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A b s t r a c t  

Using a fast-motion approximation method we obtain the second-order gravitational field 
and equations of motion for two pointlike objects in algebraically closed form. A regulariza- 
tion procedure is used which is shown to guarantee the consistency of the approximation 
scheme. The equations of motion are then transformed within the framework of relativistic 
predictive mechanics into a system of ordinary differential equations. 

w I n t r o d u c t i o n  

We consider in this paper the problem of obtaining the gravitational field and 
the equations of motion for two gravitationally interacting bodies in the post- 

linear approximation of general relativity. The results of this paper are the first 

1 Present address: Universidad de Salamanca, Salamanca, Spain. 
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step of a program aiming at studying the dynamics of gravitationally bound sys- 
tems up to a precision sufficient to include secular effects due to gravitational 
radiation. 

This work is motivated by the fact that the Einstein "quadrupole formula" 
(which links the energy loss at infinity due to gravitational radiation to the 
quadrupole moment of the system) has been proved convincingly only for sys- 
tems interacting via nongravitational forces. Moreover, the quadrupole formula 
does not tell us anything about the effect of this energy loss on the motion of 
the system. These problems have been extensively considered in the literature, 
but have not yet been solved satisfactorily. Their resolution has, however, be- 
come an urgent necessity in order to be able to compare theory and observation 
in systems like the binary pulsar PSR 1913 + 16 where damping is probably due 
to gravitational radiation [ 1 ]. 

Since an exact solution of the two-body problem in general relativity is at 
present beyond reach, past analyses have used approximation techniques which 
may be classified into two main categories. In the "slow-motion" approach, 2 the 
velocities are assumed from the outset to be small compared to the velocity of 
light (this presupposes the use of some coordinate conditions corresponding to a 
frame of reference where the system is nearly at rest); although it has been possi- 
ble to push this approximation scheme quite far [to order (v /c)  s ] [3], it suffers 
from a serious drawback: since no convincing matching of the near-zone and far- 
zone fields has been yet performed, the simultaneous determination of the equa- 
tions of motion and of the gravitational field far from the sources is not possible. 
In the "fast-motion" approach [4-6] one uses an expansion in powers of the 
strength of the gravitational field without making any assumptions about the 
magnitude of the velocities in the system. This approach also has the technically 
interesting feature of being Poincar6 invariant because a formally Poincar6- 
invariant coordinate condition is used, and is, in principle, better suited to deter- 
mining the gravitational field throughout space-time. In this paper we use a 
"fast-motion" approximation. 

The interacting objects must be described by an appropriately chosen stress- 
energy tensor. However, since most often nothing is known observationally 
about the internal structure of the objects and since one is usually not interested 
in a detailed knowledge of that structure, the objects are frequently assumed to 
be pointlike, that is, characterized by their masses alone. Two techniques can be 
employed to deal with this assumption. The first considers extended bodies and 
formally lets their dimensions tend to zero at the end of the calculations; in such 
a technique the choice of the stress-energy tensor is arbitrary and is often arti- 
ficially restricted for the sake of technical simplicity [7]. The second technique 
introduces the pointlike character of the sources from the very beginning by 

2 For a review of this approach and references to the pioneering works of Einstein, F ock, 
and Papapetrou, see Reference 2. 
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making an appropriate choice of a stress-energy tensor involving "delta func- 
tions"; although the introduction of delta distributions in a nonlinear theory cer- 
tainly leads to difficulties, we chose this technique because it seems more 
straightforward and susceptible to yield quickly the significant physical results. 
It must be emphasized that in both techniques the assumption of pointlike 
sources leads to divergences. 

In the line of  approach we have chosen (fast-motion approximation with a 
stress-energy tensor involving delta functions), the first attempt to go beyond 
the linear approximation was that of Bertotti and Plebanski [5] ;however these 
authors limited themselves to a discussion of the general features of the algorithm 
and-ignored the problem of the divergencies. Later Havas and Goldberg [6] cal- 
culated the "Abraham-like" self-action terms, which form a small part of the 
full postlinear approximation. (For a critical review of the literature up to 1976, 
see [8]). Recently Rosenblum [9] claimed to have handled the full postlinear 
approximation and published a result which contradicts Einstein's quadrupole 
formula. Unfortunately his paper does not contain complete information on 
how the problem of divergencies has been addressed nor does it contain explicit 
results concerning the determination of the gravitational field and the full equa- 
tions of motion. Westpfahl and GoUer [ 10] give second-order equations of mo- 
tion in an explicit form which agree with our results but no regularization tech- 
nique is presented. 

Our approach is the following. Using harmonic coordinates and a flat re- 
tarded propagator, the first-order metric is obtained straightforwardly by an 
unambiguous integration. 3 The first-order harmonicity condition (the zeroth- 
order equations of motion) requires the accelerations of the particles to be at 
least order one in G, the gravitational constant. 

The postlinear stress-energy tensor constructed with the first-order metric 
is an undefined expression because it involves terms which are the product of  
a delta function ~ and a function which is infinite on the support of ft. This 
problem is handled by prescribing a definite regularization procedure which is 
based on a mean-value technique, and is chosen in order to ensure the consis- 
tency of the approximation scheme at order 2. The first-order equations of 
motion are then unambiguously obtained from the equation of conservation of 
the regularized second-order stress-energy tensor. They are shown to be equiva- 
lent to the regularized first-order geodesic equations. 

The differential equations satisfied by the second-order metric are constructed 
with the first-order metric and its derivatives, taking account of the fact that the 

3 Using a flat retarded propagator at all steps (here at orders 1 and 2) introduces unknown 
errors (for an evaluation of these errors for a distribution of continuous matter See [ 11]). 
However this has the non-negligible advantage of leading to handleable calculations. The 
attitude adopted here is to use the fiat retarded propagator, keeping in mind that it 
should be checked whether the obtained solution actually approximates the exact solu- 
tion and satisfies the no-incoming-radiation condition. 



966 B~,L ET AL. 

accelerations of the particles are first-order in G. The second-order solution ob- 
tained using the flat retarded propagator diverges. A well-defined second-order 
metric is obtained, in algebraically closed form, by working out integration pro- 
cedures which guarantee firstly that the second-order Schwarzschild metric is 
recovered in the one-body problem and secondly that the metric is a solution of 
the full Einstein equations (in other words the second-order harmonicity condi- 
tion yields the first-order equations of motion as previously obtained). These in- 
tegration procedures are shown to be consistent with the chosen regularization 
prescription. 

The second-order equations of motion are obtained in algebraically closed 
form from the equation of conservation of the regularized third-order stress- 
energy tensor (constructed with the regularized second-order metric). They are 
shown to be equivalent to the regularized second-order geodesic equations. 

The equations of motion we obtain are of hereditary character; they depend 
on the past history of the two particles. This complicated form leads both to 
technical problems-how can they be integrated?-and to problems of principle- 
how can important concepts like the total energy momentum of the system be 
defined? These problems are handled here without abandoning the manifest 
Poincar6 invariance of the formalism by using the framework of relativistic pre- 
dictive mechanics [ 12]; we derive explicitly the predictive Poincar6-invariant 
system associated with the second-order equations of motion. 

w Theoretical Framework 

2.1. A Guideline to the Problem. In this section the metric and its deriva- 
tives are assumed to be well behaved everywhere. 

Einstein's equations for the metric gaD(x p) are written in harmonic coordi- 
nates: 

2lgl S ~ = 16~r~ ~ (1) 

aD g~D = 0 (2) 

where 

g~'~ = (-g)~/~-s ,''~ (3 )  

[c = 1; ~,/3 = 0, 1,2, 3; i, k = 1,2, 3; signature (-+++); g is the determinant of 
the matrix gaD]. SaD is the Einstein tensor reduced by (2): 

2IglS~D = guva~vg~ + Q~D (4) 

where QaD is quadratic in the derivatives ofg uv (cf. Appendix A for the explicit 
expression of QaD). 

~E ~D = GIglT ~D (5) 
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where T ar is the stress-energy tensor. 
If the metric were well behaved everywhere, T ~# would be chosen as 

967 

Ta~(xP) = ~ m  L ~  ~ d s 6 4 [ x -  z(s)luauO(ggg~uUuV) -x/2 (6) 

The equation of the world line L is parametrized by s: x ~ = za(s); u s = dz~/ds is 
the tangent to L at point z; the sum N is taken over the two particles of mass rn 
(world line L) and m' (world line L') ;  64(x) is the four-dimensional Dirac distri- 
bution, normalized by 

f ~4(x)dx ~ A d x  1 A d x  2 A d x  s = 1 (7) 

The choice (6) for the stress-energy tensor is deduced from the following consid- 
erations [6]: 

(i) It depends only on the metric and the world lines of the particles. 
(ii) It is symmetric. 
(rio It is independent of the parameter s chosen to parametrize the world 

lines. 
(iv) It is conservative if and only if the world lines are geodesics of the 

metric. 
Choosing a Minkowskian parametrization of, e.g., the world line L, 

ds 2 = -~lc~dz '~ dz ~ (8) 

(u . u) = ~a~uC'u ~ = - 1 (9) 

(u. ~) --- ~ u ~  -- 0 (10) 

where ~ = du~/ds, the geodesic equation reads for L: 

i~ ~ = -u"u  ~ [ r~ ( z )  + u~uprL(z ) l  (11) 

where 

r ~  = �89 + ~go~ - ~pg~) (12) 

Equation (11) together with the similar equation for L'  is equivalent to the equa- 
tion of conservation of TaO: 

Vt3T ~ = 0 (13) 

or equivalently, 

Vr ~t~ = O ~  ar + F ~ t ~  #u - F~0~ ua = 0 (14) 

Va denoting the covariant derivative, P~,  being the Christoffel symbols (12), 
Were the metric well behaved the problem would be the following: Obtain gat~ 
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as a functional of the unconstrained world lines L, L' by solving equation (1) 
with ~afl given by (5) and (6). Then, find the equations of motion restricting 
the world lines by requiring either (i) that the solution of (1) is a solution of the 
full Einstein equations, that is, the harmonicity condition (2) is satisfied, (ii) that 
the equation of conservation for T ~t~ [equation (13) or (14)]' is satisfied, or 
(iii) that the geodesic equation (11) and the similar equation for L'  are satisfied. 
The equivalence of (i)-(iii) is a check of the assumption (6). 

Now, since we are dealing with pointlike particles and, at the same time, we 
are going to perform formal expansions in powers of G, the metric actually di- 
verges on the world lines; the expression (6) for T at~ is thus meaningless and the 
equivalence between the above three ways of obtaining the equations of motion 
(when given a sense by means of a regularization procedure) is not guaranteed. 
Therefore this formal framework cannot be considered as anything more than a 
guideline to be followed as closely as possible. 

