84) 

and ~u is self-adjoint. The modified Hamiltonian implied by (83) is 

1 
Hsc = ~ m  (-g; ' /4Pu(-g)l/=g~VPv(-g)-l/4 (85) 

and yields 

~:~= 1 
2m (gUVPv + PvguV) (86) 

whence 

m 

(87) 

Similarly the Heisenberg equation for x implied by (85) is still rather lengthy, 
but it is free offi terms and coincides with the geodesic equation up to factor 
ordering. Obviously (85) is to be considered as the correct version of rise also in 
the abstract algebra of observables. 

According to what we have just said the quantum version of the supercharge 
Q in a U4 space-time is given by 

Q = ~g(_g)l/4pu(_g)-Xl4 _ i P#ab ~ ~Sab (88) 

[cf. (65)]. In the standard representation this corresponds exactly to the Dirac 
differential operator minimally coupled [34] to a U4 with torsion S related to 

via (39). Note that Q is self-adjoint, although neither of the two terms it con- 
sists of has this property. The quantum Hamiltonian is 

H : 2 1 m [ ( - g ) - l 1 4 ( p u - l ~ ' u a b S a b ) ( - g ) ' / 2 g U X ' ( p v - l ~ v a b S a b ) ( - g ) - l 1 4  

4~ 2 1 
+ - -  - Se~S "y~ (89) 4 4- S[~'r' ~1 

The Christoffel curvature scalar term stems from 

{} -2h2{R } (90) Ruvc~SUVS~ = 

and has no counterpart in (63), as R~uat~ ~u~v~a~t3 vanishes classically owing to 
a symmetry property of the Riemann tensor. We should remark that the alge- 
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braic square of Q corresponds exactly to the covariant iteration of the Dirac 
equation, 

A A A A A 

V ~ V ~ V v V  v =gUVVuVv  - R u v ~ o u v a  ' ~  - SuvoaUVg~ (91) 

(Vu is the covariant derivative with respect to the connection F). Hence (89) 
provides an alternative representation of (91). 

Because of lack of space we write down the Heisenberg equations of motion 
for a Dirac particle in a U4 space only modulo factor ordering in x and ~: 

{~/3} 1 4~ 2 ()  

2m 8m 2 

1 u.{} 
+ 2m----- ~ g VvS[a#v,51S~#S v8 (92) 

~ a b  * �9 _ i ,  a c x ~ S C b  * b �9 ta ac = - P u c x  S (93) 

If the standard polarization vector of the Dirac representation 

w u = 7s 7 u (94) 

is introduced, it obeys formally the same equations as ~u in (37) (again modulo 
factor ordering; the same holds for the vector formed by the Dirac matrices 7 u 
themselves). A comparison with the classical equations (36)-(38) shows that 
they formally coincide with (92) and (93) except for the h :  term in (92). Thus 
the complete classical equations of motion can be consistently obtained from 
the Heisenberg equations in a limit defined by replacing the Clifford by a Grass- 
mann algebra and letting'h -+ 0. 

Prior to this work only partial information about the classical limit of the 
Dirac equation in a U4 geometry had been obtained by methods which either 
started directly from the iterated Dirac equation [9, 16] or employed its con- 
served current [17] 

<--> 

i - - *  
Ju = ~ ~0 V u ~ (95) 

(V u is the P-covariant derivative). The latter coincides with the "convective part" 
of a generalized Gordon decomposition of the ordinary Dirac current. It can 
easily be inferred from (61) that in a formal classical limit (95) becomes the 
velocity distribution associated with the classical position probability ~ ~ = p 
of the particle. Therefore the conservation of (95) corresponds to the classical 
continuity equation 

(pa}u), u = 0 (96) 
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whereas the conservation of the conventional current f f T ~  reflects the con- 
tinuity of spinning matter under the supersymmetry transformation (3), (16), 
(17): 

(p ---~J,u =0  (97) 

We conclude this section with a discussion of the effective mass term appear- 
ing in the iterated Dirac equation due to (29) in the electromagnetic case and due 
to (89)in the U4 case. In the former case the relevant term is (eCi/4m)Fab o ab 
with 

i (1 ab = -~ "y[aTbl (98) 

Even if restricted to positive frequency states, this term has imaginary eigen- 
values ifFal, is electric, and real ones i f  Fat, is magnetic. In the latter case, if the 
magnetic field B is strong enough, one of the eigenvalues may be smaller than 
- m  2 (corresponding to a state whose magnetic moment is aligned with the field). 
However, as is well known, a critical field strength at which electrons become 
tachyonic does not exist. The reason is that the zero point energy associated 
with the motion perpendicular to the magnetic field is proportional to B and 
renders the particle energy always non-negative. The imaginary contribution to 
m 2 in the electric case does not imply the existence of "antidamped" or "reso- 
nance" states, because there is no unusual asymptotic behavior of the wave func- 
tions if measured in the norm implied by (74) (cf. [29] ). In the U4 case (89), the 

R term is real and the last term is of the "electric" type. In the Riemannian 
{) 

massless case the R term assures conformal invariance as does an analogous (but 
nonminimal) completion of the scalar wave equation. 

w Conclusion 

The purpose of this paper was twofold. Firstly we wanted to work out the 
classical and quantum implications of the supersymmetric particle model in 
more detail and in a more general setting than in [15]. Secondly we were in- 
terested in the information that can be obtained if the electron is employed as a 
probe of space-time structure. 

As to the first aspect, supersymmetry has proved to be an extremely efficient 
guiding principle that not only correctly determines the interactions of a classical 
particle, but also clarifies the status of the Dirac equation in relativistic quantum 
mechanics. The correct limit h -+ 0 of this equation involves a contraction of the 
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Heisenberg and Clifford algebras to a Grassmann algebra of  "observables" and 
hence "prequantum theory" might be a better term for it than "classical limit." 

The only (to our knowledge) investigation [18] of  the behavior of  classical 
spinning particles in a U4 space-time prior to this work had concluded that these 
particles are not  influenced by torsion at all. On the other hand it had been sug- 
gested by the minimally coupled Dirac equation that an electron couples to ex- 
actly four of  the 24 gravitational degrees of  freedom that are present in a generic 
U4 space-time in addition to the Riemannian metric. Likewise it had been known 
that in the leading order of  a WKB expansion the motion of  a Dirac particle is 

determined by the connection I" rather than P. The latter results have been fully 
confirmed, and completed by new terms, by the pseudoclassical equations of  mo- 
tion derived in Section 4 as well as by the exact Heisenberg equations of  mo- 
tion o f  Section 6. The peculiar contrast between the representation-theoretical 
and the Grassmann-algebraic approach to spin-1/2 particles is exemplified once 
again by the fact that in a general Riemannian metric the specification of  an 
orthonormal tetrad field is an indispensible prerequisite of  the former approach, 
whereas in the latter it is needed only for the canonical formulation. 

The apparent success and the striking simplicity of  the model considered 
clearly point towards a fundamental role of  supersymmetry also at the field- 
theoretical level. 
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