2.2. The Approximation Scheme. Let h ar denote the deviation from 
7/s0 = diag(-1, +1, +1, +1): 

hC~t3 _ ge~fl _ ~t~ (15) 

and expand (4) in powers ofh  uv (see [5]): 

2[g[S ~ = Dh ~ - N ~t~ + ~)(h 3) (16) 

Na~ = -hUVa~v h ~  + ~ u  h~t~h - �88 aaha~h - "4,l'a~vo"u~vh ~phu~'_ 

+ lrlaflaohuvbUhOV + l~ahUVb~huv - bahuu~UhflV 

- a~huvbUh ~v + ~uhaVbUh~ + buh~V3vh flu (17) 

where [] = rtat~O~#, h = rlaflh ~#, and all indices are henceforth moved with the 
Minkowski metric. 

Then replace (5) and (6) by a regularized expansion in powers of hUV: 

~afl = GIglT~O = ~Gm f dsS.(x- z)uaufl[1 + t + t + ~(h3)] (18) 
, y  (1) (2) 

t (z)  = �88 - �89 (19) 
(1) 

7 = lh---2 - lht~vht~V - luUuVhhu,  + �89176 + 3uUuVuOuahuvhoo 
( 2 )  

(20) 

where the bar denotes a regularization procedure which eliminates the diver- 
gences in t(z),  t (z)  and which is defined in Section 2.3. 

(1) (2) 
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Finally we rewrite the equations of  mot ion (2), (14), and (11) as a 

Oah c~# = 0 (21) 

ZGm f dsS,(x- z) [~ [u~(l + t + t )l + r~u~u~u "- r~u.u~ 
(1) (2) (z) (2) 

+ (r~o~uC~u u - p~c~UUUe)(1 + 7) + ~)(ha)] = 0 (22) 
(11 (11 (i) J 

where 

_ ~ _ 1 ~ ~ a . ~ h -  n ~ a ~ h )  ( 2 4 )  2r~(z)--aah~ a~h~ + a~h~ + ~(~Ta~h + 

and where P~7(z) is a sum of  terms of  the form h ~ b . ~ h u v  and is given in Appen- 
(2) 

dix A. The equivalence between (21), (22) and the set of  two equations (23) is 
not guaranteed and will have to be shown explicitly as a test of  the consistency 
of  the approximation scheme. 

Our problem is to determine the gravitational potentials h ar = h~#(xP;La)  
together with the equations of  mot ion " ~ -  a r  p. . u a - Pa(Za, u a , L b ) ,  h ~ is a function of 
x ~ and a functional of  the world lines La ; u~ is a function of  za ~, ua ~ the tangent 
to L a at Za ~ and a functional o f  the world lines Lb;  the equations of  mot ion then 
restrict the class of  possible world lines. 

We now assume that the solution can be expanded in power series of  the 
gravitational constant G [physically, this means an expansion in the dimension- 
less number Gm/c2d  which is usually very small (d being the characteristic length 
of  the problem)]:  

h at3 = gaO - rff ~ = G h  c~ + G 2 h  a~ + 0(G 3) (25) 
(1) (2) 

~ - r " ( z  . )  = r ~ + G r  ~ + G ~ r  ~ + ~ ( ~ )  (26)  
(0) (1) (2) 

(and a similar expansion for ~,c~); hat~ and 1P a are linear in the masses m and m'; 
(0 (0 

h at~ and P ~ contain terms proportional to m:, m '2, and mm'. We expect 
(2) (2) 

r ~ = r '~  = 0 ( 2 7 )  
(o) (o) 

4When it is convenient we shall use the index a to label the particles (a, b , . . .  = 1, 2; 
L1 =L;L2 =L'). 
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when the gravitational interaction is shut off (G = 0), the world lines must re- 
duce to straight lines in Minkowski space-time. [Equation (27) will be demon- 
strated in Section 3.] 

Now when transforming the previous expansions for S a#, ~a#, F~ 7 in powers 
o fh  t~ [see (16), (18), and (24)] into expansions in powers of G care must be 
taken with derivatives of huv in view of the assumed expansion (26) of the equa- 
tions of motion. For instance, it will be shown in Section 3 that the functional 
dependence of h a~ on the world lines L a reduces to a dependence on the re- 

(l) 
e (associated with x on La) and on the retarded tangent vectors tarded points ZaR 

e _ .e "~ that is, at least uag - ZaR- Since the derivatives of u~ are proportional to ua, 
order 1 in G according to (26) and (27), the derivative ofh  ~ can be written as 

~3,h ~ = G~7 h ~t~ + [G a. r h et~ + G 2 ~'r h~t~] + (9(G3) (28) 
(o) (1) (!) (1) (o) (2) 

where a~/means that the derivative is taken "as i f "  the trajectories were straight 
(o) 

lines and where ~7 ha~ takes care of the terms proportional to ~ = G P a + ~)(G 2) 
(1) (1) (1) 

and is order one in G (see Appendix A for examples of ~ and ~ ). 
(o) (i) 

We shall also have to consider partial functional derivatives with respect to L 
(or L'). They are defined by 

o , 1 f ( x  ; L ; L  )1 (29) D a f ( x  ; L ; L  ) = lira -~ [ f (xO;L + 8 ~ L ; L ' ) -  t, , 
h--+O 

where L + 8aL is the parallel displaced world line with parametric equations 

Note that 

x a = za(s) + hS~ (30) 

be +De +DR = 0  (31) 

The functional derivatives Do and DR can be decomposed, as in (28) in 
Da + Da + ' " .  
(o) (1) 

The field equations (1) are expanded step by step in powers of G and are in- 
tegrated at each step using the flat retarded propagator D(x)  such that 

D D ( x )  = -41r64(x) (32) 

D(x )  = 26(x2)O(x ~ = 6(x ~ - Ixl)/Ixl (33) 

w h e r e  Ixl = (xixi) x12 and 0 is the Heaviside step function. 
The integration of (1) at first order will be straightforward. On the other 
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hand, at second order, some retarded integrals will diverge and will have to be 
regularized. A remarkable result is that this regularization is not arbitrary but is 
in fact imposed by the structure of the theory, plus the demand that the second- 
order Schwarzschild metric be recovered in the one-body problem, as will be 
shown in detail in Section 5. Moreover, this regularization of the divergent re- 
tarded integrals restricts in turn the regularization of divergent field quantities 
on the world lines. 

2.3. Regularization Procedure. Let x s be in the hyperplane orthogonal to 
L at z a such that 

x s - z a = en a, (n �9 n) = 1, (n .  u) = 0 (34) 

where u s is the tangent to L at z s. The function functionals f(x;La) we shall 
have to deal with in the postlinear approximation can be expanded in a Laurent 
series in e: 

f(xa;L;L') = s emf[m](, a) (35) 
m = - s  

Inspired by the regulafization procedures commonly used to deal with diver- 
gent quantities in classical electrodynamics, one is tempted to regularize f(z) by 
taking the mean value of(35) over na. s In this case e (and e ' )  would enter the 
formalism as additional parameters which may or may not be eliminated by re- 
normalization at the end of the calculations. When necessary we shall refer to 
this regularization procedure as W-regularization ("wrong" regularization). In- 
deed when applied to the present problem W-regularization leads to inconsistent 
results because the nonlinearity of the theory together with the fact that the 
equations of motions are not independent of the field equations but rather can 
be deduced from them, imply that the integration of the field equations and the 
regularization of the source cannot be considered separately. The regularization 
procedure we shall use throughout this paper replacesf(z s)  by 

1 fs~ d~2f[~ (36) f(zs) = < ; t o j  ( . % >  - 

~2 being the measure on the unit 2-sphere in the 3-plane orthogonal to u s. 
The regularization procedure (36) need not be complemented by a renormal- 

ization procedure since it does not introduce any additional parameters. 
Finally, we note that a completely different approach based on a regulariza- 

tion using the Riesz potentials yields the same final results [14]. 

s For a critical review of the regulaxization procedures used in classical electrodynamics to- 
gether with a consistent use of the mean-value techniques see [ 13 ]. 
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w (3): The Linear Gravitational Field 

The first-order Einstein equations relaxed by the harmonicity condition are 

[] h =r = 16~r ~ ' m  f d s 8 4 ( x -  z)uC'u ~ (37) 
(1) J 

The integration of (37) by means of the flat retarded propagator (33) is straight- 
forward: 

h ~ =-4  ~ m  ~dsD(x -  z)uau ~ 
(1) J 

=_4m(U~U~l (_u_u~" ,a ,~, 
k r ] R - 4 m ' ~  r ]R (38) 

where if z R is the retarded point on L associated with x [(x - z R)2 = 0], then 
rR = -(X a - Z~)UaR, U~ being the tangent to L at z~. [See Appendix C, equa- 
tion (C6).] 

The solution (38) of equation (37) will be a solution of the full Einstein 
equations if the harmonicity condition is satisfied at order 1. 

From (38) we have 

U(7)R ( t ) '~  (39, it# h a# = -4m - 4m' 
(0 \r'JR 

(cf. Appendix A for calculation of derivatives of retarded quantities). 
Because of the assumed expansion (26) of the equations of motion, (39) 

reads 

a#G h ~ = -4Gm(Pa/r)R - 4Gm'(P'a/r ')R + ~3(G 2) (40) 
(1) (0) (0) 

Now the first-order harmonicity condition is 

a~G h a~ = O(G z) (41) 
(1) 

Therefore we must have 

r s = 1 -''a = 0 (42) 
(o) (o) 

as already anticipated [equation (27)]. 
Equations (42) are the zeroth-order equations of motion. They have some- 

times been considered puzzling because they were ambiguously written as 
~a = z) 'a = 0 and interpreted as meaning that the field equations had to be solved 
with a source moving on a straight line. 

Equation (42) actually restricts the class of possible world lines only in the 
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sense that they have to be solutions of a system of equations which reduces to 
(42) when the gravitational interaction is shut off(G = 0); this does not mean 
that the trajectories have to be close to straight lines when G :~ 0 but only that 
the right-hand sides of the equations of motion have to be at least first order in G. 

The linear gravitational potentials, solution of the linearized Einstein equa- 
tions, are therefore 

ga#= r/c~#, 4Gm(U~U~ -4Gin' (u'~u,'~) + (~(G 2) (43) 
\ r ] R  \ r  IR 

Ua'a = r (44) 

w (4): Conservation of the Second-Order Stress-Energy Tensor, 
The First-Order Equations of Motion 

The nonregularized second-order stress-energy tensor ~a# constructed with 
the first-order metric [equation (43)] reads [cf. (18) and (19)] 

~ ( x ) = ~ f d s ~ 4 ( x - z ) u % ~ { G m + G 2 m 2 D + 2 ( U R ' U ) ~  ] r R  

[1+ 2(u_~ .u)2]} ~)(G3)(45) + G z ram' + 
ra 

The second term is meaningless because the functions which multiply 64 [x - z(s)] 
are infinite on the world lines x = z(s). Therefore, strictly speaking, the approxi- 
mation method breaks down here, and the formalism does not even allow a der- 
ivation of the first nontrivial term of the equations of motion. 

Replacing the meaningless expression (45) by its regularization (36), a straight- 
forward calculation leads to 

~:~a(ic) ~Gm f ds64(x z)u~ +Gm '1+2~2)  . . . .  + �9 3) (46) 

where if ~" is the retarded point onL '  associated with z, then co = (u �9 " u), 
O = -(z ~ - z^'~)us,"' ~'~ being the tangent to L '  at ~". (cf. Appendix B for detailed 
expansions in Laurent series of retarded quantities). 

The regularization procedure amounts here to ignoring the contribution 
from the self-field: 

t ^ t O ~ ^ r  2 ~7 ha#(z) = 4m u u #v.r/# + (9(G) (47) 
(1) 

where 

va = -u'~ + ( za - z''a)/O, (v" v) = 1, (v '  ~')  = 0 (48) 
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d • P  = (u" v) + tg(G) (49) 

the equation of conservation of the regularized second-order stress-energy tensor 
[equation (22)] is obtained straightforwardly: 

~ a m  f d s 8 4 ( x -  z)[fi ~ - Gra (z ) ]  = e(G 3) (5o) 
J (1) 

where 

with 

v a + (v 'u)u  ~ + 4oo(v 'u)  G Pa(z) = Gm' 1 - 26o 2) pa 
(0 

(51) 

v (v.u)=O (52) 

Therefore the first-order equations of motion as obtained from the conserva- 
tion o f ~  at~ are 

Ua _ O r (za) + e(G 2) (53) 
(1) 

with I'~(z) given by (51). Had we used the first-order geodesic equations (23) to- 
(l) 

gether with the same regularization procedure (47), we would have obtained the 
same equations ( 5 3 ) .  6 I t  should be noted that if we had used the W-regulariza- 
tion procedure mentioned in Section 2.3, we would have obtained a different 
regularized second-order 5~ at~ (the W-~ aa contains terms proportional to 1/e 
and 1/e'); the first-order equations of motion would nevertheless have been the 
same. At first order then, the inconsistency of the W-regularization procedure is 
not evident. 

w (5): The Postlinear Gravitational FieM 

The second-order Einstein equations relaxed by the harrnonicity condition 
read 

/ -  

[] G 2 h a~ = 16rr ~ G m ~ d s f 4 ( x -  z)uau~7 + G2N ~ 
(2) d (1) (2) 

(54) 

where, as shown in equation (46), 7 = [Gm'(1 + 2~o2)]/p, and where care must 
(1) 

6Since ( d ] d s ) ( 1 / r R )  = u �9 ~ ( l l r  R )  (= 0). 
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be taken with derivatives to calculate N ~#. N a# as given by equation (17) is a 
(2) 

linear function of a h • ah and h X ~2 h; therefore according to Section 2.2 it is 
sufficient to replace h by Gh, ~h by G~ h, and 32h by G a 2 h, thereby leaving 

(0 (o)(0 (o) (1) 
out third-order terms proportional to ~. It is clear that this does not mean that 
we are replacing L and L '  by straight lines but simply that up to second-order 
in G we do not have to consider those terms which would appear at third order. 

We shall separate the solution of (54) as 

h as = h~. # + h~v# (55) 
(2) 

where h~fl is generated by the first term on the right-hand side of(54) (see be- 
low for its computation) and where 

l f 4  G2 h~v#(X) =- -4-~r~r d y D ( x -  y)G2Na#(ya,  y~R,~a~ ) 
(2) 

(56) 

where the functional dependence of Na#(y)  on the lines L a reduces to a de- 
(2) 

pendence on the retarded positions and velocities associated with y. The calcu- 
lation of h~v# can be further simplified by remarking that we only need to know 
G 2 h~r # up to second order in G. Since the integration in equation (56) concerns 
only the parts of the world lines L a below the retarded point ZaR associated with 
x, we can replace under the integral sign Na#(y ,  YaR,.~aR) by its lowest-order 

(2) 
value, Na#(y ,  y(~, j~(~), where y (~  and 3)(~ are calculated "as if" the lines L a 

(2) 
were straight below ZaR, JaR- [Note that these fictitious straight lines used to 
evaluate (56) depend on the point x]. More precisely we define 

j~(o) ~ _ .~ 
,~ = U~R = Z~R (57) 

ya(o) _ a _ u ~ ( { [ ( k  "UaR) - raR] 2 + 2k" (x - ZaR)) 1/2 + (k "UaR) - rag) (58) aR - ZaR 

where 

k a = ya  _ x a (59) 

Since the curvature of the lines are 0(G) we can write (formally) 

G2 Na#(y ,  YaR,JPaR ) = G2Na#(y,y(a~ j~(~) + Cg(G 3) 
(2) (2) 

(60) 

so that 

c c2 h~(o)(X, zaR, ZaR) + ~9(Ga) (61) 
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where by definition 

,~# 1 I "  . (o)  ; , (o)a 
hN(o)(X, ZaR, JaR) = - ~ j d 4  y D(x - y)  N~#( y, J'aR, :aR J (62) 

(2) 

Finally, it can be checked explicitly that h~r~o) is a zero-order solution of equa- 
tion (54): 

[] hn(o)(X, ZaR, JaR) = N~#( x, ZaR, JaR) (63) 
(o) (2) 

with [] = ~ �9 ~ (cf. Section 2.2 for the definition of a ). 
(o) (o) (o) (o) 

Once again we insist on the fact that replacing YR by y(~) does not mean 
that we are consideringL and L'  as straight lines but only that calculating the 
integral (54), taking into account the curvature ofL  a below ZaR, would intro- 
ducehigher-order corrections. However, once the integral has been so calculated, 
_.,h~to)( x,  ZaR, JaR) is considered as a functional of the actual (curved) lines La. 
Were we to push the approximation scheme to third-order, this integration pro- 
cedure might need revising. 

In the following we shall decompose h~r # as 

hN ~ = h~ # + h~< ~ (64) 

where h~ ~ contains the self-terms (m 2 and m '2) and where h~ t~ contains the 
cross-terms (ram'). 

5.1. The "Self-Terms" h~ ~. The equation satisfied by h~ # is 

�9 D G2 h ~  = ~-~ 

ot 
where n~ = -u  R + (x c~ - z ~  ) / r  R.  

The retarded integral of (65) obtained by means of the fiat retarded propaga- 
tor is 

G2tetfj ] G2m2 s  [4NC~N#- 2(~c~# + 8u~u~R).] 
n'~div = -  4---~ ~ j - ~  " R4 + ~9(G 3) (66) 

where k ~ = - I kl and 

R = [r 2 + (k" u) 2 + 2r(k .  n)]~ 2 (67) 

R N  a = [rn ~ + k a + uC~(k �9 u)] R (68) 

The expression (66) diverges and must be regularized. We first calculate the inte- 
grals (66) removing a small ball of radius e (e') centered at R = 0 (R' = 0); per- 
forming the integration in the frame where U~R = 1, n~R = 1, we obtain 
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G2hat~ m 2 G 2 [_ ( 7uaut~ + ne'n~) ar~ a#+/3 uaufl] 
Sdiv = Z -- r2 + ~ JR + ~(G3) (69) 

with: 

o~ = -~, 13 = 14 + ( ~ )  ( 7 0 )  

Now we demand that the metric reduce in the one-body problem to the 
Schwarzschild metric. In harmonic coordinates it reads [16] 

~ ~a-~Ur~)R - G2m2{-Tu~u~-+-nan~)R + ~3(G3 ) (71) g Schw. = r /~ - 4Gm \ r2 

Therefore the extra terms in (1/r R e) and (1/r'R e') in (69) must be discarded. 
This amounts to taking the Hadamard partie finie [ 17] of the divergent integral 
(66). Thus we have 

{7u~u ~ + nC~n~)R G 2 h~J = -~_, G 2 m 2 k r-i + {~(G 3) (72) 

This regularization of (66), imposed by the requirement ~s - ~ Schw., re- 
quires in turn the regularization of quantities which diverge on the world lines, 
and justifies the regularization procedure (36) we have chosen. Let us consider 
the conditions under which (72) is indeed a solution of (65) and compute the 
d'Alembertian of(72). 

Using the Leibniz rule for the derivative of a product, we can write 

-I-7 ~ -fi IR " - /R rR 

[ -4nan'- 2(r~a~ + 8uaut~)] + 0(G) (73) 
+ r4 " R 

The first term of the right-hand side of (73) is meaningless unless regularized. 
Rewriting it as [cf. Appendix C, equation (C5)] 

z [ uOu.+ On. . 

the regularization procedure used throughout the paper leads to 

_2(7uau~+ nan~.l [] _~1 = 0 (75) 
\ r IR rR 

thus ensuring that (72) is indeed a solution of (65). 
Had we used the W-regularization procedure mentioned in Section 2.3, 

then (69) and not (72) would have been the consistent solution of (65) [since 
(- 2(7u~u ~ + nan~)R/r R) = -(a~? ~[3 +/3uau13)R/rRe ] ; therefore the W-regularization 
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procedure must be eliminated at this stage, since it does not allow to recover 
the Schwarzschild metric in the one-body problem. 

We emphasize here that this consistency link between the integration of (65) 
and the regularization procedure cannot be overlooked if one wants to be sure 
that the results do not depend on how the Einstein equations are written down. 
Indeed any inconsistency at this point would have shown up as a failure of the 
Leibniz rule used in (73), so that the equivalence between solving 21 g l S ~ ( g  ~v) = 
16~[g[T ~ and, e.g.,Rag(g~v) = 87t(T~ - �89 where R ~  is the Ricci 
tensor, would not have been guaranteed. 

It can be noted that the regularization procedure used to give sense to (66) 
amounts to solving (65) in the framework of the theory of pseudofunctions 
[ 15]: to the right-hand side of (65) one can associate a pseudofunction whose 
retarded integral is the pseudofunction associated with (72). 

Moreover, one can iterate Einstein's equations beyond second order in the 
one-body problem (m' = 0). The same regularization of the divergent integrals 
(Hadamard's partiesfinies) used at all orders leads unambiguously to a series in 
powers of (Gin~r). This series is convergent when Gm/r < 1 and its summation 
leads to the exact Schwarzschild solution outside the horizon. This fact shows, 
at least in the one-body problem, that the use of 8 distributions is consistent 
with Einstein's theory, provided that a suitable regularization procedure is used. 

5.2. The "Stress-Energy" Terms h~ ~. Using the regularized second-order 
stress-energy tensor defined in Section 4, the equations satisfied by h~fl are 

[] h~, ~ = 16~r ~ m  f d s ~ 4 ( x -  z)m' 1 +p26~ u~u ~ (76) 

They are straightforwardly integrated by means of the propagator (33): 

4 o o  4 ~  

A I  _ -  . = ^ ,  wherecoR UR UR, PR -(ZR on - UR, Z R being the retarded point 
L'  associated with ZR, U'R being the tangent vector to L'  at z R.^' 

Equation (77) is the exact solution of(76); since we are looking for a 
second-order solution, we can write 

G2h~, ~ =-4G2mrn ' 1 + 2w ) rP(o)J R - 4a2mm ' 1 + 2w ) JR+0(G a) 

(78) 

where w R = u R �9 U'R; P(o)R = -(zR - ~ (o)R) ' U'R, "Z(o)R being the retarded point 
associated with z R on the tangent u~ to L'  at z~ (cf. Figure 1 in Appendix A). 
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5.3. The "Cross-Terms"h} ~. The equation satisfied by h,~ ~ is 

l-l G2 h~ = G2 mm' {-16uau~1u'Uu'V32uv l -16u'au'~ l uuuV~2uv -~ r 

[u 1 uV3v l-7 + wau l au -~] + 16(u~u't~ + u'~u~) 'ubu r r r 

_ 16wuC~u,U3 u 1 3~ 1_7 _ 16wu,C~uUOu 1_7 3~ 1__ 
r r r r 

_ 16wu~u,U3 u 1 3~ 1_7 _ 16wu,~uUbu 1_7 3~ 1 
r r r r 

+ 4r/~r [4WU'UbU luv3vr rl-7- (2w2- 1)bu 1 au 1 ] } r  R + 0(Ga) (79a) 

(79a) can be written as 

I-q G2 h~ = G2mm'[(M~D~ + N~D'~ (1Do l )  

+(M~fD'a +N'~fD~ 1D'~  171] + 0 ( G a ) ( 7 9 b ) R  

where 

(M~)R = - 16(U~U~U'oU'a)R (80) 

(N~)R = (8(2uau't ~ + wrl~O)u'oua + 2[8wuC~u 'O - (2w 2 - llr/a~lr/oo 

- 16wu'auo6~ o - 16wu'#uo6~ +4(2w 2 -  1)6~5~} R (811 

and where the functional derivatives D ~ and D'~ were defined by (29). 
Let us now consider firstly the zero-order retarded solutions of 

= = ( 8 2 )  
(o) (o) 

p~= l s  N ~ 
- 4---~- d Ikl R'R 2 (83) 

(and similarlyP 'c~ obtained by exchanging the roles of L and L');  secondly let 
us consider the zero-order solution of 

E3 G ~ = D  ~ n(r-~r2)R=[3n~n~-Ol~----~+u'~u~) ] (84) 
(o) (o) r'ra R 
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VP :dak 3NaN~- (~  ~ +U~U~R) 
an J -~ l  "R ' R ---~ 

(85) 

where VP denotes the Cauchy valeur principale [15] and where R, N a, are de- 
fined by (67) and (68). 

Now because of the pole in the integrand of (85) at R = 0, D~P ~ r G ~ .  
(o) 

When calculating D~P ~ by differentiating the integral which has as a domain 
(o) 

of integration the complement of the ball of radius e centered at R = 0, and 
letting e --> 0, we obtain 

 :po : , [ 
(o) -3 L rp(o) JR 

On the other hand, the zero-order retarded solution of 

is 

[ ]  Fa# = D'~ fnan' f l~ 
(0) (0) \ r'2 r2 ]R 

1 :da_k NaN '~ 
F~=-4--~J Ikl R2R '2 

F a# converges and we have 

and therefore 

(86) 

(87) 

(88) 

D'~P'~ = DaP '~ (90) 
(o) (o) 

There are therefore two nonequivalent ways of obtaining the retarded solution 
of(79): 

G2Z.a~ =G2mm,{M~aGpa + N~paFpa +M,R~aG,pa + N,R~oF,pa)+ r 3) nXw 

(91) 

G 2 h~ ~ = G2mm'(M~aDap# + N ~ a D ' ~  p + M'R~aD'ap 'p + N'R~aD~P 'p) 

+ 0(c  3) (92) 

However, here too, a definite choice is imposed by the theory: (92) is the cor- 
rect solution, since it ensures that the second-order harmonicity condition is 
satisfied, as demonstrated below. 

It should be noted that an integration of (79) within the framework of the 
theory of distributions would have led unambiguously to (92). Associating with 

F ~ = D'#P ~ (89) 
(o) 
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(1/r')R Da(1/r)e the corresponding distribution, the zero-order retarded solu- 
(0) 

tion of (82) is the distribution P~. Since distributions are indefinitely differentia- 
ble, the retarded integral of the distribution (1/r')RDa~(1/r)R iS the distribution 

(o) 
DOP ~ (and not G ~ ) .  Thus (92) is obtained as the zero-order retarded integral of 
(o) 
(78). 

Finally the explicit integration of (83) can be carried out, so that P~ is 
known in terms of elementary transcendental functions. (Cf. Appendix C.) 

5.4. Seeond-OrderHarmonieity Condition. The metric we obtained [equa- 
tions (72), (77), and (92)] will be a solution of the full Einstein equations if the 
second-order harmonicity condition is satisfied. 

Gathering the results, the metric reads 

g~ = ~1~ - 4Gm(uC~u~ /r)R - 4Gm'(u'~u'~ /r')R - G2 m 2 [(7u~u ~ + nC~n~)/r2]R 

- G 2 rn '2 [ ( 7 u ' %  '~ + n ' ~ n ' ~ ) / r ' 2 ] R  - 4 G  2 turn'{[(1 + 26o 2) UaU~]/rP)R 

- 4G 2 ram'{[(1 + 26o '2) U'C~U'#/r'P')R + G 2 ram'{- 16u~u#u~ u'aDPP ~ 

- 16u'au'~up uaD'PP'a + [8(2uC~u,O + wT/a~) u~ ua 

+ (16wu~u '~ -2r~a~(2w 2-  1))~/pa- 16wu'auoS~- 16wu'~ua6~ 

+ 4(2w 2 - 1)8~6~]D'apP + [8(2u'au # + wrla~)uou" 

§ ( 1 6 w u ' ~ .  ~ - 2 ~ ( 2 w  ~ - 1))~.o- 1 6 w u ~ u ' o ~  - a6w .~u 'os~  

+ 4(2w 2 - 1)6~6~]Dae'~ R + ~3(G 3) (93) 

where the explicit expression ofP a is given in Appendix C. 
Now 

~ a  h ~;~ =-4Gm(ita/r)R - 4Gm'(it'a/r')R (94) 
(0 

~ a  ~ h~ ~ = e ( a  ~) (95) 

~G~h~#=4G~mm, [(l + 2w~)u~(p'u)_] 
ro 2 R 

+ 4G~mm' [ (1+ 26o'~)u'~(v''u')]r'p '2 R + �9 (96) 

~ G  ~ h~ ~ = G ~mm' 66ou,e (v" u) _ 4(26o~ _ 1) 
rP ~ rP ~ R 

+G=mm,[166o,u~ (V'r,p 'z'u') 4(26o '2 - 1) r,p,~j R v~ ] + (9(G~)(97) 
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where 

= + - 

To compute (97) the following property ofP a was used 

D~P ~ = [r-~(o) ] (98) 
(0) R 

as can be deduced from (86) and (85). Equation (98) was then rewritten as 

Do, P ~= [1/rp]g + r (99) 

We also replaced w R by either WR or w~ since 

W g = CO R + ~ ( G )  = r + O ( G )  (100)  

The second-order harmonicity condition then reads 

a~ ga~ = 74GmrR ( i ~  - GF~)RO) - 4Gm____~'r,R (iL'a - GF'~)R(x) = ~)(G3) (101) 

which implies 

where 

U R = GFR + O(G 2) (102) 
(1) (1) 

with 

{ GI'~ = Gm' (1 - 2oa =) [v~ + (v" u)u ~ + 4co(v. u) (103) 
(i) p2 -~ 

V~=~+CORU~ (104) 

Equations (103) and (104) are nothing but the first-order equations of motion 
(52) written for z R. 

We have therefore shown that the first-order equations of motion can be 
obtained either from the conservation equation of the regularized second-order 
stress-energy tensor, or from the first-order geodesic equation, or from the 
second-order harmonicity condition, thus ensuring the consistency of the ap- 
proximation scheme at this order. 

w (6): Conservation o f  the Third-Order Stress-Energy Tensor; 
The Second-Order Equations o f  Motion 

The equation of conservation of the regularized third-order stress-energy 
tensor is obtained from (22) where h a# is replaced by Gh ~ + GZh a#. Some 

(0 (2) 
elementary algebra Yields 
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Z amf ds6,(x-z)(it a +uUuV[F~V(lj +~2) ~1) "t'uau'~ (~--2)~P)]} 
+ O(G 3) (105) 

[that is, V#~ ~# = 0 is equivalent to the second-order regularized geodesic equa- 
tions (23)], provided that the three following conditions are satisfied: 

h~#h u~ = h a# • h uv + o ( a )  (106) 
(1) (1) (1) (1) 

ha#bXhUV = h e~# X bXh ~v +@(G) (107) 
(1) (0)(I) (I) (0)(1) 

d (h c~# + Gh ar = uX(Oxh~# + GOxh ~#) +O(G 2) 
(0 (2) (1) (2) 

= uX(Bxh a# + axh ap + GOxh ~ )  +O(G 2) (108) 
(0) (1) (i)(1) (0)(2) 

Now since 

/ ! - , / U  /,l n / 4mlUUuVnX\ " ,u ,v ix, 
~ h  uu = + (109) 

(o)(1) \ r2 /R 4 m ~  r': )R 

(cf. Appendix A for the calculation of derivatives of retarded quantities), and 
since 

(1/r~) = (nV/rn)R = (1/rr')R = (n'V/rr'2)R = (nV/r2r')R = O(G) (110) 

(cf. Appendix B for developments in Laurent series and the regularization of 
retarded quantities), the conditions (106) and (107) are clearly fulfilled. The im- 
portance of the last condition (108) for the consistency of any regularization 
scheme has been stressed in [ 13]; extending the methods in [ 13] it can be seen 
easily that (108) is fulfilled when using the regularization procedure we have 
chosen. 

Therefore the conservation of the regularized third-order stress-energy tensor 
is equivalent to the regularized second-order geodesic equations. We shall not de- 
duce here the second-order equations of motion from the third-order harmonic- 
ity condition since we do not calculate the third-order metric. However, the 
equivalence between the third-order harmonicity condition and the regularized 
second-order geodesic equations can be shown explicitly by using a procedure of 
analytic continuation based on a generalization of the Riesz potentials [ 14]. 

The second-order geodesic equation is obtained from (23) by replacing h a# 
by Gh a# + G 2 h a# given by (94). We shall separate it as 

(I) (2) 

3) (Ial) 
(1) 

Introducing the quantities 
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Pa(x)  = ~ (n~[1 - 2 ( u  R �9 U) 2] + (n R �9 U){[1 + 2 ( u  R " u ) 2 ] U  a 
(0 r~ 

+ 4(u n �9 u)u~}} + " "  (112) 

[_n~ + (nR "u)uC~ t GF~(x) = m ([1 - 2(UR "U) 2 ] (nR " hg) - 4(t~ R �9 u)(u R �9 u)} 
rR 

+ 4m [_il~ + (i~R " U) u'~] 
rR - (u R .u)[(n R .u )+(u  R .u)] 

[u~+(UR'U) u~] 
+ m [(n "u)R + 4(n/~ �9 U)(UR "u)(nR " dill) 

rR 

+ 4(n R �9 U)(it R "u) + 2(UR �9 U)2(nR " UR)] + ' ' "  (113) 

r~'(x) 2 m 2 f n ~ + ( : ~ ' u ) u a  ] = [2(uR .u )  2 -  11 

- 4ram' (n'R �9 u) (2[u~ + (u R �9 u)u '~] [(UR "U) + 2(U~" U)(U'' U)I 
rRr~ 

+ 2 [u~  + (U'R" U)U'~](U'R " U)} + 2ram' [2(u,~ �9 u) 2 - 1] 

�9 {n~ +(n'g "U)U ~ +2(n~  "UR)[U~ +(u R "u)ur + ' "  �9 (114) 

(1+  2W21 t ln~ +(nR " U)U r U(~o)R + (V(o,R "U)U a]  
P~,(x) = mm' . . . . .  + 

\ rP(o) IRtL rR P(o)R 

�9 [ 1 -  2(u R "u) 2] + 4(ug "u)[u~ + (u g "u)u ~1 

�9 [(n R �9 U) (V(O)R : 
.... + p~o)R U)]~ + �9 �9 �9 (115) 

]l 
k rR 

2m 2 
Fs(x  ) = - ~ R  3 {[n,~ + (n R �9 u)u a] [1 + (n R �9 u)2l 

- (nR "U)(UR" U)[U~ + (UR �9 u)u~l) + " "  

r~(x) 
m m  t 

(116) 

- 4(u't~u'VOaD~pu + uau~ - 1660v~uOu~uV~oD'up' u 

p # p t t 
+ 4(2co 2 - 1)(uUuUbaD'uP~ + u u u u apDuP~ ) 

- 16v~uPuUuWaoDvp'u + 1660(uOu'U~pDuP 'a + uauOu'UuUaoDuP'u) 

- 4(260 2 + 1)uOuUbpDaP'u- 1660vauPOoDup 'u 

+ 8602 (aC~Dup'u + u~uP~aD~p'u ) (1 17) 
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ps, r.a, etc. are the regularized values of rS(x), r a(x) etc., when x tends to the 
(1) (1) 

point z on the world-line L. In (1 12)-(1 16) the dots (. �9 .) mean the exchange of 
' ' ' etc.). Equations (112)-(114) the particles ( m  -+ m', u R -~ UR , n R ~ nR , r R -+ r R , 

yield the contributions to the second-order geodesic equation due to the linear 
field G h  ~ .  Equation (112) yields the first-order equations of motion. When cal- 

(1) 
culating (113) from equation (23) all the terms proportional to t) 2 were discarded 
since they are second order in G; the vector ti~ entering (113) is a known func- 
tional of the world lines given by the first-order equations of motion (102) and 
(103); equation (113) contains the term (11//a/3) first obtained by Havas [6]. 
Equation (114) is obtained from equation (A.28) in Appendix A by replacing 
h st~ by h st3. Equation (115) is the contribution of the stress-energy terms h~rt~; 

(1) 
it is obtained from (23)-(24) by replacing h st3 by h~, ~. Similarly (116) is the 
contribution from the self-terms h~ t~. Finally (117) is the contribution from 
the cross-terms h~ t~. 

Equations (112)-(117) are then expanded in Laurent series around the point 
z, x being in the hyperplane orthogonal to L at z. The resulting expansions are 
then regularized by taking the mean value of the term of the expansion which is 
independent of e = [(x - z) 2 ] 1/2. A rather long but straightforward calculation 
outlined in Appendices B and C then yields 

P s = m'p -2 [(1 - 2002)A d - (1 + 2002 + 400A) v s] 
(1) 

P.~ _ A  s [-400 4+ 1200 2-  1 -4005+1200 3-co  400 4-  1 
. . . .  [ 
m m '  p 3 A a + A 2 + A 

] v ~ [-800 3 + 1200 
- 1100+ 2200 3 + l lA(2w 2-  1 + ~-g [- ~1- ~ 

-800 4 + 2800 2 4X 17 ] 
+ A + 2600 + 003 + 1 1A(1 + 6(0 2 + 400A 

3 

2m'2 
= -7- (2002 - 1)(At* - ~ 

_ 400 s - 00 P~, AS[4004-  1 + _ _  

m m '  0 3 [ Aa 

4w 4-  1] 

A 2 A 

U s [80,93+ 400 4(.0 4 -  1 3] 
+ 7 [  ~1-2 + ~  400- 800 

- - -  [ A S ( 1  + co 2 + 2 A 0 0  + A  2 ) -  va (1  + A w  + A 2 ) ]  
2 m  ~2 

(118) 

(119) 

(120) 

(121) 

(122) 
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_ F a  l n A  2 566 

mm'  (1) m' p a + - - ~  + 

466 8(1 - 266 2 - 664) 
+ T (5662  - 2 )  + A 

(22602-  7) 

A a 

t o a 4[_~ 486o 
+ 176o(1 - 266 2) + 5A(1 - 2co 2 - -~ -  + A--- 5 -  

4(66 2 2) 6266 4 X 31 6~ 3 _ A ( 5  + 786o 2) - 2066A 2] (123)  
+ A T 

where  i f  ~ '  is the re tarded  po in t  on L '  associated wi th  z, 3', the tangent  to  L '  at  
F 

z ,  then  

p = - ( z  - ~ " ) "  3 '  (124)  

co = ( u .  3 ' )  (125)  

v a = 3 'a + 66u a (126)  

A a = u a [(z - ~ " ) "  u]/p + (z a - ~"'a)/p, ( A "  u) = 0 (127)  

x = (,4 .X)  1/2 = - [ ( z  - ~ " ) .  u]/p (128)  

Gather ing the results we obta in  

t~ a = GF a + G 2 r a + 0(G 3) 
(1) (2) 

(129)  

where  p a  is given b y  (51)  or (118)  and where 
(1) 

r a  = p - 3 [ m,2 H ]  + mm,  ( aA a + boa)] _ 4 md  [ r ,c~ ln A ] / ds 
(2) (1) 

(130) 

with:  

H ~  = 2Aa(366 2 + 2A66 + A  =) - 2va(266 2 +A66 + A  2) (131)  

a = - 2 A  -s - 566A -4 + 5(1 - 2662)A -a  + 260(3 - 4662)A -2 

+ 4(266 4 + 266 = - 1)A -1 + 2066(266 2 - 1) + 12(266 2 - 1)A (132)  

b = - ( 4 7 / 3 ) A  -3 - 3266A -2 + (3 + 1666 2 - 4664)A -a + 2066(266 2 + 3) 

+ 4(3  + 26662)A + 4866A 2 (133)  

The equat ions  o f  m o t i o n  ( 1 3 0 ) - ( 1 3 3 )  are equivalent  to  those  ob ta ined  in [10] .  
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The second-order equations of motion obtained in Section 6 are of  heredi- 
tary character. The acceleration of each particle is a functional of the past his- 
tory of the two particles. Indeed equations (129) can be symbolically written as 

dz a du a 
ds = u~ ds 

dz'a du'C~ 

ds' = u'a '  ds' 

= W~(z ~, u~, ~'~, ~'~) + O(G 3) 

- W ' ~ ( z ' ~ ,  '~ . .~ . .~ .  u ,z  ,u )+ r 3) 
(134) 

where W ~ denotes GF ~ + G 2 F ~ [the differentiation in the last term of(130) 
(1) (2) 

having been worked out "as i f "  the lines were straight]. 
s(s') is the Minkowskian proper time alongL (L')  and ~'  E L '  (~ E L )  is the 

retarded point associated with z E L (z' E L ' ) .  Equations (134) exhibit a heredi- 
tary character, since the right-hand side involves configurations of the particles 
(4-positions and 4-velocities) which are connected by light cones and which are 
not therefore generic. This kind of equation is known in the literature as differ- 
ential-delay systems or retarded-functional differential systems. Unfortunately, 
there is at present no theorem of existence and uniqueness of solution for those 
systems, except in very particular cases which do not include the present one. 

In order to transform equations (134) into an ordinary system of second- 
order differential equations, we shall use here the hypotheses and the framework 
of predictive relativistic mechanics [12]. In this theory it is assumed that the 
evolution of an isolated system of interacting particles is described by an ordi- 
nary differential system of the type 

dza(X) dua(X) ~(zt~, u #, ,t3 . . . .  z , u ' ~ )  dX uCe' dX 

(135) 
dz'~(X) '~ du'~(X) ~'~(z~, u~, '~ 

dX =u  , dX - z ,u  't~) 

or 

dz (X) du (X) =  a (Zg ' 
d---Y- -- U a,  a----T-- 

where, for compactness, the Latin indices labeling the particles have been rein- 
troduced: a, b, a ' , . . .  = 1, 2; zl = z, z~ = z'; with the conventions: a 4: a '  and no 
summation on repeated Latin indices. The function ~a a must satisfy the follow- 
ing requirements 

(i) Be invariant, under the transformations of the Poincar6 group. 
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(ii) Satisfy the orthogonality condition 

~aUac~ - 0 (136) 

so that the unitarity (in general, the constancy of the modulus) of the 4-velocities 
a is a consequence of the corresponding condition imposed on the initial con- Ua 

ditions, in other words the common parameter X measures the Minkowskian 
propertime along both lines z(X), z'(X). 

(iii) Be solutions of the following nonlinear system of partial differential 
equations [18] : 

UaP, azg-- + ~ap' aug-- = 0 (137) 

Equation (137) can be obtained from the requirement that the solution of (135), 
i.e., a pair of world lines, is unchanged when the initial data Za(O), ua(O ) are arbi- 
trarily shifted along the trajectories. This condition together with (136) ensures 
that the general solution of (135) depends on 12 essential parameters and not on 
16 as one could expect (case of two particles). Thus the system (135) can be 
changed, in each frame of reference, into another one of Newtonian type, (i.e., 
using t = z ~ = z '~ as parameter X for both particles), preserving the invariance 
under the Poincar~ group [19]. 

According to the above considerations, we construct a Poincar6-invariant 
predictive system of the type (135) such that the functions ~ coincide with the 
right-hand side of (134) when the configurations of the particles are connected 
by light cones. (This requirement plays the role of a boundary condition.) In 
order to do so we assume that the functions ~a ~ can be expanded in a power 
series of the gravitational constant G as 

~a ~ = G~a a + G 2 ~  + 0(G 3) (138) 
(0 (2) 

so that the proposed program can be carried out order by order. 
Substituting the expansion (138) into equation (137) and equating terms of 

the same order we obtain the following equations: 

ua p, a(zJ~----~ = 0 (139a) 

UaP (z) = (1) azaP, - ~ '  an:, (139b) 

and so on. Equations (139) give a recurrent method to compute the different 
terms of the expansion (138) once the first one is known, provided that we have 
a criterion for the selection of solutions [20]. An essentially equivalent method 
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would consist in transforming the differential equation (137) into integro- 
functional equations [21] [ 12] which automatically include the boundary condi- 
tion (134). 

7.1 First  Order. To obtain the first-order term ~ of the expansion (138) 
(1) 

we impose the "boundary condition" (134) to the general solution of (139a) at 
first order. As is well known [20], we thus obtain a unique result, which can be 
deduced from Pa ~, [equation (118)], by means of the following substitutions: 

(0 
A O t  ~ - -  
g a, > Z a, [(Zaa, " U a , ) + r a ] U a  ~, 

(140) 
A S  
U a,  )" U a ,  

where the final configurations (Za, Ua, Za', Ua, ) are generic, and where the follow- 
ing notations have been used: 

= ~ ~ (141a) Zaa, g a - Za~ 

ra =_ +[Z2aa, + (Zaa ' . Ua,)2] 1/2 (141b) 

The final result (see Appendix D for detailed notations and a sketch of the 
derivation) is 

~a ma'ra3[( 1 - 2k2)h~a ' + k (3  2 a ~= - 2 k  )rata,  ] (142) 
(1) 

with 

k - - - ( u  a "Ua,) ,  m 2 - - k  2 -  1 
(143) 

"fa ----- A-2  [(Zaa' " Ua) - k (gaa '  " Ua')] 

OL Ot Ot 
h~  a, - Zaa, - Tag a + Ta,U a, 

(144) 
- k u ~ ,  t ~  - -  u a 

This result was first obtained by Portilla [22]. 
The vector haaa , is orthogonal to the two velocities Ua ~. Its length is the least 

distance between the straight lines constructed from the generic configurations 
(z~, ug). The scalars r a are the parametric distance on the above straight lines, 
between z a ~ and the endpoints of their common perpendicular h~a,. Equation 
(141b) can be rewritten as 

r a -~ s , "I" A2T2) 1/2 (145) 

Note that in order to obtain (142) we have used neither the condition of in- 
variance under the Poincar6 group nor the orthogonality condition (136). These 
requirements are automatically fulffiled as a consequence of the structure of Fa ~. 

(') 
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7.2. Second Order. The second-order term in the expansion (138) is ob- 
tained from equation (139b), where ~a ~ is given by (142). We shall write the gen- 

(1) 
e ral solution of (139b) as 

~a a = ~*~+ ~a #~ (146) 
(2) (2) (2) 

where (~a., represents the general solution of the associated homogeneous equa- 

tion, and ~a #a  is a particular solution of (139b), which is chosen in order to van- 
(2) 

ish when the configurations of  the particles are connected by retarded light 
cones. Thus, at second order, the "boundary condition" (134) selects a solution 
from the family ~*~. This solution is obtained as in Section 7.1 by making the 

(2) 
substitutions (140) in the expression (130) of  F~. We obtain 

(2) 

'"a'ta "" aS + mama'ra (Aahaa' - [kraAa - ra(Aa + Ba)] t~,} 

- 4mama,ra3Pa 1 (1 - 2kralPa + ra2pa2){(l - 2k2)haa , 

+ k(3 - 2k2)rat~,} + 4mama,ra 4 ln(ralPa) 

�9 { 3 ( 1 -  2 k 2 ) ( k -  -1 r a pa)haa, + k[(5 - 2 k 2 ) ( k -  ralpa)ra  

where 

H a s  = 

h a  -~ 

Ba --- 

+ ( 1 -  2 k 2 ) r a -  4ra(1 - 2krg lpa  + ra2p2a)]taa,} 

Pa ~ k r a - A z Za 

The particular solution ~a #a  is given by 
(2) 

(2)~a#t~= ~o ~'a dkRa'(k)(~) ' ~J ~ 

(147) 

where 

2 ra l{ (3k  2 _ 2kra lPa -2 2 + ra pa) haa' 

- kra(1 + 2k 2 - 2kraaPa + ra2P2a)t~,} (148a) 

_2raP a s  -s + 5kr4pa  4 + 5(1 - 2k2)raaPa3 - 2k(3 - 4k2)r2aPa 2 

+ 4 ( 2 k '  + 2k 2 - 1 ) r a p ;  1 - 2 0 k ( 2 ~  - 1)+ 12(2k 2 - 1 ) r g l p .  (148b) 

- --y'al-'a47 ~3_-a + 32kr2pa 2 + (3 + 16k 2 - 4k4)raPa 1 - 2 0 k ( 2 k  2 + 3) 

+ 4(3 + 26k2)raaPa - 48kra2P2a (148c) 

(149) 

(15o) 

~ -=-(z~, �9 u.,) - r= (151) 
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and R a ( X  ) is an operator acting on any function f o f  the argument (z~, u c ~) in 
the following way: 

R a ( X ) f ( z ~ , Z ~ a , ;  ~ ~ Ua, Ua, ) = f ( z ~  + ~kUa, g~a , ; U~a, U6a ,) (152) 

and similarly for Ra,(X), which "shifts" Za,. The computation of  the integral 
(150) using (142) is rather long but straightforward. Noting that 

(i) The computation of  the quantity in brackets in (150) is notably simpli- 
fied when introducing the linear differential operators: 

Na ' =hOa, a a ~ (153) ~)UPa,, Qa = tg auPa - 

whose action on the different scalars and vectors is 

2 /c} = - 2  2 - 2  Na,{haa,  , Ta, "ra, , @2h2aa,~a ,, m khaa,  , m haa, , O} (154a) 

2 r a , , k  } = {O, r a , , k r a ,  , - A  2} (154b) Qa {haa', ra,  

Na,ra = - r g  1 h2aa'(ra , - kZa )  (154c) 

Qara = AZralT"a(ra , - k r a )  (154d) 

O~ _ - 2  2 o t  O~ Ot Ta'haa', Na,haa, - A haa, t a, - Qahaa , = 0 (154e) 

Na,t~,  - ~ ~ = --haa', Qata '  - k t a '  (154f)  

(ii) The operator Ra,(~t ) acts on the variables depending on z~, as follows: 

Ra,(X) Ta = "c a 

R a , ( X ) r a ,  = T a, + ~k (155) 

Ra , (  ~k ) h a~a , - haa, 

and hence 

R a ' ( X ) r a  = ra (156) 
R a , ( X ) r  a, = [h2aa , + A2(ra , + )t)2] 1/2 ----ra,(~k ) 

We finally obtain 

~#a a - m a m a , r a  s {-k(2k  2 - 1)[3(2k 2 - 1)h2aa , + (2k 2 - 3)ra 2] r a I  a, 
(2) 

+ ( ( 2 k  2 -  1)2(3h2aa,- r 2 a ) + k 2 A 2 ( 2 k 2 - 3 ) [ 3 ( 2 k  2 -  1)ra 2 -4r2a])Ja,  

- 3kA 2 (2k 2 - 1)(2k 2 - 3 ) r a K a , }  ha~a ' 

+ mama,ra,  S { ( 2 k  2 - 1)(-3k2(2k 2 - 3 ) ra  2 + A -2 [(2k 2 - 1) 

+ k 2 (2k 2 - 3)] r2a) h2aa,Ia , + k [3(2k 2 - 1)(2k 2 - 3)(h2aa , - A 2 ra 2) 

+ kZ(2k 2 -  3)2 (3A2r~a - r2a)]raJa, + k2(2k 2 - 3)2(-3A2ra 2 + ra)Ka,}ta,2 

(157) 
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\ k r  a - A2ra ra, I 
(158a) 

(158b) 

(158c) 

Ja' = - -A -2[ ( k ra  - A2ra)  -1 - raJ] 

(A ' r  a + r a ) ( k  - A) 
K a, = - - A  -2 h2aa,Ia , + A -3 In 

A r  a, + r a, 

As at first order, the result is invariant under the Poincar6 group and the condi- 
tion (136) is automatically fulfilled. 

The expansion (138) where ~a ~ is given by (142) and where ~a is the sum of 
(1) (2) 

~*~ given by (147) and of ~#a given by (157) solves the problem of writing 
(2) (2) 
the equations of motion in the form of an ordinary system of second-order dif- 
ferential equations. 

By known methods already used at first order by Portilla [22], the equations 
(135) can be transformed in Newtonian-like equations of motion which reduce 
to the usual Einstein-Infeld-Hoffman (EIH) equations of motion [2], when one 
neglects all terms of order higher than or equal to G m ( v / c )  3 or G2m2(v/c) .  

Moreover it is possible to construct by known methods [23, 24] a Hamil- 
tonian formulation (invariant under the Poincard group) for the dynamics of this 
two-particle system and thereby to define unambiguously the energy, linear mo- 
mentum, and angular momentum of the system. The computation of these quan- 
tities was done at first order in [22]. 

Appendbc  A :  e = 1; signature - +++; a = O, 1, 2, 3; ds 2 = - r laodz~dz  ~ 

Metr ic .  

[161 

where 

is such that 

and where 

A.  1. Einstein 's  Equat ions  in Terms o f  the Deviat ion f r o m  the M i n k o w s k i  
The Einstein tensor S aO = R ~ - � 8 9  ~ reads in harmonic coordinates 

21g[ Sa~ = guvb~vgae  _ igl(2n~,uqi~ _ y a y e  +gC~eL) (A1) 

Co = (_g)l/2 g~a (A2) 

~#ge# = 0 (A3) 

-21g111 e'"v = gUO0p g~V + gVpao geu _ g e p a p g g u  (A4) 
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II~uv = guogvoII  ~'po (A5) 

Yu  =gU~Ye, Y(3 = Oe[ln (-g) ~/2 ] (A6) 

1 iI~,,bpgUV + 1 L = 2(_g)1/2 ~ y o y  ~ (A7) 

g being the determinant of the matrix gat3 (or equivalently of g~) .  
Introducing the deviation from the Minkowski metric: 

hC,~ = g~e _ r/,:,t3 (A8) 

we obtain the following expansions in powers of hUV: 

- g=  1 + h + l(h2 - h . v h  "v)  + l h 3  + �89 u - 1 t,l, h" v .... .v,o + O(h 4) (A9) 

1 ~  Otlfh �88 uu) �89 ~e + lh2hC'e gC,~ = rlc,~ + h ~  _ 5 "  " + ~u~(g h= + 

1 la lavphl  ~ 1 lay + l h ~ h , ~  h"" - n ~ @ 8  h3 + -g.o~.. . . . .  o + -ghh,~h ) + r 4) (A10) 

go~ = rlo,# - hoe~ + �89 + r~ag(~h = - l huvhUV)  - �89 + ho~uh~ 

1 3 l la  laVOlala_ 1 lay l h h ~ u h ~  + rh~O(ag h + g - t a r -  "oo -ghhuvh ) -  l hZ hce~ + 

1 l, 1,, 1.,tar + ~ " o ~ " u v "  - hoeuhUOhpo + ~)(h4) (A11) 

In equations (A.9)-(A. 11) and henceforth, the indices are moved with the 
Minkowski metric r~a~; h = r /~h  ~ .  A similar expansion of the Christoffel sym- 
bols P~7 yields 

P~'r = �89 + 37go~ - Oog~'r) 

= P)a~' +(=)Pay + 0(h ' )  (A12) 

with 

2P~'7= 1 ,~ ~-8,r0eh + xr - �89 - D,rh ~ - aeh ~ + aUhe7 (A13) 
(1) 

2 " r - - ] 8 " r h u v a ~ h  - gut~uuv%," + ]ltOq,'Luv v "' 

_ a u _  h,,ruOO, h~ + h,ruO~h au + h~ua,rh a# houO h,y 

1 oz - lrl~,rhUC'buh + ~ho,rb h + hatai~taht3,r (A14) 

The expansion of (A. 1) then is 

21glS ~ = I--lh ~162 - N ~ - M ~ + �9 4) (A15) 

where [] = ~Tat~O~ and 
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+ ~"1"~vu"vovh ~vhup,. + IOehUVO~huu _ O~hUVOuh~_ OChUVauhv 

+ buh~U~Vh~ u + ~vh~UbUhr u (A16) 

- �88 rl~3OUhOu hvo h v~ + 10~hbt3huv hUV + ~ aOhO~huv hUV 

+ !h~2"" vu-hvo;~vv-o h/a - � 88  Ouhv~ - bUhaVh~OOohuv 

- OUh~VhaObohu v - OVh~Ubvh3Ohuo + bVh~UbOh~ 

+ OVh~Ub~h~ + Ib~hUVh~OOo huv + IbOhUVh~Obohuv 

- b~hUVbOh~ hpv + hUPOp h~Vbuh~ - �88 hUVhOaba huv 

ao~n~  haU (A17) - lrla~bohUV~uhOahv ~ + ~,, . . . .  o,ou,,av 

From (A.16) and (A.17) we deduce 

~t3N a~ = - �88 + l ~ahUVDhuu - aUh~VDhuv (A18) 

D#Ma# = l b a h N _  2~'1 7~alalal:Ar,. ''l~v --+ 3UhaVNuv - l buhhaUl-lh 

+ �88 + lbahUVhuuU]h + 3VhaUhuol-qhO~ 

+ lh'~~ huvV1 h #v - 3ahUVhvo [] h~ (A19) 

where N = r~a~N ate. 
The stress-energy tensor density 

~E aO = GIglT ~ = Z O m  f d s 6 4 ( x -  z)uau~lgl  ~/~ Igu.uUu"l -~/~ (A20) 

can be formally expanded in powers ofhUV: 

fie a# = ~_~Gm f d s 6 4 ( x -  z )uaur  + t + t + ~9(ha)] (A21) 
d (1) (2) 

where 

t = l h  - �89 ~ (A22) 
(1) 

t = -~2h z - g,.laV.o l h  hl~v _ ~hhuuuUu v + ~(htauuUuV)2 + ~ul UuVhuoh uo (A23) 
(~) 

The covariant divergence of the tensor-density ~at~ of weight + 2 is 

V~E ar = 0r a~ + P~ O~ - P ~  (A24) 

where F~7 are the Christoffel symbols (A12). Equation (A24) reads, when for- 
mally expanded in powers o f h  uv, 
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f V~7~ ~ = Y~Gm d s 5 4 ( x -  z )  -~s [ua(1 + t + t)] + P~Tu~u  v 
(1) (2) (2) 

- r ~ T u a u  �9 + ( I '~Tur  7 - r ~ T u a u ' r ) ( 1  + t )  + �9 (A25) 
(2) (1) (1) (1) ) 

and F~ r are given by (A13) where (1)t and (2)t are given by (A22) and (A23); (xF~) 
(2) 

and (A 14). 
Finally the formal expansion of the geodesic equations (which could be de- 

duced from ~7~ ~ = 0, were the metric well behaved) read 

a~ =-u'""trL +"~"0 rL + v)L +"%v) LI (1) (1) + �9 (A261 

where 

o, c~ p �88 - u ~ u " [ r ~  + u up r.~.~,] =uUu"a~h~ - ~luUu~a~h.~ - 
(1) (1) 

- u a ( � 8 8  �89176  (A27) 
g ?  1 1,1 ~~ - u ' u " [  ~ + u % . r L ]  = - l o , h h  au - l aahuUuVhu~  + g,ouvv - 

v (2) 
+ uVu~a,~h~ohO v _ ~1 ,,u,,v~ ~p"uvt' .ohc~P 

, v u 0 u a [ l u v a t ~ h h , V  - U U Ot~hoh v -  

+ l u U u V u o a o h u v h  O~ + luVuPuUOuhhvo  

- luODohUVhuv ] (A28) 

A.2 .  No ta t ions  and Derivatives o f  Re tarded  Quantities.  By definition 

rR = - ( x  - z R )  : UR, r'R = - ( x  - z ~ ) "  u'R (A29) 

n~ = - u ~  + (x  ~ - z ~ ) / r R ,  n ~  = - u ~  + (x  ~ - ZR'~)/rR' (A30) 
A t  A t  ? r 

PR = -(ZR - Z R )  "UR, OR = -(ZR - ZR)"  UR (A31) 

v~r = - u  R̂ 'a + (z~ - Ẑ 'UR )/OR, VR'u : - U âR + ( Z ~ -  ~ ) / p ~  (A32) 
^P  t ~ I ^ 

P(o)a = -(ZR - z (o)R) " UR, P(o)R = -(ZR - Z(o)R)" UR (A33) 
.(%)R - u Y  + ( ~  - ^ '~  '~ '~ ^~  ' 

= Z (o)R) /P(o)R,  = - U ~  + - V(o)R (z R Z (O)R)/p(o)R (A34) 
P ~ ?  t r 

WR = UR " UR, C'OR = UR " UR, (DR = UR " UR (A35) 

0 =- (n" u ) R  = ( n ' '  Ut)R = (P" U')R = ( / / "  U)R = (P(0) " Ut)R = (P(O)" U)R 

(A35)' 
t2 t2 2 t2 

1 -- n2R = n R = v2R = PR = P(o )R  = P(0)R (A35)" 
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Fig. 1. ( X -  ZR) 2 = (X - Z•) 2 =(Z R - z R )  2 = (Z' R - ~R) 2 =(Z R - ~iO)R) 2 = 

(z k - ~(0)R) 2 = 0. 

Since the curvature of the world lines is of order 1 in G, we have 

P(o)g  = OR + r ' ' + O ( G ) ,  '~ P(o)R = PR P(o)R = P ~  + {~(G) 
(A36) 

P 
•(o)R = P~ + { ~ ( a ) ,  (.o R = w R + ~ ( a ) ,  ~o R = w R + ~ ( G )  

The derivatives of the retarded quantities are deduced from differentiating 
the identity 

( x  - Z R )  2 = (X - Z [SR(X) ] }  2 -- 0 (A37) 

and read 

- ~ S R ( X  ) = (X a - z ~ ) / r  R - - n ~  + u ~  (A38) 
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~ ( x e  - z ~ )  = ~,~e + ,4(x ,~  _ z~)/, .~ = - D ~ ( x  e - z ~ ) ,  

a~U~R = -fi~R(n~ + U~) = -Dau~R, D'~u~ R = 0 

OarR = n~ + rR(n ~ + u~) (n  R �9 fiR) = -DarR,  
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D'~(x e - z~R) = 0 

(A39) 

(A40) 

D'~rR = 0 (A41) 

and similar expressions for ~a(x ~ '# 't~ ' �9 - ZR); OaUR, 3ar R. u R = duR/ds  andDa  is 
the partial functional derivative associated with parallel displacements of  the 
line L; [cf. equation (29) in text] .  Equations (A40) and (A41) can be rewritten 
as 

~U~R = - D a u b = O ,  
(o) (o) 

= - D % n ,  ~ r  R = n R 
(o) (o) 

~ u ~  = -Dau~  R = -fi~R(n~ + u~)  (A42) 
(0 (1) 

~ r  R = -D~rR = rR(n ~ + u~) (n  R �9 {tR) (A43) 
(1) (1) 

where 3 ,  D means that the derivative is taken "as i f "  the world lines were 
(0) (o) 

straight lines and where ~,  D are the first-order corrections to ~ - 3 ,  D - D 
(1) (1) (0) (0) 

due to the curvature of  the world lines; ~ f ,  D f  are proportional to fi~R and are 
(1) (I) 

first order in G. Similarly we have 

Oan~ = [(-n~n ~ + r7 ~ + u % a ) / r b  = -D~n~ R, D'%~R = 0 (A44) 
(o) (o) (o) 

-D'~PR - ~ -D'%~R = [ ( -v% e + ~ + U U )IPJR - PR, ^ ' ~ ^  '~'" ~ (A45) 
(o) (o) 

-D'e'p(o)R - V(o)R, -D'au~ " ' -  = [(-V~o)V{o) + ~ + u u )/P(o)]R (A46) (o) (o) .w~ 

Noting that P(o)g and V~o)R can be expressed as a function of retarded quantities: 

(PPa)(o)R = { r'n'a + r [n ~ + (n" u ')  u '~ + u ~ + wu'a])R (A47) 

(P " P)(OR = 1 (A48) 

Deep(o) R and D~v~t~.n are easily calculated using (A43) and (A44). 
(o) (o) " ~  

Appendix  B 

B.1. Notations. By definition 

x '~- z ~ = e n  c~, (n . u ) = 0 ,  (n . n ) =  1, e = [ ( x -  z)2] 112 

o - ( z  ~ " ) .  " '  v '~ ~ ''~ " ''~ " = - u ,  = -  + ( z ~ - z  ) / o ,  ~ = u . u  

(B1) 

(B2) 
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Z - X  

t 

Fig. 2. (x - z) �9 u = 0; (z - ~',)2 = 0. 

I t  will be also convenient  to in t roduce 

O~ = ~t~ + O3UOZ 

A ~ = v ~ + ( v .  u ) u  ~ + v ~ = u " [ ( z  - ~ ' ) .  u ] / p  + ( z  ~ - ~ ' ~ ) / p  

(A"  u) = 0, A=(A "A)l/2=-[(z-~') 'u]/P=-[co+(v'u)] 

B.2. Laurent Series Expansions of Retarded Quantities. We have 

e 
n ~  = n ~ + ~- [h a - ( n "  h ) ( 2 u  a + n~)]  

C 2 
+ -~- [(n" iJ)(3u a + 2n a)  - 2iJ a ] + •(e a) + ~)(G 2) 

(B3) 

(B4) 

(Bs) 

(B6) 
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6 2 6 3 
r R = e + - ~  (n .  it) - - ~  ( n .  ii) + (9(e 4) + (9(G ~) (B7) 

u~ = u s - e t t  a + - ~  ~a + (9(e 3) + O(V 2) (B8) 

h~ = h a - eiia + O(e 2) + O(G ~) (B9) 

n~ va+  e [n a + ( n  ^, ^,a = --  " u ) u  - ( n . v ) v  a]+(9(e  2)+O(G)  (B10) 
P 

t ff 2 
r R = p + e ( n ' v ) + - ~ p  [ l + ( n ' ~ ' ) 2 - ( n . v )  21+O(e  3)+O(G)  (Bl l )  

u~  = ~,a + (9(e) + (9(G) (B12) 
�9 ~S ~ta 
u R = + (9(e)+ �9 2) (BI3) 

6 2 
P(o)R = P - e(v" u) - -~p [1 + (v" u) 2 - 6o 2 ] + (9(e 3) + O(G) (B14) 

(pva)(O)R =pv a _ e(u a + w~,s)  + O(e 2) + (9(G) (B15) 

B.3. Regularization o f  Retarded Quantities. The regularization procedure 
used throughout the paper consists in taking the mean value of the term of the 
Laurent series expansion which does not depend on e. For a simple method of 
calculating them see [13]. 

S R _  S(z) (B16) 
ra 

~a = ~ (//s - h 2 us) + Sha + Sua 

= Sua +Sha + Sus + (9(G 2) (BI7) 
3 

where 

sR =S(zR). (B18) 

(na/rn)R = (9(G) (B19) 

(n'~/rr'2)R = (9 (G) (B20) 

(na/r'r2)R = (9 (G) (B21) 

(na/r2p(o)) R = 0 (G) (B22) 

From (B6) and (B23) the contribution of h a#, h~ ~, and h~. # to the geodesic 
(1) 

equation can be calculated [equations (118)-(122) in text]. 
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Appendix C 

C.1. Calculation ofP ~. The equation satisfied by P~ is 

I-1P" = - 4 3 a  1 = + l D a  I (C1) 
(o) rR r R r R r R 

where the index (0) indicates that we are looking for a zero-order solution of 
(C1): 

�9 ' ( c 2 )  rR = - (x - z R ) "  u~,  r'R = - (x - z'R) uR 

z R being the retarded point on L associated with x, u R the tangent to L at z R. 
D(x) being the flat retarded propagator: 

ND(x) = - 47r8 4(x) (C3) 

D(x)= ~i(x ~  Ixl)/Ixl, Ixl = (xixi) 1/2 (C4) 

we have 

I"  
O(1/rR) = -47r J d s  64(x - z) (C5) 

1/r R = f d s D ( x - z ) ,  1/r' R = / d s '  D ( x - z ' )  (C6) 

so that the solution of (C 1) is 

Pa~--~47r fd'y D(x-  y) f ds' D ( y - z ' ) D ~  f d s D ( y - z )  (C7) 

The integration on d4y is performed using cylindrical coordinates: 

x -  y= t ,  t=( t~  =R cos~,t2 =R sinr 3) (C8) 

in a frame such that 

x -  z' = ~'~176 x - z = ~~176 + a3e 3 (C9) 

One thus obtains (cf. [5]) 

t 
ZR dS' D C~ ~ Z ~  e ~ ( x )  = - 7 1  ds  0 [ ( z  - z ' ) 2 l ( [ ( x  - z ) . ( x -  z ' ) l  2 
o o  o o  

- (x -  z)2(x- z')2) -1/2 (C10) 

where 0 is the Heaviside step function. In lowest order we can integrate on 
straight lines tangent to L and L' at z R and zh. The integration of (C 10) on 
ds then is elementary and yields 
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Pa(X,  ZR, ZrR) = + ds' (C11) 
"JZio)R rR~2 

where ~(o)R is the retarded point on the tangent to L' at z~ associated with ZR, 
and where 

~ ( s ' )  =g  '~-  rgn ~ - n~[ (R ' -  rRnR)2] 1/2 (C12) 

R ' ~ ( s  ')  = Ix ~ - z ' ~ ( s ' ) ]  + ( I x  - z ' C ) ]  �9 UR}U~ ( C 1 3 )  

n~ = -u~ + (x c~ - z~)/r R (C14) 

Finally the integration on ds', using three-dimensional vector notations after 
a projection II orthogonal to u~ such that 

v = n ( u ~ )  ( c 1 5 )  

1 = I I [ z ' ( s ' ) -  zR], l=[l[ (C16) 

W R = (U R " UR ) (C 17) 

yields 

2(v X nR)2rRP [ - ~ - -  i)-~/2 in I + (w~ - 1) q2 

- nR • 0 •  nR) ln ( /+ l  "nR)- 2(V• nR)tan -1 (C18) 
J~io)R 

with 

I . ( V •  - 1) 1/2 + v ' n R ] + I "  [v+ (W~- 1)'/2nR] (C19) 

where • denotes the vector product. 
From (C18) we deduce 

r 

2rR(P" U'R) : [ln (l + 1 "nR)l~^)R-to (C20) 

C.2 Laurent Series Expansions o f  P ~ and P '~. The Laurent series expansion 
ofP a around the point z defined in Appendix B is 

IS 1 3 u v~t +RO R~u~ ~ 
I ~A" + l 

P~ = e 2 -s~(~)~ug + 6 S~(u~p)~ ~ ~ + 

i 2 u v  + 7R,~(uv)~ ~ + O(e 3) (C21) 

where 

~'~ = en a, (~. u) = 0 (C22) 
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(cf. Appendix B for notation) and where 

-2SaXtt = IIet~/p 

2 = [2n~,.~et - net~,~.- n j A / 2 o  ~ -2Set(u 0 

a _ 1 [ _ ~  1 
- 2 S a ( u v . ) -  ~-~ v(uIIv.)-  v'av'(uIIv.)- ~-IIa(.vvv.) + IIet(uv'vv'.) 

[3(~') 2 -  v 2 - 3] iia(t, Ht, o ])] 
+ 3 

_ 2 R o  = _ a__z 

o A  

1 ~_ Aetv u A u v ~  
~ 2 R ~  

20: [ A A 

-2R,,(,,~)-- ~ - 7 n, ,~,  2,,,,~ - - - - 7 -  + A 2 J +Inet(,,~) 

[d 2 A ( u v  0 + b A u A v ]  eI le t (uAt , )}  
+oet  n , , . -  A ~ ]  

where 

a = - 3  + o 2 - ( A "  o)2/A ~ - 3( .4-v) /a  2 - 3(A" o) + 3A 2 

b = 2(.4 �9 v)[A + 3A, c = 3(A" v)2/A 2 - o 2 + 3(A �9 v) + 3A 2 

d = - 3 / A  - 2(A- 0)/_4 + 3 A ,  f =  ( A "  v ) / A  - 3A/2 

e = �89 [-v 2 + ( A "  v)2/A 2 + 3(A" v) - 3A 2] 

(C23) 

(C24) 

(c25) 

(C26) 

(C27) 

(C28) 

(C29) 

with v(uIIvo) - ouIIv o + vvIIm, + opIIuv, etc., andA(uvv ) = A u v v  + A v v  u, etc., 
and 

" '  (c30) r l u ~ = n t , ~  + u u u ~ ,  ~ = ( u . ~ ' ) ,  o = - ( z -  ~ ' ) ' u  

.ga = _~,a + (z a _ ~,a)[  O + ua{_w + [(z - ~ ' )  " u ] /o )  = v a + (v " u ) u  a (C31) 

v ~ = ~'~ + wuet (C32) 

A "  = "~'~ + d ' ,  A = (A �9 A )  1/2 (C33) 
A P  A f  
u being the tangent to L '  at z , retarded point associated with z. 

The derivatives o f P  a are deduced from (C21), using 

D~O = "get - vet + (v " u) u c~ (C34) 
(o) 
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D '~p = - va 
(o) 

(o) 

D a v r  [ - ~ -  ^ ' ^ '  + ' = u ~ u ~  v,~v~]/p 
(o) 

The Laurent series expansion of (uC'p~)  is 

(u . P ' ) = S ' / e  + R '~ + ~uR'u~ + Cg(d) 

S ' =  [~2(B - A)]/4p 2 

R '~ = (ln A ) / p  

lnA Au ( 1 2B 2 )  
R ' u a = ( B u - A u ) - ~ - 0 2 + - - 4 0  2 + A z12 + - -  

where 

1003 

(r 

(C36) 

(C37) 

(c38) 

(C39) 

(C40) 

402 (C41) 

B u = v u - v u ,  B = ( B "  B )  1/2. (C42) 

From (C21) and (C38) the contributions of h~ ~ to the second-order equations 
of motion can be calculated [equation (123) in text]. 

A p p e n d i x  D 

The notations of Section 7 for a generic configuration ( g a ,  Ua, Za, , Ua, ) a r e  

c~ ~ ot 
haaa , = z a - z a, - 7aU a + Ta, Ua, , 

t a  a, = u a,~ - k u ~ ,  ( t  a, "Ua) = 0 

k = - (U a " tla, ) 

A2=k  2-  1 

r a = (h2aa , + A2ra2)l/2 

T a = m  -2(Z a -  2a, ) . ( u  a -  kUa, ) 

( h a a , ' U a ) = ( h a a , ' U a , )  = 0 (o1) 

(D2) 

(D3) 

(D4) 

(DS) 

(D6) 

As a consequence of(140) we obtain the basic formula for the replacement of 
z a - ~'a' when passing from a light cone connected to a generic configuration: 

g a - Z a' ' haa' + ra u~ + (r  a - k T a )  U a, (D7) 

from which one deduces easily (a = 1, a' = 2) 

p > r a (D8) 

co > -k  (D9) 
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0 Cx ~ ta ~, 

A ~ ra l ( k ra  - A 2 r a ) - r a l P a  

A a '~ ra 1 [h~a, + (r a - k ra )  t~,] 

(D10) 

(D11) 

(D12) 
From (DS)-(D12) ,  ~ [equation (142)] and ~ ,a  [equation (147)] can be de- 

(l) (2) 
duced from (129). 
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